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1. Introduction

A (round-robin) tournament Tn consists of n nodes p1, p2, . . . , pn such
that each pair of distinct nodes pi and pj is joined by one and only one

of the oriented arcs
−−→
pipj or

−−→
pjpi. If the arc

−−→
pipj is in Tn, then we say

that pi dominates pj (symbolically, pi →j). The relation of dominance
thus defined is a complete, irreflexive, antisymmetric, binary relation. The
score of pi is the number si of nodes that pi dominates. The score vector
of Tn is the ordered n-tuple (s1, s2, . . . , sn). We usually assume that the
nodes are labeled in such a way that s1 ≤ s2 ≤ · · · ≤ sn.

Tournaments provide a model of the statistical technique called the
method of paired comparisons. This method is applied when there are a
number of objects to be judged on the basis of some criterion and it is im-
practicable to consider them all simultaneously. The objects are compared
two at a time and one member of each pair is chosen. This method and
related topics are discussed in David (1963) and Kendall (1962). Tourna-
ments have also been studied in connection with sociometric relations in
small groups. A survey of some of these investigations is given by Coleman
(1960). Our main object here is to derive various structural and combina-
torial properties of tournaments.

Exercises

1. Two tournaments are isomorphic if there exists a one-to-one
dominance-preserving correspondence between their nodes. The non-
isomorphic tournaments with three and four nodes are illustrated in
Figure 1. Determine the number of ways of assigning the labels to the

Figure 1
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topics on tournaments 2

nodes of these tournaments and verify that there are a total of 2

(
n
2

)
labeled

tournaments Tn when n = 3, 4.

2. The complement of a tournament is obtained by reversing the orienta-
tion of all its arcs. A tournament is self-complementary if it is isomorphic
to its complement. Show that self-complementary cyclic tournaments Tn
exist if and only if n is odd. A tournament is cyclic, in the present context,
if it is isomorphic to itself under some cyclic permutation of the labels of
its node. [Sachs (1965).]

2. Irreducible Tournaments

A tournament Tn is reducible if it is possible to partition its nodes
into two nonempty sets B and A in such a way that all the nodes in B
dominate all the nodes in A; the tournament is irreducible if this is not
possible. It is very easy to determine whether a tournament Tn is reducible;
if (s1, s2, . . . , sn) is the score vector of Tn and s1 ≤ s2 ≤ · · · ≤ sn, then
Tn is reducible if and only if the equation

k∑
i=1

si =

(
k

2

)
holds for some value of k less than n.

The (dominance) matrix of the tournament Tn is the n by n matrix
M(Tn) = [aij] in which aij is 1 if pi →j and 0 otherwise. All the diagonal
entries are 0. A tournament matrix satisfies the equation

M +MT = J − I,

where J is the matrix of 1’s and I is the identity matrix. If the tourna-
ment Tn is reducible and the scores si =

∑n
j=1 aij are in nondecreasing

order, then its matrix has the structure

M(Tn) =

∣∣∣∣ M1 0

1 M2

∣∣∣∣ ,
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Table 1. P (n), the probability that a tournament Tn is irreducible.

n 1 2 3 4 5 6 7 8 9

P (n) 1 0 .25 .375 .53125 .681152 .799889 .881115 .931702

n 10 11 12 13 14 15 16

P (n) .961589 .978720 .988343 .993671 .996587 .998171 .999024

where M1 and M2 are the matrices of the tournaments defined by the sets
A and B of the preceding paragraph.

There are 2

(
n
2

)
labeled tournaments Tn. We now derive an approxima-

tion for P (n), the probability that a random tournament Tn is irreducible.
Every reducible tournament Tn has a unique decomposition into irre-

ducible subtournaments T (1), T (2), . . . , T (l) such that every node in T (j)

dominates every node in T (i) if 1 ≤ i ≤ j ≤ l. The probability that T (1) has
t nodes is (

n

t

)
P (t)2

(
t
2

)
2

(
n−t
2

)
2

(
n
2

) =

(
n

t

)
P (t)

(
1

2

)t(n−t)
.

For each of the

(
n

t

)
subsets of t nodes, there are P (t)2

(
t
2

)
possible choices

for T (1); the

(
n− t

2

)
arcs joining the remaining n−t nodes may be oriented

arbitrarily.
It is possible for t to be any positive integer less than n. It follows that

P (n) = 1−
n−1∑
t=1

(
n

t

)
P (t)

(
1

2

)t(n−t)
, (1)

since these cases are mutually exclusive. R. A. MacLeod used this formula
to calculate the first few values of P (n) given in Table 1. The following
bound is a stronger form of a result due to Moon and Moser (1962b).
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Theorem 1. If Q(n) denotes the probability that a random tourna-
ment Tn is reducible, then∣∣∣Q(n)− n

2n−2

∣∣∣ < 1

2

( n

2n−2

)2
if n ≥ 2.

Proof. It follows from (1) that

P (n) > 1− 2n

(
1

2

)n−1
−
(
n

2

)(
1

2

)2(n−2)

−
n−3∑
t=3

(
n

t

)(
1

2

)t(n−t)
.

The terms in the sum are largest for the extreme values of t. Consequently,

P (n) > 1− n(1
2
)n−2 − n2(1

2
)2n−3 +

(
n(1

2
)2n−3 − (n− 5)

(
n

3

)
(1
2
)3n−9

)
.

If n ≥ 14, then
P (n) > 1− n(1

2
)n−2 − n2(1

2
)2n−3, (2)

since the expression within the parenthesis is positive.
To obtain an upper bound for P (n), we retain only the three largest

terms in the sum in (1). Therefore,

P (n) < 1− n(1
2
)n−1 − nP (n− 1)(1

2
)n−1 −

(
n

2

)
P (n− 2)(1

2
)2(n−2).

If n−2 ≥ 14, we can use inequality (2) to bound P (n−1) and P (n−2) from
below; the resulting expression may be simplified to yield the inequality

P (n) < 1− n(1
2
)n−2 + n2(1

2
)2n−3. (3)

Theorem 1 now follows from (2), (3), and the data in Table 1.

Exercises

1. Verify that P (3) = 1
4

and P (4) = 3
8

by examining the tournaments in
Figure 1.
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2. Deduce inequality (3) from the two preceding inequalities.

3. Prove that Tn is irreducible if the difference between every two scores
in Tn is less than 1

2
n. [L. Moser.]

4. Let the score vector of Tn be (s1, s2, . . . , sn), in nondecreasing order.
Show that pi and pj are in the same irreducible subtournament of Tn if
0 ≤ sj − si < (j − i+ 1)/2. [L. W. Beineke.]

5. If T (x) =
∑∞

n=1 2

(
n
2

)
xn/n! and t(x) =

∑∞
n=1 P (n)2

(
n
2

)
xn/n!, then show

that t(x) = T (x)/[1 + T (x)]. (These are only formal generating functions,
so questions of convergence may be ignored.)

6. Let Tn − pi denote the tournament obtained from Tn by removing the
node pi (and all arcs incident with pi). If Tn and Hn are two tournaments
with n (n ≥ 5) nodes pi and qi respectively, such that Tn−pi is isomorphic
to Hn − qi for all i, then is Tn necessarily isomorphic to Hn? (Consider
first the case in which Tn and Hn are reducible.) Consider the analogous
problem when arcs instead of nodes are removed from Tn and Hn. [See
Harary and Palmer (1967).]

3. Strong Tournaments

For any subset X of the nodes of a tournament Tn, let

Γ(X) = {q : p→ q for some p ∈ X},
and, more generally, let

Γm(X) = Γ
(
Γm−1(X)

)
, for m = 2, 3, . . . .

Notice that Tn is reducible if and only if Γ(X) ⊆ X for some nonempty
proper subset X of the nodes. A tournament Tn is strongly connected or
strong if and only if for every node p of Tn the set

{p} ∪ Γ(p) ∪ Γ2(p) ∪ · · · ∪ Γn−1(p)
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contains every node of Tn. The following theorem apparently appeared first
in a paper by Rado (1943); it was also found by Roy (1958) and others.

Theorem 2. A tournament Tn is strong if and only if it is irreducible.

Proof. If Tn is reducible, then it is obviously not strong. If Tn is not
strong, then for some node p the set

A = {p} ∪ Γ(p) ∪ Γ2(p) ∪ · · · ∪ Γn−1(p)

does not include all the nodes of Tn. But then all the nodes not in A must
dominate all the nodes in A; consequently Tn is reducible.

In view of the equivalence between strong connectedness and irre-
ducibility, it is a simple matter to determine whether or not a given
tournament is strongly connected by using the observation in the intro-
duction to Section 2. For types of graphs other than tournaments in which,
for example, not every pair of nodes is joined by an arc, it is sometimes
convenient to use the properties of matrix multiplication to deal with
problems of connectedness.

Exercises

1. Show that the tournament Tn is strong if and only if all the entries in
the matrix

M(Tn) uM2(Tn) u · · ·uMn−1(Tn)

are 1s. (Boolean addition is to be used here, that is, 1u 1 = 1u 0 = 1 and
0 u 0 = 0.) [Roy (1959) and others.]

2. Prove that, in any tournament Tn, there exists at least one node p such
that the set

{p} ∪ Γ(p) ∪ Γ2(p) ∪ · · · ∪ Γn−1(p)

contains every node of Tn. [See Bednarek and Wallace (1966) for a relation-
theoretic extension of this result.]
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4. Cycles in a Tournament

A sequence of arcs of the type
−→
ab,
−→
bc, . . . ,

−→
pq determines a path P (a, q)

from a to q. We assume that the nodes a, b, c, . . . , q are all different. If

the arc
−→
qa is in the tournament, then the arcs in P (a, q) plus the arc

−→
qa

determine a cycle. The length of a path or a cycle is the number of arcs it
contains. A spanning path or cycle is one that passes through every node
in a tournament. A tournament is strong if and only if each pair of nodes
is contained in some cycle.

Moser and Harary (1966) proved that an irreducible tournament Tn
contains a k-cycle (a cycle of length k) for k = 3, 4, . . . , n. [Their argument
was a refinement of the argument Camion (1959) used to prove that a tour-
nament Tn (n ≥ 3) contains a spanning cycle if and only if it is irreducible.]
The following slightly stronger result is proved in essentially the same way.

Theorem 3. Each node of an irreducible tournament Tn is contained in
some k-cycle, for k = 3, 4, . . . , n.

Proof. Let a be an arbitrary node of the irreducible tournament Tn.

There must be some arc
−→
pq in Tn where q → a and a → p; otherwise Tn

would be reducible. Consequently, node a is contained in some 3-cycle.
Let

C = {−→ab,−→bc, . . . ,−→lm,−→ma}
be a k-cycle containing the node a, where 3 ≤ k < n. We shall show that
there also exists a (k + 1)-cycle containing a.

We first suppose there exists some node p not in the cycle such that
p both dominates and is dominated by nodes that are in the cycle. Then
there must be two consecutive nodes of the cycle, e and f say, such that
e → p and p → f . We can construct a (k + 1)-cycle containing node a

simply by replacing the arc
−→
ef of C by the arcs

−→
ep and

−→
pf . (This case is

illustrated in Figure 2(a).)
Now let A and B denote, respectively, the sets of nodes of Tn not in

cycle C that dominate, or are dominated by, every node of C. We may
assume that every node of Tn not in C belongs either to A or to B. Since
Tn is irreducible, both A and B must be nonempty and some node u of B
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a

e f

p

C

(a)

C

a

b

c

A

B

u

v

(b)

Figure 2

must dominate some node v of A. But then we can construct a (k+1)-cycle

containing node a by replacing the arcs
−→
ab and

−→
be of C by the arcs

−→
au,
−→
uv,

and
−→
vc. (This case is illustrated in Figure 2(b).) This completes the proof

of the theorem by induction.

Exercises

1. Examine the argument Foulkes (1960) gave to show that an irreducible
tournament has a spanning cycle. [See also Fernández de Trocóniz (1966).]

2. Let us say that a tournament has property Pk if every subset of k nodes
determines at least one k-cycle. Show that Tn has a spanning cycle if it
has property Pk for some k such that 3 ≤ k < n.

3. What is the maximum number of arcs
−→
pq that an irreducible tourna-

ment Tn can have such that, if the arc
−→
pq is replaced by the arc

−→
qp, then

the resulting tournament is reducible?
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4. What is the least integer r = r(n) such that any irreducible tourna-
ment Tn can be transformed into a reducible tournament by reversing the
orientation of at most r arcs?

5. A tournament Tr is a subtournament of a tournament Tn if there exists
a one-to-one mapping f between the nodes of Tr and a subset of the nodes
of Tn such that, if p → q in Tr, then f(p) → f(q) in Tn. Let Tr (r >
1) denote an irreducible subtournament of an irreducible tournament Tn.
Prove that there exist k-cycles C such that every node of Tr belongs to C
for k = r, r+1, . . . , n with the possible exception of k = r+1. Characterize
the exceptional cases.

6. Let Tr (r > 1) denote a reducible subtournament of an irreducible
tournament Tn. Determine bounds for h(Tn), the least integer h for which
there exists an h-cycle C that contains every node of Tr.

7. A regular tournament is one in which the scores of the nodes are all
as nearly equal as possible. Let Tr (r > 1) denote a subtournament of a
regular tournament Tn. Prove that there exist k-cycles C such that every
node of Tr belongs to C for k = r, r + 1, . . . , n with the possible exception
of k = r or k = r + 1. [See Kotzig (1966).]

8. Prove that every arc of a regular tournament Tn with an odd number
of nodes is contained in a k-cycle, for k = 3, 4, . . . , n. [Alspach (1967).]

9. P. Kelly has asked the following question: Is it true that the arcs of ev-
ery regular tournament Tn with an odd number of nodes can be partitioned
into 1

2
(n− 1) arc-disjoint spanning cycles?

5. Strong Subtournaments of a Tournament

Let S(n, k) denote the maximum number of strong subtournaments Tk
that can be contained in a tournament Tn (3 ≤ k ≤ n). The following
result is due to Beineke and Harary (1965).
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Theorem 4. If [x] denotes the greatest integer not exceeding x, then

S(n, k) =

(
n

k

)
−
[

1

2
(n+ 1)

](
[1
2
n]

k − 1

)
−
[

1

2
n

](
[1
2
(n− 1)]

k − 1

)
.

Proof. Let (s1, s2, . . . , sn) be the score vector of a tournament Tn. The
number of strong subtournaments Tk in Tn certainly cannot exceed(

n

k

)
−

n∑
i=1

(
si

k − 1

)
.

This is because the terms subtracted from

(
n

k

)
, the total number of sub-

tournaments Tk in Tn, enumerate those subtournaments Tk in which one
node dominates all the remaining k − 1 nodes; such tournaments are cer-
tainly not strong. It is a simple exercise to show that the sum attains its
minimum value when the si’s are as nearly equal as possible. Consequently,

S(n, k) ≤
(
n

k

)
−
[

1

2
(n+ 1)

](
[1
2
n]

k − 1

)
−
[

1

2
n

](
[1
2
(n− 1)]

k − 1

)
.

To show that equality actually holds, it suffices to exhibit a regular
tournament Rn with the following property.

(a) Every subtournament Tk of Rn is either strong or has one node that
dominates all the remaining k − 1 nodes.

If n is odd, let Rn denote the regular tournament in which pi → pj if
and only if 0 < j − i ≤ (n− 1)/2 (the subtraction is modulo n). We shall
show that Rn has the following property.

(b) Every subtournament Tk of Rn either is strong or has no cycles.

Property (b) holds for any tournament when k = 3. We next show
that it holds for Rn when k = 4. If it did not, then Rn would contain
a subtournament T4 consisting of a 3-cycle and an additional node that
either dominates every node of the cycle or is dominated by every node
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of the cycle. We may suppose that the former is the case without loss of
generality. Let p1, pi and pj be the nodes of the cycle, proceeding according
to its orientation, and let pk be the fourth node of T4. Then i ≤ 1+ 1

2
(n−1),

j ≤ i + 1
2
(n − 1), j > 1 + 1

2
(n − 1), and n ≥ k > i + 1

2
(n − 1), from the

definition of Rn. Hence, n ≥ k > j > 1
2
(n + 1), and pj must dominate pk

in Rn and T4. This contradiction shows that Rn satisfies (b) when k = 4.
If n is even, let Rn denote the regular tournament in which pi → pj

if and only if 0 < j − i ≤ 1
2
n (the subtraction is modulo n + 1). This

tournament satisfies (b) when k = 3 or 4, since it is a subtournament of
the tournament Rn+1 defined earlier with an odd number of nodes.

Let Tk be any subtournament with k nodes of Rn (k > 4). If Tk has any
cycles at all, then it must have a 3-cycle C. If Tk is not strong, then there
must be a node p that either dominates every node of C or is dominated
by every node of C. In either case, this would imply the existence of a
subtournament T4 in Rn that is not strong but which has a cycle. This
contradicts the result just established. Hence, every subtournament Tk
of Rn is either strong or has no cycles. We have shown that the regular
tournament Rn has Property (b). It is easy to show that Property (b)
implies Property (a), so the theorem is now proved.

There are only two different types of tournaments T3 (see Figure 1); it
follows that equality holds in the second statement in the proof of Theo-
rem 4 when k = 3. This implies the following result, found by Kendall and
Babington Smith (1940), Szele (1943), Clark [see Gale (1964)], and others.

Corollary. Let c3(Tn) denote the number of 3-cycles in the tourna-
ment Tn. If (s1, s2, . . . , sn) is the score vector of Tn, then

c3(Tn) =

(
n

3

)
−

n∑
i=1

(
si
2

)
≤
{

1
24

(n3 − n) if n is odd,
1
24

(n3 − 4n) if n is even.

Equality holds throughout only for regular tournaments.

The next corollary follows from the observation that every strong tour-
nament T4 has exactly one 4-cycle.
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Corollary. The maximum number of 4-cycles possible in a tourna-
ment Tn is

S(n, 4) =

{
1
48
n(n+ 1)(n− 1)(n− 3) if n is odd,

1
48
n(n+ 2)(n− 2)(n− 3) if n is even.

Colombo (1964) proved this result first by a different argument. It
seems to be difficult to obtain corresponding results for cycles of length
greater than four. (See Exercise 3 at the end of Section 10.)

The following result is proved by summing the equation in Theorem 4
over k.

Corollary. The maximum number of strong subtournaments with at
least three nodes in any tournament Tn is{

2n − n2(1/2)(n−1) − 1 if n is odd,

2n − 3n2(1/2)(n−4) − 1 if n is even.

Let s(n, k) denote the minimum number of strong subtournaments Tk
that a strong tournament Tn can have. (If Tn is not strong, then it need
not have any nontrivial strong subtournaments.) Moon (1966) discovered
the following result.

Theorem 5. If 3 ≤ k ≤ n, then s(n, k) = n− k + 1.

Proof. We first show that s(n, k) ≥ n− k+ 1. This inequality certainly
holds when n = k for any fixed value of k. It follows from Theorem 3
that any strong tournament Tn has a strong subtournament Tn−1. Now
Tn−1 has at least s(n − 1, k) strong subtournaments Tk by definition and
the node not in Tn−1 is in at least one k-cycle. This k-cycle determines a
strong subtournament Tk not contained in Tn−1. Consequently,

s(n, k) ≥ s(n− 1, k) + 1.

The earlier inequality now follows by induction on n.
To show that s(n, k) < n− k+ 1, consider the tournament Tn in which

pi → pj when i = j − 1 or i ≥ j + 2. (This tournament is illustrated in
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Figure 3.) It is easy to see that this tournament has precisely n − k + 1
strong subtournaments Tk if 3 ≤ k ≤ n. This completes the proof of the
theorem.

...

Figure 3

Notice that Theorem 5 remains true if the phrase “strong subtourna-
ments Tk” is replaced by “k-cycles” in the definition of s(n, k). The case
k = 3 of this result was given by Harary, Norman, and Cartwright (1965,
p. 306).

Corollary. The minimum number of cycles a strong tournament Tn can

have is

(
n− 1

2

)
.

This is proved by summing the expression for s(n, k) from k = 3 to
k = n.

Exercises

1. Show that a sum of the type
∑n

i=1

(
si
t

)
, where t is a fixed integer and

(s1, s2, . . . , sn) is the score vector of a tournament Tn, attains its minimum
when the scores are as nearly equal as possible.

2. Prove that Property (b) implies Property (a).

3. Prove that, if a tournament has any cycles, then it has some 3-cycles.
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4. Suppose the tournament Tn has at least one cycle; if every subtourna-
ment of Tn either is strong or has no cycles, then is Tn necessarily regular?

5. Show that

c3(Tn) =
n(n2 − 1)

24
− 1

2

n∑
i=1

(
si −

n− 1

2

)2

.

6. Prove that Tn must be strong if it has more 3-cycles than a tourna-
ment Tn−1 can have. [L. W. Beineke.]

7. Use Theorem 4 to determine for what values of n and k there exist
tournaments Tn with property Pk. (See Exercise 4.2.)

8. An m by n bipartite tournament consists of two sets of nodes P and Q,
where |P | = m and |Q| = n, such that each node of P is joined with each
node of Q by an arc; there are no arcs joining nodes in the same node-set.
The score vectors of a bipartite tournament are defined in the same way
as the score vector of an ordinary tournament. Give an example of two
bipartite tournaments with the same score vectors that do not have the
same number of 4-cycles.

9. Show that the maximum number of 4-cycles an m by n bipartite tour-
nament can have is [m2/4] · [n2/4]. [Moon and Moser (1962a).]

6. The Distribution of 3-cycles in a Tournament

In applying the method of paired comparisons, it is usually assumed
that the objects can be ordered on a linear scale. Hence, the presence
of cycles in the tournament representing the outcomes of the comparisons
indicates inconsistency on the part of the judge or that the underlying as-
sumption is inappropriate. Kendall and Babington Smith (1940) proposed
the number of 3-cycles (suitably normalized, so as to equal 1 when there are
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no 3-cycles and 0 when there are as many 3-cycles as possible) as a measure
of the consistency of the comparisons. The number of 3-cycles was chosen,
because it is a simple function of the score vector of the tournament and
hence is easy to calculate. To define significance tests for the departure
from consistency, it is necessary to know the distribution of the number of
3-cycles in a random tournament. Tables of the distribution of the number
of 3-cycles in a random tournament Tn have been given by Kendall and
Babington Smith when 3 ≤ n ≤ 7 and by Alway (1962b) when 8 ≤ n ≤ 10.
Kendall and Babington Smith conjectured and Moran (1947) proved that
the distribution of the number of 3-cycles is asymptotically normal.

Theorem 6. Let cn denote the number of 3-cycles in a random tour-
nament Tn. Then the distribution of (cn − µ′)/σ tends to the normal
distribution with zero mean and unit variance, where

µ′ =
1

4

(
n

3

)
and σ2 =

3

16

(
n

3

)
.

Proof. In a tournament Tn, let the variable t(ijk) be 1 or 0 according
as the distinct nodes pi, pj, and pk do or do not determine a 3-cycle. Since
only two of the eight equally likely ways of orienting the arcs joining these
nodes yield a 3-cycle, it follows that E[t(ijk)] = 1

4
. Therefore,

µ′ = E(cn) =
1

4

(
n

3

)
.

If r(ijk) = t(ijk)− 1
4
, then

σ2 = E
[
(cn − µ′)2

]
= E

[(∑
r(ijk)

)2]
,

where the sum is over the triples i, j, and k. The products in this expansion
are of the following types:

r(ijk) · r(ijk), r(ijk) · r(ijw), r(ijk) · r(ivw), and r(ijk) · r(uvw).

The variables appearing in each of the last two products are independent;
hence, the expectation of their product equals the product of their in-
dividual expectations, zero. The variables in the second product are also
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independent, since the probability that three nodes form a 3-cycle is still 1
4
,

even when the orientation of one of the arcs joining them is specified. Thus
the only nonzero contributions to σ2 come from products of the first type.
Therefore,

σ2 =

(
n

3

)
E
[
r(ijk)2

]
=

3

16

(
n

3

)
.

We shall now show that for each fixed positive integer h

(i)
µ2h

σ2h
→ (2h)!

2hh!
and (ii)

µ2h+1

σ2h+1
→ 0

as n tends to infinity (µk denotes the kth central moment of cn). It will
then follow from the second limit theorem of probability theory [see Kendall
and Stuart (1958, p. 115)] that the distribution of (cn−µ′)/σ tends to the
normal distribution with zero mean and unit variance.

If we combine all terms in the expansion of µ2h = E
[(∑

r(ijk)
)2h]

in
which similar combinations of values of i, j, and k occur, as we did earlier
for the second moment, the number of times terms of a given type appear
will be a polynomial in n whose degree equals the number of different values
of i, j, and k that occur in the terms. Therefore, µ2h is a polynomial in n
whose coefficients depend only on h. To calculate its degree and leading
coefficient, we must identify the terms with a nonzero expectation in the
expansion that involve the largest number of different values of the indices
i, j, and k.

We may suppose that each term in the expansion has been split into
classes of products such that different classes of the same term have no
indices in common; we may also suppose that any factor in a class of more
than one factor has at least one index in common with at least one other
factor in the same class. If a term contains a factor r involving one or more
indices that occur nowhere else in the term, then the term has expectation
zero, since r is independent of the remaining factors in the term. Hence,
if a term is to have a nonzero expectation, each index in it must occur at
least twice.

We need only consider terms in which each index occurs exactly twice,
because, as we shall show, the leading term in µ2h is of order 3h. Suppose
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such a term contains fewer than h classes. Some class of this term must
contain at least three different factors. For any factor r(ijk) of this class,
either the indices i, j, and k occur in three other factors or one index, i say,
occurs in another factor and j and k occur together in another. In either
case r(ijk) is independent of the remaining factors and the expectation of
the term is zero. Consequently, the terms with a nonzero expectation that
involve the largest number of different values of i, j, and k are of the type∏h

ν=1 r(ivjvkv)
2. There are

(2h)!

2hh!

(
n

3

)(
n− 3

3

)
. . .

(
n− 3(h− 1)

3

)
terms of this type and the expected value of each is (3/16)h. Therefore,

µ2h =
(2h)!

26hh!
n3h +O(n3h−1).

Since

σ2h =
n3h

25h
+O(n3h−1),

it follows that (i) holds for each fixed positive integer h as n tends to
infinity.

Similarly, if a term in the expansion of µ2h+1 is to have a nonzero
expectation, each index in it must occur at least twice. Hence, µ2h+1 is a
polynomial in n of degree at most

[
3(2h+1)/2

]
= 3h+1. Since σ2h+1 is of

degree 3h + 3/2 in n, it follows that (ii) also holds for each fixed positive
integer h as n tends to infinity. This completes the proof of the theorem.

Notice that the expected value of cn is asymptotically equal to the max-
imum value of cn (see the first corollary to Theorem 4). This phenomenon
occurs frequently in problems of this type.

The following theorem may be proved in the same way.

Theorem 7. Let qn denote the number of 4-cycles in a random tour-
nament Tn. Then the distribution of (qn − µ′)/σ tends to the normal
distribution with zero mean and unit variance, where

µ′ =
3

8

(
n

4

)
and σ2 =

3

64

(
n

4

)
(4n− 11).
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Moon and Moser (1962a) proved the following analogous result for bi-
partite tournaments.

Theorem 8. Let c(m,n) denote the number of 4-cycles in a random
m by n bipartite tournament. Then, subject to certain mild conditions on
the relative rates of growth of m and n, the distribution of

(
c(m,n)−µ′

)
/σ

tends to the normal distribution with zero mean and unit variance, where

µ′ =
1

8

(
m

2

)(
n

8

)
and σ2 =

1

64

(
m

2

)(
n

2

)
(2m+ 2n− 1).

Exercises

1. The quantity

h =
12

n3 − n ·
n∑
i=1

(
si −

1

2
(n− 1)

)2

is called the hierarchy index of a tournament. Show that the mean and
variance of h satisfy the equations µ′ = 3/(n+ 1) and σ2 = 18(n− 2)/(n+
1)2n(n− 1). [Landau (1951 a, b).]

2. Prove Theorem 7.

3. Prove that the third and fourth moments of the distribution of cn are
given by the formulas:

µ3 = − 3

32

(
n

3

)
(n− 4)

and

µ4 =
3

256

(
n

3

){
9

(
n− 3

3

)
+ 39

(
n− 3

2

)
+ 9

(
n− 3

1

)
+ 7

}
.

[Moran (1947).]
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4. Let q = q(n, k) denote the number of k-cycles in a random tourna-
ment Tn (k ≥ 3). Show that the mean and variance of q satisfy the equa-
tions

µ′ =

(
n

k

)
(k − 1)!

2k
and σ2 = O(n2k−3)

for each fixed value of k as n tends to infinity. What can be deduced about
the number of k-cycles in most tournaments Tn?

5. Obtain a similar result for paths of length k.

7. Transitive Tournaments

A tournament is transitive if, whenever p → q and q → r, then p → r
also. Transitive tournaments have a very simple structure. The following
theorem gives some properties of a transitive tournament Tn whose scores
(s1, s2, . . . , sn) are in nondecreasing order.

Theorem 9. The following statements are equivalent.
(1) Tn is transitive.
(2) Node pj dominates node pi if and only if j > i.
(3) Tn has score vector (0, 1, . . . , n− 1).
(4) The score vector of Tn satisfies the equation

n∑
i=1

s2i =
n(n− 1)(2n− 1)

6
.

(5) Tn contains no cycles.

(6) Tn contains exactly

(
n

k + 1

)
paths of length k, if 1 ≤ k ≤ n− 1.

(7) Tn contains exactly

(
n

k

)
transitive subtournaments Tk, if 1 ≤ k ≤ n.

(8) Each principal submatrix of the dominance matrix M(Tn) contains
a row and column of zeros.

Every tournament Tn (n ≥ 4) contains at least one transitive subtour-
nament T3, but not every tournament Tn is itself transitive. The following
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question arises: What is the largest integer v = v(n) such that every
tournament Tn contains a transitive subtournament Tv? Erdös and Moser
(1964a) gave the following bounds for v(n). [The lower bound was first
found by Stearns (unpublished).]

Theorem 10. [log2 n] + 1 ≤ v(n) ≤ [2 log2 n] + 1.

Proof. Consider a tournament Tn in which the node pn has the largest
score sn. It must be that sn ≥ [1

2
n], so there certainly exists a subtourna-

ment T[(1/2)n] in Tn each node of which is dominated by pn. We may suppose
that this subtournament contains a transitive subtournament with at least[
log2[

1
2
n]
]

+ 1 nodes. These nodes together with pn determine a transitive
subtournament of Tn with at least[

log2[
1
2
n]
]

+ 2 = [log2 n] + 1

nodes. The lower bound now follows by induction.

There are 2

(
n
2

)
−
(
v
2

)
tournaments Tn, containing a given transitive sub-

tournament Tv, and there are

(
n

v

)
v! such subtournaments Tv possible.

Therefore, (
n

v

)
v!2

(
n
2

)
−
(
v
2

)
≥ 2

(
n
2

)
,

since every tournamentTn contains at least one transitive subtournamentTv.

This inequality implies that nv ≥ 2

(
v
2

)
. Consequently, v ≤ [2 log2 n] + 1,

and theorem is proved.
The exact value of v(n) is known only for some small values of n. For

example, v(7) ≥ 3 by Theorem 10. The tournament T7 in which pi → pj
if and only if j − i is a quadratic residue modulo 7 contains no transitive
subtournament T4. It follows that v(7) = 3. Bent (1964) examined other
similarly constructed tournaments and deduced the information about v(n)
given in Table 2. Erdös and Moser conjecture that v(n) = [log2 n] + 1 for
all n.

Moon (1966) found the next two theorems.
Let u(n, k) denote the maximum number of transitive subtourna-

ments Tk that a strong tournament Tn can have. (The problem is trivial if
Tn is not strong.)
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Table 2. v(n), the largest integer v such that every tournament Tn
contains a transitive subtournament Tv.

v(2) = v(3) = 2

v(4) = · · · = v(7) = 3

v(8) = · · · = v(11) = 4

4 ≤ v(12) ≤ · · · ≤ v(15) ≤ 5

v(16) = · · · = v(23) = 5

5 ≤ v(24) ≤ · · · ≤ v(31) ≤ 7

6 ≤ v(32) ≤ · · · ≤ v(43) ≤ 7

Theorem 11. If 3 ≤ k ≤ n, then u(n, k) =

(
n

k

)
−
(
n− 2

k − 2

)
.

Proof. When k = 3 the theorem follows from Theorem 5, since ev-
ery subtournament T3 is either strong or transitive. We now show that

u(n, k) ≤
(
n

k

)
−
(
n− 2

k − 2

)
for any larger fixed value of k. This inequality

certainly holds when n = k. If n > k ≥ 4, then any strong tournament Tn
contains a strong subtournament Tn−1 by Theorem 3. Let p be the node
not in Tn−1; there are at most u(n−1, k−1) transitive subtournaments Tk
of Tn that contain the node p and at most u(n−1, k) that do not. We may
suppose

u(n− 1, k − 1) ≤
(
n− 1

k − 1

)
−
(
n− 3

k − 3

)
and

u(n− 1, k) ≤
(
n− 1

k

)
−
(
n− 3

k − 2

)
.

Therefore,

u(n, k) ≤ u(n− 1, k − 1) + u(n− 1, k)

≤
(
n− 1

k − 1

)
+

(
n− 1

k

)
−
(
n− 3

k − 3

)
−
(
n− 3

k − 2

)
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=

(
n

k

)
−
(
n− 2

k − 2

)
.

The inequality now follows by induction.

To show that u(n, k) ≥
(
n

k

)
−
(
n− 2

k − 2

)
consider the strong tourna-

ment Tn in which p1 → pn but otherwise pj → pi if j > i. (This tournament

is illustrated in Figure 4.) This tournament has exactly

(
n

k

)
−
(
n− 2

k − 2

)
transitive subtournaments Tk if 3 ≤ k ≤ n, because every subtourna-
ment Tk is transitive except those containing both p1 and pn. This com-
pletes the proof of the theorem.

...

Figure 4

Corollary. The maximum number of transitive subtournaments a
strong tournament Tn (n ≥ 3) can contain, including the trivial tour-
naments T1 and T2, is 3 · 2n−2.

Let r(n, k) denote the minimum number of transitive subtourna-
ments Tk a tournament Tn can have. It follows from Theorem 10 that
r(n, k) = 0 if k > [2 log2 n] + 1 and that r(n, k) > 0 if k ≤ [log2 n] + 1.

Theorem 12. Let

τ(n, k) =

n ·
(n− 1)

2
· (n− 3)

4
. . .

(n− 2k−1 + 1)

2k−1
if n > 2k−1 − 1,

0 if n ≤ 2k−1 − 1.
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Then
r(n, k) ≥ τ(n, k).

Proof. When k = 1, the result is certainly true if we count the trivial
tournament T1 as transitive. If k ≥ 2, then clearly

r(n, k) ≥
n∑
i=1

r(si, k − 1),

where (s1, s2, . . . , sn) denotes the score vector of the tournament Tn. We
may suppose that r(si, k − 1) ≥ τ(si, k − 1); since τ(n, k) is a convex
function of n for fixed values of k, we may apply Jensen’s inequality and
conclude that

r(n, k) ≥
n∑
i=1

τ(si, k − 1) ≥ nτ
(
1
2
(n− 1), k − 1

)
= τ(n, k).

The theorem now follows by induction on k.
Notice that the lower bound in Theorem 10 follows from Theorem 12.

Exercises

1. Prove Theorem 9. [The equivalence between (4) and (5) is due to
Moser; see Bush (1961). In connection with (6), see Szele (1943) and
Camion (1959); in connection with (8), see Marimont (1959) and Harary
(1960).]

2. Construct the tournament T7 defined after the proof of Theorem 10
and verify that it contains no transitive subtournament T4.

3. Prove the corollary to Theorem 11.

4. Use Theorem 10 to prove that

r(n, k) ≥
(

n

2k−1

)/(
n− k

2k−1 − k

)
≥
( n

2k−1

)k
if n ≥ 2k−1.

How does this bound compare with the one in Theorem 12?
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5. Prove that r(n, 3) = τ(n, 3) when n is odd.

6. What is the maximum number of arcs
−→
pq a tournament Tn can have

such that
−→
pq is not contained in any transitive subtournament T3?.

7. A transitive subtournament of Tn is said to be maximal if it is not
contained in any larger transitive subtournament of Tn. Let m(n) denote
the maximum number of maximal transitive subtournaments that a tour-
nament Tn can have. Show that m(n) ≥ (7)n/5 > (1.47)n if n ≡ 0 (mod 5).
Can this lower bound be improved? Try to obtain a nontrivial upper bound
for m(n).

8. If k is any fixed integer greater than two, let t = t(n, k) denote the
number of transitive subtournaments Tk contained in a random tourna-
ment Tn. Show that the distribution of (t − µ′)/σ tends to the normal
distribution with zero mean and unit variance as n tends to infinity, where

µ′ = (n)k2
−
(
k
2

)
and

σ2 =

(
k!2−

(
k
2

))2 k∑
r=3

(
n

k

)(
k

r

)(
n− k
k − r

)(
2

(
r
2

)
r!
− 1

)
.

8. Sets of Consistent Arcs in a Tournament

In the last section, we considered subsets of nodes of a tournament such
that the subtournament determined by these nodes was transitive. We may
also consider subsets of arcs of a tournament Tn such that these arcs, by
themselves, define no intransitivities. More specifically, we shall call the
arcs in a set S consistent if it is possible to relabel the nodes of Tn in such

a way that, if the arc
−−→
pjpi is in S, then j > i. (An equivalent definition is

that Tn contains no cycles all of whose arcs belong to S.) Erdös and Moon
(1965) gave the following result.
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Theorem 13. Let w(n) denote the largest integer w such that every
tournament Tn contains a set of w consistent arcs. Then

w(n) ≥
[n

2

]
·
[
n+ 1

2

]
for all n and w(n) ≤ (1 + ε)

2

(
n

2

)
for any positive ε and all sufficiently large n.

Proof. When n = 1, the lower bound is trivially true. In any tourna-

ment Tn, there exists at least one node, say pn, whose score is at least
[n

2

]
.

We may suppose that the tournament defined by the remaining n − 1

nodes contains a set S of at least

[
n− 1

2

]
·
[n

2

]
consistent arcs. The arcs

in S and the arcs oriented away from pn are clearly consistent. Therefore,
Tn contains a set of at least[n

2

]
+

[
n− 1

2

]
·
[n

2

]
=
[n

2

]
·
[
n+ 1

2

]
consistent arcs. The lower bound follows by induction.

We now prove the upper bound. Let ε be chosen satisfying the inequal-

ity 0 < ε < 1. The tournament Tn has N =

(
n

2

)
pairs of distinct nodes

and the nodes can be labeled in n! ways. Hence, there are at most n! ·
(
N

k

)
tournaments Tn, whose largest set of consistent arcs contains k arcs. So,
an upper bound for the number of tournaments Tn that contain a set of

more than
(1 + ε)

2
N consistent arcs is given by

n! ·
∑

k>(1+ε)N/2

(
N

k

)
< n!N

(
N[

(1 + ε)N/2
])

≤ n!N2N
(

N[
(1 + ε)N/2

]) · ( N[
1

2
N

])−1
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= n!N2N

(
N −

[
1

2
N

])[
(1+ε)N/2

]
−

1

2
N

[
(1 + ε)N/2

][
(1+ε)N/2

]
−

1

2
N



≤ n!N2N

 N −
[

1

2
N

]
[
(1 + ε)N/2

]


[εN/2]

≤ n!N2N
(

1− 1

2
ε

)[εN/2]

,

provided that n is sufficiently large. Since 1− x < e−x when 0 < x < 1, it
follows that this last expression is less than

n!N2Ne−(ε/2)[εN/2];

but this in turn is less than 2N for all sufficiently large values of n. Hence,
there must be at least one tournament Tn that does not contain any set

of more than
(1 + ε)

2
N consistent arcs. This completes the proof of the

theorem.
A more careful analysis of the above inequalities shows that the pro-

portion of tournaments Tn that contain more than

1

2

(
n

2

)
+ (1 + ε)

(
1

2
n3 log n

)1/2

consistent arcs, for any fixed positive ε, tends to zero as n tends to infinity.

Exercises

1. Determine the exact value of w(n) for 3 ≤ n ≤ 5.
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2. Let z = z(n) denote the least integer such that any two tournaments
with n nodes can be made isomorphic by reversing at most z arcs of one

of the tournaments. Prove that z(n) =

(
1

2
+ o(1)

)(
n

2

)
.

3. Prove the assertion in the last paragraph of this section.

4. An oriented graph, or incomplete tournament, T (n,m) consists of
n nodes, m pairs of which are joined by a single arc. Let w = w(n,m)
denote the largest integer such that every oriented graph T (n,m) contains
a set of w consistent arcs. Prove that limn→∞w(n,m)/m = 1/2, under
suitable assumptions on the relative rates of growth of m and n. [Erdös
and Moon (1965).]

5. Let u(Tn) denote the least number of arcs possible in a subset U of
the arcs of Tn if at least one arc of every cycle of Tn belongs to U . Let
r(Tn) denote the smallest integer r such that Tn can be transformed into
a transitive tournament by reversing the orientation of r arcs. Finally,
let w(Tn) denote the maximum number of consistent arcs in Tn. Prove

that u(Tn) = r(Tn) =

(
n

2

)
− w(Tn) for any tournament Tn. [Remage and

Thompson (1966) gave an algorithm for determining r(Tn).]

6. Let f(n, i) denote the number of tournaments Tn such that r(Tn) = i.
Prove the following equations [Slater (1961)].

f(n, 0) = n!,

f(n, 1) =
n!(3n2 − 13n+ 14)

6
,

f(n, 2) =
n!(9n4 − 78n3 + 235n2 − 438n+ 680)

72
if n ≥ 4,
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f(n, 3) =
24 if n = 5,

n!(135n6 − 1755n5 + 8685n4 − 27, 185n3 + 77, 820n2 − 157, 204n+ 210, 336)

6480
if n ≥ 6.

9. The Parity of the Number of Spanning Paths of a
Tournament

Every tournament has a spanning path. This is an immediate con-
sequence of Theorem 3, if the tournament Tn is strong. If Tn is not
strong, then it has a unique decomposition into strong subtournaments
T (1), T (2), . . . , T (l) such that every node of T (j) dominates every node of T (i)

if 1 ≤ i < j ≤ l. Each of these strong subtournaments has a spanning path
and these spanning paths can be combined to yield a path spanning Tn.

The following theorem is a special case of a result proved by Rédei
(1934) and generalized by Szele (1943).

Theorem 14. Every tournament has an odd number of spanning paths.

Proof. Let A = [aij] denote the dominance matrix of an arbitrary
tournament Tn. Recall that aij = 1 if pi → pj and aij = 0 otherwise; in
particular, aii = 0. The number h of spanning paths in Tn is equal to the
sum of all products of the type

ai1π(i1)ai2π(i2) . . . ain−1π(in−1),

where 1 ≤ i1 < i2 < · · · < in−1 ≤ n and π is a permutation of the set
N = {1, 2, . . . , n} such that πk(i) 6= i for 1 ≤ k ≤ n− 1.

We introduce more notation before continuing the proof. The symbols
e, e1, . . . denote subsets of the set N ; e′ is the complement of e with respect
to N ; e(M) is the determinant of the submatrix of the n by n matrix M
whose row and column indices belong to e; if e is the empty set, then
e(M) = 1. The determinant of M will be denoted by |M |.
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Let Ak denote the matrix obtained from A by replacing the kth column
by a column of 1’s. Set

Sk =
∑
1∈e

e(Ak) · e′(Ak),

where the sum is over all subsets e of N that contain 1. (The restriction
that 1 ∈ e merely serves to distinguish between e and e′.) We now show
that

h ≡
m∑
k=1

Sk (mod 2). (1)

It is clear that any term g in the expansion of Sk corresponds to a term
in the expansion of the determinant of Ak. (Since the summation is mod-
ulo 2, we may disregard the signs of the terms.) Suppose the permutation
of N associated with this term can be expressed as the product of the
disjoint cycles c1, c2, . . . , cr. Those nonzero terms associated with permu-
tations for which r = 1, arising only when e = N , are precisely those terms
described earlier whose sum is h. To prove assertion (1), it will suffice to
show that the sum of the other terms is even.

Consider any term g for which r > 1. There is no loss of generality if
we assume that 1 ∈ c1. Now, all the elements in ci belong to e or they
all belong to e′, where e is a subset of N giving rise to g in the expansion
of Sk. Since there are two choices for each cycle c2, c3, . . . , cr it follows that
there are 2r−1 subsets e giving rise to g. Consequently, the term g appears
2r−1 times in the sum. This completes the proof of (1), since 2r−1 is even
if r > 1.

Let Ā = [āij] denote the matrix whose elements satisfy the equation
āij = aij + 1 for all i and j. This implies that

|Ā| = |A|+
n∑
k=1

|Ak|. (2)

We observe that āij = aji (mod 2) if i 6= j and that āii = 1. Hence,
the transpose of Ā, which has the same determinant as Ā, has its entries
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all congruent to the corresponding entries of A with the exception of the
diagonal entries. Consequently,

n∑
k=1

|Ak| = |ĀT | − |A| ≡
∑
e6=N

e(A) (mod 2), (3)

since the last sum effectively involves those terms in the expansion of |ĀT |
that contain diagonal entries. (Notice that the diagonal entries in a term
in the expansion of |AT | corresponding to some term in the expansion
of e(A) are those āii for which i ∈ e′; this is why the sum is over the proper
subsets e of N .)

Let
∑∗

k e(Ak) denote the sum of e(Ak) over all k such that k ∈ e with
the convention that an empty sum equals zero. Then,

h ≡
n∑
k=1

{∑
1∈e

e(Ak) · e′(Ak)
}

≡
∑
1∈e

{∑
k∈e

e(Ak) · e′(Ak) +
∑
k 6∈e

e(Ak) · e′(Ak)
}

≡
∑
1∈e

{
e′(A)

∑
k

∗
e(Ak) + e(A)

∑
k

∗
e′(Ak)

}
(4)

≡
∑
e

e′(A)
∑
k

∗
e(Ak) (mod 2).

Let us apply (3) to e(A) instead of to |A|; then∑
k

∗
e(Ak) ≡

∑
e1⊂e

e1(A) (mod 2), (5)

where the second summation is over all proper subsets e1 of e. (If e is the
empty set, then both sides equal zero.) If we substitute (5) into (4), we
find that

h ≡
∑
e

∑
e1⊂e1

e′(A) · e1(A) (mod 2). (6)
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If e − e1 6= N , then the term arising from e and e1, where e1 ⊂ e and
e1 6= e, is equal to the term arising from e′1 and e′. Hence, the terms in the
sum come in pairs except for the terms arising when e − e1 = N , that is,
when e = N and e1 is the empty set. Since e′(A) = e1(A) = 1 in this case,
it follows that

h ≡ 1 (mod 2).

This completes the proof of the theorem.

Corollary. A tournament Tn has at least

(
n

k

)
paths of length k − 1

if 2 ≤ k ≤ n; furthermore, the number of paths of length k − 1 in Tn is

congruent to

(
n

k

)
modulo 2.

This is proved by applying Theorem 14 to each subtournament Tk of Tn
and then summing over all such subtournaments.

Let G denote a graph that differs from a tournament Tn in that some

of the arcs
−−→
pipj of Tn may have been either removed entirely or replaced

by unoriented edges pipj. A path in such a graph G may pass through any
unoriented edge pipj in either direction. Let (G)k denote the number of
ways of labeling the nodes of G as q1, q2, . . . , qn in such a way that there

are k pairs of consecutive nodes qi and qi+1 for which the arc
−−−→
qi+1qi is in G

(notice that (G)0 + (G)1 + · · · + (G)n−1 = n!), and let (G) denote the
number of spanning paths of G. Finally, let [G]k denote the number of sets
of n−k disjoint paths of G with the property that every node of G belongs
to one path in the set. (Notice that there are k arcs or edges involved in
each such set and that [G]n−1 = (G)0 = (G) if G is a tournament.)

Szele (1943) generalized Theorem 14 by showing that if G is a tourna-
ment T with n nodes, then

(T )k ≡
(
n− 1

k

)
(mod 2), (7)

and

[T ]k ≡
([n+ k − 1

2

]
k

)
(mod 2). (8)
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Exercises

1. Give a direct proof of the result that every (finite) tournament has a
spanning path.

2. Give an example of a tournament with an infinite number of nodes
that does not have a spanning path. [See Korvin (1966).]

3. Prove Equation (2).

4. Let G denote the graph obtained from the tournament Tn by replacing

an arbitrary arc
−−→
pipj by an unoriented edge e = pipj and let H denote

the graph obtained from Tn simply by removing the arc
−−→
pipj. Prove the

following statements and use them to give another proof of Theorem 14.

(a) (G) =
n−1∑
i=0

(−1)i(n− i)![H]i.

(b) (G) ≡ (H) (mod 2).

(c) The number of spanning paths of G that contain the edge e is even.

(d) The parity of the number of spanning paths of Tn is not changed if

the arc
−−→
pipj is replaced by the arc

−−→
pjpi. [Szele (1943).]

5. Prove Equation (7) by first showing that

(T )k =
n−1−k∑
i=0

(−1)i
(
k + i

k

)
(n− k − i)![T ]k+i.

6. If T ∗ denotes a transitive tournament Tn, then show that [T ∗]k is equal
to the number of ways of partitioning n different objects into n− k indis-
tinguishable nonempty subsets. Deduce from this that

[T ∗]k =
1

(n− k)!

n−k−1∑
i=0

(−1)i
(
n− k
i

)
(n− k − i)n = S(n, n− k),
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where S(m, t) denotes a Stirling number of the second kind. (The Stirling
numbers S(m, t) may be defined by the identity

xm =
m∑
t=1

S(m, t)(x)t,

where (x)t = x(x− 1) . . . (x− t+ 1); they satisfy the recurrence relation

S(m, t) = S(m− 1, t− 1) + tS(m− 1, t).)

7. Prove that

(T ∗)k =
n−k−1∑
t=0

(−1)t
(
n+ 1

t

)
(n− k − t)n.

8. Use Theorem 14 to prove that, if T is any tournament with n nodes,
then

[T ]k ≡ [T ∗]k (mod 2).

9. Show that

[T ∗]k = S(n, n− k) =
∑

j1j2 . . . jk,

where the sum is over all sets of k integers ji such that 1 ≤ j1 ≤ j2 ≤ · · · ≤
jk ≤ n− k.

10. Use the results in Exercises 8 and 9 to prove Equation (8). [Hint:
Which terms in the sum in Exercise 9 are odd? Recall that the number of
ways of choosing t objects from m objects when repetitions are allowed is(
m+ t− 1

t

)
.]

11. Let k denote the maximum number of nodes that can be chosen from
the oriented graph T such that no two of the chosen nodes are joined by
an arc. Prove that there exists a set of t disjoint paths in T , where t ≤ k,
such that every node of T belongs to exactly one path in the set. [Gallai
and Milgram (1960).]
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10. The Maximum Number of Spanning Paths of a
Tournament

Let t(n) denote the maximum number of spanning paths a tourna-
ment Tn can contain. The following result is due to Szele (1943).

Theorem 15. If

α = lim
n→∞

(
t(n)

n!

)1/n

,

then α exists and satisfies the inequality .5 = 2−1 ≤ α ≤ 2−3/4 ≤ .6.

Proof. Let us assume for the time being that the limit does exist.
The expected number of spanning paths in a random tournament Tn

is
n!

2n−1
. Consequently,

t(n) ≥ n!

2n−1
or

(
t(n)

n!

)1/n

≥ 1

21−1/n (1)

for all positive integers n. This implies the first inequality of the theorem.
Let A, B, C, and D denote the number of subtournaments T4 a given

tournament Tn has of the four types depicted in Figure 1. Subtournaments
of these types have 1, 3, 3, and 5 spanning paths, respectively. Hence, the
total number of 3-paths (paths of length three) in the tournament Tn is
equal to

A+ 3(B + C) + 5D =

(
n

4

)
+ 2(n− 3)c3(Tn),

where c3(Tn) is the number of 3-cycles in Tn. (The equality is established
by checking that each subtournament T4 is counted the appropriate number
of times by the right-hand expression.)

But the corollary to Theorem 4 gives an upper bound for c3(Tn). We
find, therefore, that an upper bound for the number of 3-paths in any
tournament Tn is given by

n2(n− 1)(n− 3)

8
if n is odd,

(n+ 1)n(n− 2)(n− 3)

8
if n is even.
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It follows that

t(n) ≤


n2(n− 1)(n− 3)

8
· (n− 4)2(n− 5)(n− 7)

8
. . . if n is odd,

(n+ 1)n(n− 2)(n− 3)

8
· (n− 3)(n− 4)(n− 6)(n− 7)

8
. . .

if n is even.

The last factors in these products will depend on the residue class modulo 4
to which n belongs. We find in all cases, however, that

t(n) ≤ (n+ 1)!

8[n/4]
≤ (n+ 1)!

2(3/4)n−3 .

Therefore, (
t(n)

n!

)1/n

≤ (n+ 1)1/n

2(3/4)−(3/n) (2)

for all positive integers n. This implies the last inequality of the theorem.
We shall use the following result on subadditive functions [see Fekete

(1923)] to show that the limit actually exists.

Lemma. Let {g(n) : n = 1, 2, . . . } be a sequence such that g(a + b) ≤
g(a) + g(b) for all a, b = 1, 2, . . . . If φ = infn g(n)/n is finite, then
limn→∞ g(n)/n exists and equals φ.

Proof. Choose the integer r so that

g(r)

r
≤ φ+ ε,

for an arbitrary positive value of ε. For any given value of n, let n = rs+ t,
where 0 < t ≤ r. Then

g(n)

n
=
g(rs+ t)

n
≤ g(rs)

n
+
g(t)

n

≤ sg(r)

n
+
g(t)

n
≤ rs

n
(φ+ ε) +

g(t)

n

≤ φ+ ε+
1

n
max{g(1), . . . , g(r)}.



topics on tournaments 36

Therefore,

lim
n→∞

sup
g(n)

n
≤ φ+ ε

for every positive ε. The lemma follows immediately.
In forming a spanning path of a tournament Tn, we may choose the first

k nodes of this path, form a path spanning these k nodes, and then join
this path to a path spanning the remaining n− k nodes. Consequently,

t(n) ≤
(
n

k

)
t(k) · t(n− k) or

t(n)

n!
≤ t(k)

k!
· t(n− k)

(n− k)!

for all positive integers k and n with k < n. If we let h(n) =
t(n)

n
, then

log h(a+ b) ≤ log h(a) + log h(b)

for all positive integers a and b. The existence of lim
n→∞

(
t(n)

n!

)1/n

may now

be demonstrated by applying the lemma to the function log h(n).
Szele conjectured that the limit actually is 1

2
and gave the following

table of values of t(n).

Table 3. t(n), the maximum number of spanning paths in a tourna-
ment Tn.

n 3 4 5 6 7

t(n) 3 5 15 45 189

Exercises

1. Supply the details omitted in the proof of inequality (2).

2. The inequality t(n) ≤ n!
(
t(k)/k!

)[n/k]
holds for any fixed value of k.

How does this upper bound compare with (2) for small values of k?
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3. Let c(n, k) denote the maximum number of k-cycles possible in a tour-
nament Tn. Prove that(

n

k

)
(k − 1)!

2k
≤ c(n, k) ≤

(
n

k

)
(k + 1)(k − 1)!

2(3/4)k−3 .

[G. Korvin and others.]

4. The expected number of spanning cycles in a random tournament Tn

is approximately
2π

n

( n
2e

)n
. It seems difficult to give explicit examples

of tournaments having this many spanning cycles in general. Construct a

tournament having at least
( n

3e

)n
spanning cycles for large values of n.

[L. Moser.]

11. An Extremal Problem

A tournament Tn has property S(k,m), where k ≤ n, if for every sub-
set A of k nodes there exist at least m nodes p such that p dominates every
node of A. In 1962, K. Schütte raised the question of determining the least
integer n such that there exist tournaments Tn with property S(k, 1), if
such tournaments exist at all. Erdös (1962) showed that such tournaments
do indeed exist and that if the tournament Tn has property S(k, 1) then

n ≥ 2k+1 − 1, for k = 1, 2, . . . . (1)

E. and G. Szekeres (1965) deduced a stronger inequality as a consequence
of the following result.

Theorem 16. If the tournament Tn has property S(k,m), then

n ≥ 2k(m+ 1)− 1. (2)

Proof. If p is any node of the tournament Tn, let Td denote the sub-
tournament determined by the d nodes q that dominate p. We show that
Td has property S(k − 1,m).
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Suppose that d ≥ k − 1. Let A be any set of k − 1 nodes of Td; since
Tn has property S(k,m), there must exist a set B of at least m nodes q
such that q dominates every node in the set A∪{p}. Since all these nodes
dominate p, it follows that they all are in the tournament Td. Therefore
Td has property S(k − 1,m).

The other alternative is that d < k − 1. In this case, adjoin to Td any
k−1−d other nodes of Tn (but not p) to form a subtournament Tk−1. The
same argument as used before shows that Tk−1 has property S(k − 1,m).
But this is impossible, since it would imply that the nodes of Tk−1 dominate
themselves.

We now prove inequality (2) by induction; it certainly holds when k = 0
and m ≥ 1, since we may say that a tournament Tn has property S(0,m)
if and only if n ≥ m. Suppose therefore that k > 0 and that (2) has been
proved for all tournaments with property S(k − 1,m). It follows from the
remarks in the preceding paragraphs and the induction hypothesis that at
least 2k−1(m+ 1)− 1 arcs are oriented toward each node of Tn. Therefore,

n
(
2k−1(m+ 1)− 1

)
<

(
n

2

)
,

or
n ≥ 2k(m+ 1)− 1.

Corollary. If the tournament Tn has property S(k, 1), then

n ≥ 2k−1(k + 2)− 1, for k = 2, 3, . . . .

Proof. If Tn has property S(k, 1) where k ≥ 2, then Tn has property
S(k − 1, k + 1). For, let A be any set of k − 1 nodes of Tn and suppose
that the set B of nodes that dominate every node of A contains only h
nodes, where h ≤ k. Then there exists a node x that dominates every
node in B. Furthermore, there exists a node y that dominates every node
in A ∪ {x}. Then y must be in B and x and y must dominate each other,
an impossibility. The corollary now follows from Theorem 16.

This corollary is best possible when k = 2, 3 (see Exercises 1 and 2)
but it is not known if it is best possible when k > 3.
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Erdös (1962) showed that there exist tournaments Tn with property
S(k, 1) whenever

n > 2kk2 log(2 + ε) (3)

for any positive ε, provided that k is sufficiently large. The ideas used in
establishing this and an analogous result for tournaments with property
S(k,m) are similar to those used in proving the following result due to
Erdös and Moser (1964b).

If A and B are disjoint subsets of the tournament Tn, let t = t(A,B)
denote the number of nodes p that dominate every node of A and are
dominated by every node of B. If ε is any positive number, let F (n, k, ε)
denote the number of tournaments Tn such that∣∣∣∣t− n− k

2k

∣∣∣∣ < ε(n− k)

2k
(4)

for every pair of subsets A and B for which |A|+ |B| = k.

Theorem 17. For every positive ε there exist constants c and K, which
depend on ε, such that if k > K and n > ck22k, then

lim
n→∞

F (n, k, ε)

2

(
n
2

) = 1. (5)

Proof. Suppose 0 < ε < 1. For a particular choice of A and B, there
are(
n− k
t

)
(2k − 1)n−k−t · 2

(
n
2

)
−k(n−k) = 2

(
n
2

)(
n− k
t

)(
1

2k

)t(
1− 1

2k

)n−k−t
tournaments Tn for which t(A,B) = t. For, there are

(
n− k
t

)
choices

for the t nodes that dominate the nodes of A and are dominated by the
nodes of B; the other n − k − t nodes may each be joined to the k nodes

of A∪B in one of 2k− 1 ways; the remaining

(
n

2

)
− k(n− k) arcs may be

oriented arbitrarily. There are

(
n

k

)
2k ways of selecting the sets A and B.
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Consequently, if S denotes the number of tournaments Tn that do not
satisfy (4) for every choice of A and B, then

S ≤
(
n

k

)
2

(
n
2

)
+k
∑′

(
n− k
t

)(
1

2k

)t(
1− 1

2k

)n−k−t
,

where the sum is over all t such that

∣∣∣∣t− n− k
2k

∣∣∣∣ ≥ ε(n− k)

2k
.

The largest term in the sum occurs when t = T =

[
(1− ε)(n− k)

2k

]
,(

n

k

)
2k ≤ nk if k ≥ 4, and 1− x < e−x if 0 < x < 1. Therefore,

S ≤ 2

(
n
2

)
nk+1

(
n− k
T

)
1

2kT
e−(n−k−T )/2

k

when k ≥ 4. But(
n− k
T

)
1

2kT
<

(
(n− k)e

T2k

)T
≤ c1

(
e

1− ε

)T
,

where c1 denotes some constant. Consequently, to prove (5), we need only
show that

nk+1

(
e

1− ε

)(n/2k)(1−ε)

e−(n/2
k)+(n/22k)(1−ε)

tends to zero as n tends to infinity, since
k

2k
is bounded.

If L denotes the logarithm of this expression, then

L = (k + 1) log n− n

2k

[
(1− ε) log(1− ε) + ε− (1− ε)

2k

]
.

Since

log(1− ε) = −ε− 1
2
ε2 − 1

3
ε3 − · · · > −ε− 1

2
ε2(1 + ε+ . . . )

=
−ε+ 1

2
ε2

1− ε ,
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when 0 < ε < 1, it follows that, for sufficiently large values of k, the
quantity inside the brackets will exceed some positive constant c2 = c2(ε).
Therefore,

L ≤ (k + 1) log n− c2n

2k
≤ n(k + 1)

(
log n

n
− c3
k2k

)
,

where c3 is another constant equal, say, to 1
2
c2. Now let us suppose that

n > ck22k,

where the constant c = c(ε) will be specified presently. Then it follows that

L ≤ n(k + 1)

[
log(ck22k)

ck22k
− c3
k2k

]
=
n(k + 1)

ck2k

[
log(ck2)

k
+ log 2− cc3

]
,

since log n/n is a decreasing function for n ≥ 3. It is clear that c can be
defined as a function of ε in such a way that, if k is sufficiently large, then
the expression within the brackets is negative. Consequently, L will tend
to −∞ as n tends to +∞. This completes the proof of the theorem.

When this type of argument is applied to the simpler problem of estab-
lishing (3), it turns out that the constant c may be any quantity greater
than log 2.

Exercises

1. Let T7 denote the tournament in which pi → pj if and only if j − i is
a quadratic residue modulo 7. Prove that T7 has property S(2, 1). [Erdös
(1962).]

2. Let T19 denote the tournament in which pi → pj if and only if j− i is a
quadratic residue modulo 19. Prove that T19 has property S(3, 1). [E. and
G. Szekeres (1965).]

3. Prove that if a tournament Tn with property S(k, 1) exists, then a
tournament Tr with property S(k, 1) exists whenever r > n. [See the
remark at the end of the second paragraph of Erdös and Moser (1964b).]
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4. Let A and B denote two disjoint subsets of nodes of a tournament Tn
such that |A| = a and |B| = b. If t(A,B) ≥ m for every choice of A and B,
then we will say that Tn has property T (a, b;m). (Notice that property
T (a, 0;m) is the same as property S(a,m).) Generalize Theorem 16 by
obtaining a lower bound for the number of nodes a tournament must have
if it has property T (a, b;m).

5. Let h = h(n) denote the smallest integer such that in any tourna-
ment Tn there exists some set E of h nodes such that any node not in E is
dominated by at least one node in E. Show that [log2 n − 2 log2 log2 n] ≤
h(n) ≤

[
log2(n+ 1)

]
if n ≥ 2. [L. Moser.]

12. The Diameter of a Tournament

The diameter of a strong tournament Tn (n > 3) is the least integer d
such that, for every ordered pair of nodes p and q of Tn, there exists a
nontrivial path P (p, q) of length at most d. (The diameter of a reducible
tournament is not defined.) No node is connected to itself by a nontrivial
path of length less than three so the diameter of every strong tournament
is at least three.

We shall prove a result that implies that almost all tournaments Tn
(that is, all but a fraction that tends to zero as n tends to infinity) have
the following property: the number of paths of length two from pi to pj
lies between (1

4
− ε)(n − 2) and (1

4
+ ε)(n − 2) for every ordered pair of

distinct nodes pi and pj and for any positive ε. Consequently, almost all
tournaments have diameter three, since there is a path of length three
connecting every node to itself in every strong tournament (and almost all
tournaments are strong by Theorem 1).

Let rij denote the number of paths of length two from pi to pj (pi 6= pj)
in a tournament Tn and let E(n, λ) denote the expected number of ordered
pairs of distinct nodes pi and pj in a random tournament Tn for which
|rij − 1

4
(n − 2)| > λ. The following theorem is very similar to a theorem

proved by Moon and Moser (1966).

Theorem 18. If λ =
{

3
4
(n − 2)

[
log(n − 2) + w(n)

]}1/2
, where log(n −
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2) + w(n)→∞ and w(n)n−1/3 → 0, then

E(n, λ) ∼
{

2π
[
log(n− 2) + w(n)

]}−1/2
e−2w(n)

as n→∞.

Proof. There are(
n− 2

r

)
3n−2−r 2

(
n
2

)
−2(n−2) = 2

(
n
2

)(
n− 2

r

)(
1

4

)r (
3

4

)n−2−r
tournaments Tn such that rij = r for any admissible choice of i, j, and r.

For, there are

(
n− 2

r

)
ways of selecting the r nodes that are to be on a

path of length two from pi to pj and there are three ways of orienting the
arcs joining pi and pj to any node that is not on such a path; the remaining(
n

2

)
− 2(n− 2) arcs may be oriented arbitrarily. Since there are n(n− 1)

ordered pairs of distinct nodes pi and pj, it follows that

E(n, λ) = n(n− 1)
∑(

n− 2

r

)(
1

4

)r (
3

4

)n−2−r
where the sum is over all r such that |r − 1

4
(n − 2)| > λ. We may apply

the De Moivre-Laplace Theorem to the sum [see Feller (1957; p. 172)] and
conclude that

E(n, λ) ∼ 2n(n− 1)
(
1− Φ(X)

)
,

where X = 2(2λ+ 1)
[
3(n− 2)

]−1/2
and Φ is the normal distribution func-

tion. (We need the hypothesis that w(n)n−1/3 → 0 at this step.)
Since X →∞ as n→∞, we may use the relation

1− Φ(X) ∼ 1

(2π)1/2X
e−(1/2)X

2

[see Feller (1957; p. 166)]. After further simplification, we find that

E(n, λ) ∼
(

3

8π

)1/2
(n− 2)5/2

λ
e−(8/3)[λ

2/(n−2)]

=
{

2π
[
log(n− 2) + w(n)

]}−1/2
e−2w(n).
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This completes the proof of the theorem.

Corollary 1. If λ =
(
(3
4
+ε)(n−2) log(n−2)

)1/2
, where ε is any positive

constant, then almost all tournaments Tn have the property that

|rij − 1
4
(n− 2)| < λ

for every pair of distinct nodes pi and pj.

Proof. Let N(k) denote the number of tournaments Tn such that the
inequality |rij − 1

4
(n− 2)| > λ holds for exactly k ordered pairs of distinct

nodes pi and pj. Then

0 ≤ 2

(
n
2

)
−N(0)

2

(
n
2

) =
N(1) +N(2) + · · ·+N

(
n(n− 1)

)
2

(
n
2

)
≤ 0 ·N(0) + 1 ·N(1) + · · ·+ n(n− 1) ·N

(
n(n− 1)

)
2

(
n
2

) = E(n, λ).

If w(n) = 4
3
ε log(n− 2) in Theorem 18, then

E(n, λ) ∼
(
2π(1 + 4

3
ε) log(n− 2)

)−1/2
(n− 2)−(8/3)ε,

and
lim
n→∞

E(n, λ) = 0.

Therefore,

lim
n→∞

(
1−N(0) · 2−

(
n
2

))
= 0,

and the corollary is proved.

Corollary. 2. Almost all tournaments have diameter three.

Notice that, if the definition of the diameter of a tournament involved
ordered pairs of distinct nodes only, then we could assert that almost all
tournaments have diameter two.

Exercises

1. Supply the details omitted in the proof of Theorem 18.
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2. Prove that d ≤ n− 1 for any strong tournament Tn with at least four
nodes.

3. Prove that d ≤ max{3, sn−s1 +2}, where sn and s1 denote the largest
and smallest score in a strong tournament Tn.

13. The Powers of Tournament Matrices

Let M denote a square matrix with nonnegative elements. If there
exists an integer t such that M t has only positive elements, then M is
primitive and the least such integer t is called the exponent of M . We
may assume that the elements of M are zeros and ones, and we shall use
Boolean arithmetic in calculating the powers of M . A well-known result
due to Wielandt (1950) states that, if the primitive n by n matrix Mn has
exponent e, then e < (n− 1)2 + 1.

The directed graph Dn defined by a matrix Mn = [aij] of zeros and ones

consists of n nodes p1, p2, . . . , pn such that an arc
−−→
pipj goes from pi to pj if

and only if aij = 1. The (i, j)-entry in M t
n is one if and only if there exists

a path P (pi, pj) of length t in the graph Dn. (We cannot assume, however,
that all the elements in P (pi, pj) are distinct.)

Several authors have used properties of directed graphs to obtain results
on primitive matrices and their exponents. [See, for example, the expos-
itory article by Dulmage and Mendelsohn (1965).] Most of these results
are unnecessarily weak or complicated when applied to tournament matri-
ces. Moon and Pullman (1967) showed that some fairly sharp results for
primitive tournament matrices could be deduced as simple consequences of
Theorem 3. If a tournament matrix Mn has a certain property (for exam-
ple, if it is primitive), we shall say that the corresponding tournament Tn
has the same property.

Theorem 19. If the tournament Tn is irreducible and n ≥ 5, then Tn is
primitive; if d and e denote the diameter and exponent of Tn, then d ≤
e ≤ d+ 3.

Proof. It is obvious that d ≤ e if Tn is primitive; therefore, we need only
show that there exists a path P (p, q) of length d+3 for any ordered pair of
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nodes p and q of Tn. There exists at least one nontrivial path P (p, q), since
Tn is irreducible and n 6= 1. Let P1(p, q) be the shortest such path and let
l denote its length. Then 3 ≤ d− l+ 3 ≤ n+ 2, since 0 ≤ l ≤ d ≤ n− 1. If
3 ≤ d− l + 3 ≤ n, then there exists a cycle P2(p, p) of length d− l + 3 by
Theorem 3. Then the path P (p, q) = P2(p, p)+P1(p, q) has length d+3. If
d− l+3 = n+h, where h = 1 or 2, then 3 ≤ n+h−3 ≤ n−1 since n ≥ 5.
Hence, there exist cycles P3(p, p) and P4(p, p) of lengths 3 and n + h − 3.
The path

P (p, q) = P3(p, p) + P4(p, p) + P1(p, q)

has length 3 + (n + h − 3) + l = d + 3. This completes the proof of the
theorem.

Corollary. A tournament Tn is primitive if and only if n ≥ 4 and Tn is
irreducible.

This result, apparently first stated by Thompson (1958), follows from
Theorem 19 and the obvious fact that a primitive tournament must be
irreducible. (It is easily verified that the only primitive tournament with
fewer than five nodes is the strong tournament T4; it has exponent nine.)

Corollary. If Tn (n ≥ 5) is a primitive tournament with exponent e,
then 3 ≤ e ≤ n+ 2.

There are six irreducible tournaments T5 (see the Appendix) and they
realize the exponents four, six, and seven. However, there are no gaps in
the exponent set of larger primitive tournaments.

Theorem 20. If 3 ≤ e ≤ n+2, where n ≥ 6, then there exists a primitive
tournament Tn with exponent e.

Proof. Let n and k be integers such that 3 ≤ k ≤ n − 1 and n ≥ 6.

Consider the tournament Tn defined as follows: The arcs
−−→
p1pn,

−−−−→
pnpn−1, . . . ,−−→

p3p2,
−−→
p2p1 and all arcs

−−→
pjpi where k ≤ i < j ≤ n are in Tn; the remaining

arcs are all oriented toward the node with the larger subscript. (The struc-
ture of Tn is illustrated in Figure 5.) This tournament contains a spanning
cycle so it is irreducible and hence primitive.

If k ≥ 3, then it is easy to see that the diameter of Tn is k. The exponent
of Tn is not k or k+ 1, however, since there are no paths P (pk, p1) of these
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p1 p2 pk pk+1 pn
· · · · · ·

Figure 5

lengths; neither is it k+ 2, since there is no path P (pk+1, p1) of this length.
Therefore, the exponent of Tn is k + 3, by Theorem 19. This shows that
there exists a primitive tournament Tn with exponent e if 6 ≤ e ≤ n + 2
and n ≥ 6.

If k = 2 or 3 let T ′n differ from Tn in that the arc joining pk+1 and pn is
oriented toward pn. It is not difficult to verify that T ′n has exponent k+ 2.
Therefore, to complete the proof of the theorem, we need only show that
there exist primitive tournaments Tn with exponent three when n ≥ 6. If
n = 6, let Tn be the tournament whose matrix is∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1
0 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
;

if n > 6, let Tn be the regular tournament Rn that was defined in Section 5.
A simple and direct argument shows that these tournaments have exponent
three. This completes the proof of the theorem.

The index (of maximum density) of a square matrix M is the least
integer k such that the number of nonzero entries in Mk is maximized. If
M is primitive, then its exponent and index are equal.

Before stating the next result, we observe that every tournament Tn
has a unique decomposition into subtournaments T i (i = 1, 2, . . . , l) such
that
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(a) every node in T (j) dominates every node in T (i) if 1 ≤ i < j ≤ l;

(b) every subtournament T (i) is either irreducible or transitive;

(c) no two consecutive subtournaments T (i) and T (i+1) are both transi-
tive.

When Tn is itself irreducible or transitive, then l = 1 and Tn = T (1).

Theorem 21. Let k = index(M) and ki = index(Mi), where M and Mi

denote the matrices of the tournament Tn and T (i). Then

k ≤ max(ki : i = 1, 2, . . . , l).

Proof. We may suppose that the matrix M has the form

M =

∣∣∣∣∣∣∣∣∣
M1 0

M2

. . .

1 Ml

∣∣∣∣∣∣∣∣∣ ,
where the entries above and below the diagonal blocks are zeros and ones,
respectively. Then

M t =

∣∣∣∣∣∣∣∣∣
M t

1 0
M t

2
. . .

1 M t
l

∣∣∣∣∣∣∣∣∣ , (1)

for t = 1, 2, . . . .
Let |B| denote the number of nonzero entries in the matrix B, and let

J = {j : T (j) is transitive}. It follows from (1) that

|M t| =
∑
j∈J

|M t
j |+

∑
i 6∈J

|M t
i |+K,
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where the constant K denotes the number of ones below the diagonal blocks
of M .

If m = max(ki : i = 1, 2, . . . , l), then |M t
i | ≤ |Mm

i | for all i 6∈ J if t ≥ 1,
since every subtournament T (i) (i 6∈ J) is either primitive or a 3-cycle.
Furthermore, |M t

j | ≤ |Mm
j | for all j ∈ J if t ≥ m, since |M t+1

j | ≤ |M t
j | for all

j ∈ J if t ≥ 1. Therefore, |M t| ≤ |Mm| if t ≥ m, and the theorem is proved.
Strict equality holds in Theorem 21 if no transitive subtournament T (j) has
two or more nodes.

Corollary. If η denotes the maximum number of nodes in any of the
irreducible subtournaments T (i), then

k ≤


1

9

max(η + 2, 9)

η + 2

if

η ≤ 3,

η = 4,

η > 4,

η ≥ 7.

This follows from the second corollary to Theorem 19 and the fact that
the irreducible tournaments T1, T3, and T4 have index one, one, and nine.

Since we are using Boolean arithmetic, there are only finitely many
distinct matrices among the powers of a given matrix M of zeros and ones.
The index of convergence and the period of M are the smallest positive
integers γ = γ(M) and ρ = ρ(M) such that Mρ+γ = Mγ. If M is primitive,
then γ equals the exponent and the index of maximum density of M , and
ρ = 1.

Let α denote the maximum number of nodes in any of the transitive
subtournaments T (j) in the decomposition of Tn and let β = max(ki : i 6∈
J). (We adopt the convention that the maximum of an empty set is zero.)

Theorem 22. If M is the matrix of the tournament Tn, then

γ(M) = max(α, β) ≤ n+ 2

and

ρ(M) =

{
3 if some irreducible subtournament T (i) has three nodes,

1 otherwise.
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Proof. It follows from (1) that

γ(M) = max
(
γ(Mi) : i = 1, 2, . . . , l

)
.

However,
α = max

(
γ(Mj) : j ∈ J

)
and

β = max(ki : i 6∈ J) = max
(
γ(Mi) : i 6∈ J

)
.

This suffices to establish the first part of the theorem; the second part is
obvious.

Theorem 23. If n ≥ 16 and 1 ≤ k ≤ n + 2, then there exists a tourna-
ment Tn with index k.

Proof. The transitive tournament Tn has index one for all n. In view
of Theorem 20, it remains only to exhibit a tournament Tn with index two
for n ≥ 16.

If n ≥ 16, let n = 3h + r, where r = 16, 17, or 18, and h is an
integer. Let Tn be the tournament that can be decomposed in the manner
described earlier into the subtournaments T (i) (i = 1, 2, . . . , h + 2), where
T (i) is the transitive tournament Tr−7, T

(2) is the tournament T7 in which
pi → pj if and only if j − i is a quadratic residue modulo seven, and the
tournament T (i) is a 3-cycle, for i = 3, 4, . . . , h + 2. It is a simple exercise
to verify that Tn has index two. (Notice that the 3-cycles T (i) (i ≥ 3) have
no effect on the index of Tn; they merely extend the basic construction to
tournaments with an arbitrary number n of nodes, where n ≥ 16.)

Exercises

1. If sn and s1 denote the largest and smallest scores in a primitive tour-
nament Tn (n ≥ 5), then show that the exponent satisfies the inequality
e ≤ 5 + sn − s1.

2. Determine the exponents of the primitive tournaments with at most
five nodes.
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3. Supply the details omitted in the proofs of Theorems 20 and 23.

4. Verify Equation (1) in the proof of Theorem 21.

5. Determine whether there exist tournament matrices Mn with index
two when n < 16.

6. Prove that almost all tournament matrices Mn are primitive with ex-
ponent three.

14. Scheduling a Tournament

If n players are to participate in a round-robin tournament Tn, then the
problem arises of scheduling the matches between the players. When n is
even, the 1

2
n(n− 1) matches can be split into n− 1 rounds of 1

2
n matches

each in such a way that every pair of players meet exactly once; when n is
odd, an extra round is needed. We may suppose that n is even, for if n is
odd we may introduce an imaginary player P and let each player sit out
the round in which he is matched with P . We now outline a simple scheme
Reisz (1859) gave for scheduling the matches of a round-robin tournament
between an even number n of players.

First write the pairs (1, 2), (1, 3), . . . , (1, n) in the first column of an
n− 1 by n− 1 table. Then, for i = 2, 3, . . . , n− 1, write the pairs (i, i+ 1),
(i, i+ 2), . . . , (i, n) in the ith column, beginning in the first row below the
row containing (i− 1, i) that does not already contain an i or an i+ 1, and
returning to the top of the column when the bottom is reached. Whenever
this rule would place an entry (i, j) in a position in a row that already
contains an i or a j, leave the position vacant and place (i, j) in the next
admissible position. When all the pairs (i, j) with 1 ≤ i < j ≤ n have
been entered, then the pairs in the rth row indicate the matches of the
rth round.
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The following table illustrates Reisz’s construction for the case n = 8.

(1, 2) (3, 7) (4, 6) (5, 8)
(1, 3) (2, 8) (4, 7) (5, 6)
(1, 4) (2, 3) (5, 7) (6, 8)
(1, 5) (2, 4) (3, 8) (6, 7)
(1, 6) (2, 5) (3, 4) (7, 8)
(1, 7) (2, 6) (3, 5) (4, 8)
(1, 8) (2, 7) (3, 6) (4, 5)

The table can be put in the following, more compact, form.

(1, 2) (3, 7) (4, 6) (5, 8)
(1, 3) (2, 8) (4, 7) (5, 6)
(1, 4) (2, 3) (5, 7) (6, 8)
(1, 5) (2, 4) (3, 8) (6, 7)
(1, 6) (2, 5) (3, 4) (7, 8)
(1, 7) (2, 6) (3, 5) (4, 8)
(1, 8) (2, 7) (3, 6) (4, 5)

This construction matches players i and j, where 1 ≤ i, j ≤ n − 1, in
round r if

i+ j ≡ r + 2 (mod n− 1),

and it matches players k and n in round r if

2k ≡ r + 2 (mod n− 1),

for r = 1, 2, . . . , n − 1. If the r + 2 in these congruences is replaced by r,
the only effect on the schedule is that the rounds are numbered differently.
König (1936, p. 157) gave this construction [see also Freund (1959) and
Lockwood (1962)]. Slightly different schemes for generating similar sched-
ules have also been given by Lockwood (1936), Kraitchik (1950, p. 230),
and Ore (1963, p. 50). This problem is only a special case of the more gen-
eral problem of finding factors of a graph that satisfy certain conditions.

Some more complicated problems on the design of other types of tour-
naments where more than two players meet at a time have been treated
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by Kraitchik, Watson (1954), Scheid (1960), Gilbert (1961), and Yalavigi
(1963). There are also a number of design problems connected with var-
ious modifications of the method of paired comparisons where not every
pair of objects is compared or where there is more than one judge. Cer-
tain conditions on balance and symmetry are usually imposed. Material
on these problems and other references may be found in Kendall (1955),
Bose (1956), Tietze (1957), and David (1963).

Exercises

1. The following array illustrates for the case n = 7 a construction
Kraitchik gives for scheduling a tournament between an odd number of
players. (Players i and j meet in round r if the pair ij occurs in row r and
player k sits out round r if k occurs in the rth row of column 1.)

1 72 63 54
5 46 37 21
2 13 74 65
6 57 41 32
3 24 15 76
7 61 52 43
4 35 26 17

Extend this construction to the general case. Notice that a schedule for a
tournament on 8 players can be obtained from this by writing an 8 next
to the numbers in the first column. Is the resulting schedule different from
the schedule obtained by Reisz’s construction?

2. Describe how the diagram in Figure 6 can be used to schedule a tour-
nament between seven players. How can the construction be generalized?

3. A tennis match is played between two teams. Each player plays one
or more members of the other team. Any two members of the same team
have exactly one opponent in common and no two members of the same
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1
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3

45

6

7

Figure 6

team play all the members of the other team between them. Prove that, if
two players on different teams do not play each other, then they have the
same number of opponents. Deduce from this that all the players have the
same number of opponents and that, if this number is n, then there are
n2 − n+ 1 players on each team. [Boyd (1961).]

4. A tennis match is played between two teams A and B. Each member
of A plays at least one member of B, and no member of B plays every
member of A. Prove that there exist players a1, a2, b1 and b2 such that
ai and bj have played each other if and only if i = j for i, j = 1, 2. [See
McKay (1966).]

5. The members of a bridge club participated over a period of several
days in a tournament that satisfied the following conditions:

(a) Each pair of members appeared together at exactly one day’s play.

(b) For any two days’ play there was exactly one member who played on
both days.

(c) At least four players were scheduled to play on each day.

(d) The president, vice president, secretary, and treasurer were the only
members scheduled to play on the first day.
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How many members did the club have, how many days did the play last,
and how could the tournament have been scheduled? [Mendelsohn (1953).]

6. The nine members of a whist club want to arrange a tournament among
themselves. There are nine chairs in their club room, four at each of two
tables and an extra one for the person who sits out each round. Is it possible
to arrange the tournament so that all three of the following conditions are
satisfied?

(a) Every two members play together as partners once.

(b) Every two members play together as opponents twice.

(c) Each member spends one round in each chair.

Consider the analogous problem for clubs with five and thirteen members.
[See Watson (1954) and Scheid (1960).]

7. When is it possible to schedule a round robin tournament between
n chess players in such a way that all players alternate in playing the white
and black pieces? [Tietze (1957).]

15. Ranking the Participants in a Tournament

The simplest way of ranking the participants in a tournament is ac-
cording to the number of games they have won. This, however, will lead
to ties, except when the tournament is transitive. One could consider the
subtournament determined by all players who have the same score and
then try to rank these players on the basis of their performance within this
subtournament, but this will not necessarily remove all the ties. In fact,
there is no reason to expect that all ties can be removed. For example,
if the result of a tournament between three players is a 3-cycle, the most
plausible conclusion is that they are of equivalent strength.

Various schemes for ranking and comparing the participants in a tour-
nament have been proposed, none of which is entirely satisfactory. Zermelo
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(1929) developed a method based on the maximum likelihood principle.
[The same method was rediscovered later by Bradley and Terry (1952) and
Ford (1957).] We shall describe his procedure only for the case of a round-
robin tournament, although there is no difficulty in extending it to more
general situations where the number of encounters between various players
is arbitrary.

We assume that each player pi has a positive strength wi such that in
the encounter between pi and pj the probability that pi will win is given
by wi/(wi + wj). (We assume the strengths are normalized so that their
sum is one.)

If we assume that the outcomes of the various matches are independent,
then the probability that a particular tournament Tn is obtained is given
by the formula

Pr(Tn : w1, w2, . . . , wn) =
∏
i<j

(
wi

wi + wj

)aij ( wj
wi + wj

)aji
=

∏
iw

si
i∏

i<j(wi + wj)
,

where aij = 1 or 0 according as pi does or does not beat pj and si is the
number of matches won by pi. The problem now is to determine the value
of the wi’s that maximize the probability of obtaining the tournament Tn.

If the players can be split into two nonempty classes A and B such that
every player in A beats every player in B, then it is obvious that every
player in A should be ranked ahead of every player in B, but there exist no
nonzero maximizing values of the wi’s for the players in B (see Exercise 1).
Therefore, we assume that Tn is irreducible.

If Tn is irreducible, then it can be shown that there exists a unique
set of positive strengths (wi : i = 1, 2, . . . , n) that maximize Pr(Tn :
w1, w2, . . . , wn). Upon taking partial derivatives of the logarithm of the
likelihood function, we see that the maximizing strengths satisfy the equa-
tions

si
wi

=
∑
j

′ 1

wi + wj
(1)
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and
n∑
i=1

wi = 1, (2)

where for each i the first sum is over all j not equal to i.
There is no direct way of solving these equations in general, but an

iterative scheme can be used. For any trial solution, say w
(0)
i = 1/n, let

w
(1)
i =

si∑
j
′(w

(0)
i + w

(0)
j )−1

,

for i = 1, 2, . . . , n. If this procedure is repeated, the trial solutions will
converge (slowly) to a solution of (1) if Tn is irreducible [see David (1963)].
This solution may not satisfy (2), but since the equations are homogeneous
this can be remedied by multiplying through by the appropriate constant.

We now illustrate Zermelo’s method on the irreducible tournament T6
in Figure 7. We would expect players 3, 4, and 5 to have equal strengths,
but it is not obvious what the relative strengths of the other players should
be.

We find that w1 = w2 = .38735, w3 = w4 = w5 = .06580, and
w6 = .02689 is an approximate solution to Equations (1) and (2). Notice
that this gives exactly the same ranking as would be obtained simply by
considering the score of each player. This is always the case for ordinary
round-robin tournaments, as pointed out by Zermelo and Ford (see
Exercise 2). Hence, all we really achieve in this case are the maximum
likelihood estimates for the relative strengths of the players.

The preceding method of ranking the players in a tournament and
assigning their relative strengths takes into account only the number of
matches won by each player. A method due to Wei (1952) and Kendall
(1955) also takes into account the quality of the opponents in the matches
won by each player. For example, it seems plausible that Player 1 is
stronger than Player 2 in the tournament in Figure 7, even if they do
have the same number of wins, because Player 1 beats Player 2. Also,
the relative position of the sixth player is not clear, because although he
wins only one match he wins against one of the strongest players. We now
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illustrate the Kendall-Wei method, or rather a slight simplification of it,
for this tournament.

First assign to each player the number of matches he has won. This
gives the initial strength vector

w1 = (4, 4, 2, 2, 2, 1).

Next assign to each player the sum of the initial strengths of the players
he has beaten. This gives the second vector

w2 = (10, 7, 3, 3, 3, 4).

The next four strength vectors, defined in a similar way, are

w3 = (16, 13, 7, 7, 7, 10),

w4 = (34, 31, 17, 17, 17, 16),

w5 = (82, 67, 33, 33, 33, 34),

w6 = (166, 133, 67, 67, 67, 82).

Notice that the first player has the largest strength now and that the
sixth player has the third largest strength. It seems unlikely that further
repetitions of this process will alter the relative positions of the players.
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In the general case, the ith strength vector is given by

wi = M ie, (3)

where M is the matrix of the tournament being considered and e is a
column vector of 1’s. It follows from a theorem of Frobenius (1912) that,
if the matrix M is primitive, then

lim
i→∞

(
M

λ

)i
e = y, (4)

where λ is the unique positive characteristic root of M with the largest
absolute value and y is a positive characteristic vector of M corresponding
to λ. Therefore, in view of the corollary to Theorem 19, the normalized
vector y can be taken as the vector of relative strengths of the players in Tn
if Tn is irreducible and n ≥ 4.

The characteristic polynomial of the matrix of the tournament in Fig-
ure 7 is λ6 − 5λ3 − 6λ2 − 6λ − 2. The dominant root of this is approxi-
mately λ = 2.1106295. Upon calculating the corresponding characteristic
vector and normalizing, we find that the relative strengths assigned to
the players by this method are approximately w1 = .27899, w2 = .23179,
w3 = w4 = w5 = .11901, and w6 = .13218. It would seem that these
strengths are somewhat more realistic than those obtained by the maxi-
mum likelihood method.

Kendall’s original version also applies to more general situations. He
first assigns to each player the number of matches he has won, plus 1

2
for

tieing with himself. At each subsequent stage of adjusting the strengths,
he assigns to each player 1

2
his old strength plus the sum of the strengths of

the players he beats. Thompson (1958) showed that the 1
2

is arbitrary and
that, if the 1

2
is replaced by r, then the final ranking is independent of r if

r > 0. If this method is used, then the matrix M in Equations (3) and (4)
is replaced by M + rI. This is still somewhat arbitrary and it seems that
the only reason for the rI is to ensure that the matrix used in (3) and (4) is
primitive. But the matrix of an irreducible tournament Tn is itself primitive
if n ≥ 4 so that there is no need for the rI in this case, especially since it
has no effect upon the final relative strength vector obtained.
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Katz (1953) and Thompson (1958) proposed another method for com-
paring the participants in a tournament. If M is the matrix of the tourna-
ment, they let the vector of relative strengths be proportional to

(M + rM2 + r2M3 + . . . )e = M(I − rM)−1e,

where r is some positive constant for which the series converges (that
is to say, r < λ−1 where λ is the dominant characteristic root of M).
Thompson shows that the normalized relative strengths given by the
vector M(I − λ−1M)−1e are the same as those given by the Kendall-Wei
method.

Additional material on the problem of ranking a collection of objects on
the basis of binary comparisons between them may be found, for example,
in Brunk (1960), Slater (1961), Hasse (1961), Buhlmann and Huber (1963),
Huber (1963b), Gridgeman (1963), David (1963), Thompson and Remage
(1964), and Kadane (1966). Good (1955) has treated a related problem
concerning the grading of chess players.

Exercises

1. Show that there is no positive solution of the equation
∑n

i=1wi = 1
that maximizes Pr(Tn : w1, w2, . . . , wn) if the tournament Tn is reducible.

2. Suppose (wi : i = 1, 2, . . . , n) satisfies Equations (1) and (2). Show
that if si < sj, then

0 <
∑
k

′ wj
wj + wk

−
∑
k

′ wi
wi + wk

= (wj − wi)
∑
k

wk
(wi + wk)(wj + wk)

,

so wi < wj also.

3. Thompson raises the following questions about his method of ranking
the participants in a tournament:

(a) Does the final ranking depend on the choice of r?

(b) Can the method lead to a tie between an even number of players?
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4. Slater (1961) suggests that the participants in a tournament Tn be
ranked in such a way as to minimize the number of upsets, that is, the
number of matches in which the losing player is ranked ahead of the winning
player. If the players are ranked in this way, does this imply that the players
are ranked according to the number of matches they have won?

5. The relative weakness vector of the participants in a tournament Tn
may be defined as the vector obtained by applying the Kendall-Wei method
to the transpose of the matrix of Tn. Ramanujacharyula (1964) suggests
that the participants be ranked according to the quotients of their rela-
tive strengths and weaknesses. Apply this method to the tournament T6
considered in this section.

16. The Minimum Number of Comparisons Necessary
to Determine a Transitive Tournament

If one knows in advance that a dominance relation defined on a set of n
(n ≥ 4) objects is transitive, then it is not necessary to compare all the(
n

2

)
pairs of the objects in order to determine the transitive tournament Tn

that this relation defines. (For example, one might use a balance scale
to rank according to weight n objects, no two of which had the same
weight.) The number of comparisons necessary to rank the n objects will
depend on the order in which they are compared, in general. We now give
bounds for M(n), the least integer M such that at most M comparisons
are necessary to rank n objects according to some transitive relation.

Theorem 24. If n = 2t−1 + r, where 0 ≤ r < 2i−1 and n > 2, then

1 +
[
log2(n!)

]
≤M(n) ≤ 1 + nt− 2t ≤ 1 + n[log2 n].

Proof. The lower bound follows immediately from the observation [see
Ford and Johnson (1959)] that, if M comparisons will always suffice to rank
n objects, then it must be that 2M ≥ n!, since after M comparisons we
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can distinguish at most 2M alternatives and we must be able to distinguish
between the n! possible rankings.

The upper bound follows from a construction due to Steinhaus (1950).
Compare any two of the objects at the outset. If k objects have been ranked
relative to each other, compare any (k + 1)st object A with one of the
objects, say B, ranked in the middle of these k objects. Next, compare A
with one of the objects ranked in the middle of those objects already ranked
above or below B, according as A dominates B or B dominates A. If this
procedure is repeated, the position of A relative to the k objects already
ranked will be determined after 1 + [log2 k] comparisons.

Thus, if n = 2t−1 + r, where 0 ≤ r < 2i−1, the total number of matches
necessary to rank the n objects is at most

(n− 1) + [log2 2] + [log2 3] + · · ·+
[
log2(n− 1)

]
= (n− 1) + 2(1) + 22(2) + 23(3) + · · ·+ 2t−2(t− 2) + r(t− 1)

= (n− 1) + 2
[
1 + (t− 3)2t−2

]
+ (n− 2t−1)(t− 1)

= 1 + nt− 2t ≤ 1 + n[log2 n].

Ford and Johnson (1959) have given a somewhat sharper upper bound
by means of a more efficient and complicated procedure. The top two rows
of Table 4 give the number of comparisons sufficient to rank n objects by
the procedures of Steinhaus, and Ford and Johnson, for n ≤ 13; the bottom
row gives the lower bound for the number of comparisons necessary.

Table 4. M(n), the minimum number of comparisons necessary to
determine a transitive tournament Tn.

n = 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 3 5 8 11 14 17 21 25 29 33 37
0 1 3 5 7 10 13 16 19 22 26 30 34
0 1 3 5 7 10 13 16 19 22 26 29 33

Ford and Johnson conjecture that M(n) equals the number of com-
parisons required by their procedure. Steinhaus (1963) conjectures that
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M(n) = 1 +
[
log2(n!)

]
if n > 2 and discusses recent progress on this con-

jecture. The first unsettled case is n = 12.
Kislicyn (1963) has given an asymptotic bound for the least mean num-

ber of comparisons necessary to rank n objects.
Let Mk(n) denote the least integer M such that at most M compar-

isons are necessary to determine the kth highest ranking object in a set of
n objects. It is not difficult to see that M1(n) = n − 1. More generally,
Kislicyn (1964) has shown that

Mk(n) ≤ (n− 1) +
k−1∑
i=1

[
log2(n− i)

]
(1)

if k ≤
[
1
2
(n+1)

]
. The special cases k = 1 and 2 of this result were obtained

earlier by Schreier (1932) and Slupecki (1951).

Exercises

1. Prove inequality (1) for k = 1, 2.

2. A knock-out tournament between n players may be conducted as fol-
lows: If n = 2t + r, where 1 ≤ r ≤ 2t, then 2r players are matched off in
the first round. The 2t players not yet defeated are then matched off in
the second round. In the ith round, the 2t+2−i players not yet defeated are
matched off. The undefeated winner emerges after t + 1 rounds. What is
the probability that two given players will be matched against each other
in the course of a random knock-out tournament? [Hartigan (1966) has
dealt with some problems of estimating the relative ranks of participants
in a knock-out tournament on the basis of the known outcomes of the
matches that are played. David (1963) gives more material on this type of
tournament.]

3. A certain tournament consisted of five rounds, a semifinal, and a final.
In the five rounds, there were 8, 6, 0, 1, 0 byes, respectively. If there were
100 entrants, then how many matches were played? [Chisholm (1948).]
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4. Prove the identity[n
2

]
+

[
n+ 1

4

]
+

[
n+ 3

8

]
+

[
n+ 7

16

]
+ · · · = n− 1.

Hint: Consider a knock-out tournament on n players in which as many
players as possible are matched off in each round and the losers of these
matches are eliminated from further play. [Mendelsohn (1949).]

17. Universal Tournaments

A tournament TN is said to be n-universal (n ≤ N) if every tourna-
ment Tn is isomorphic to some subtournament of TN . For every positive
integer n, let λ(n) denote the least integer N for which there exists an
n-universal tournament TN . (It is clear that λ(n) is finite, since any tour-
nament that contains disjoint copies of all the different tournaments Tn is
n-universal.)

Theorem 25.

2(1/2)(n−1) ≤ λ(n) ≤

n · 2
(1/2)(n−1) if n is odd,

3

2
√

2
n · 2(1/2)(n−1) if n is even.

Proof. There are at least 2

(
n
2

)
/n! different tournaments Tn (the label-

ings assigned to the nodes are immaterial to the problem). Hence, if TN is
n-universal, it must be that

2

(
n
2

)
/n! ≤

(
N

n

)
≤ Nn

n!
,

since different tournaments Tn must be isomorphic to different subtour-
naments with n nodes of TN . The lower bound for λ(n) is an immediate
consequence of this inequality.

To obtain an upper bound for λ(n), we proceed as follows. Let Rn be
any tournament with nodes y1, y2, . . . , yn and let Yi = {yk : yk → yi}
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for each i. Construct a tournament H whose nodes qi,A are in one-to-one
correspondence with the ordered pairs (i, A) where A ⊂ Yi. If A ⊂ Yi,
B ⊂ Yj, and yi → yj, then q1,A → qj,B in H if yi ∈ B, and qj,B → qi,A if
yi 6∈ B. The arcs joining nodes of the type qi,A1 and qi,A2 may be oriented
arbitrarily. (The tournament obtained when Rn is a 3-cycle is illustrated
in Figure 8. The notation used should be obvious.)

Rn:

1

2 3

H : q3,2

q1,0q1,3

q2,0

q2,1 q3,0

Figure 8

We now show that H is n-universal. If the nodes of a tournament Tn
are p1, p2, . . . , pn, we set f(pi) = qi,A(i), where A(i) = {yk : yk →
yi in Rn and pk → pi in Tn}. The subtournament of H determined by
the nodes f(pi) is isomorphic to Tn, since, if yi → yj in Rn, then

(pi → pj) =⇒
(
pi ∈ A(j)

)
=⇒ (qi,A(i) → qj,A(j)) =⇒

(
f(pi)→ f(pj)

)
and

(pj → pi) =⇒
(
pi 6∈ A(j)

)
=⇒ (qj,A(j) → qi,A(i)) =⇒

(
f(pj)→ f(pi)

)
.

Therefore,

λ(n) ≤ (number of nodes of H) = 2|Y1| + 2|Y2| + · · ·+ 2|Yn|.

To minimize this sum, let Rn be the regular tournament defined in Section 5
for which

|Y1| = · · · = |Yn| = 1
2
(n− 1), if n is odd,
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and

|Y1| = · · · = |Y(1/2)n| = 1
2
n

|Y(1/2)n+1| = · · · = |Yn| = 1
2
(n− 2), if n is even.

Hence,
λ(n) ≤ n · 2(1/2)(n−1) if n is odd,

and

λ(n) ≤ 1
2
n · 2(1/2)n + 1

2
n · 2(1/2)(n−2) =

3

2
√

2
n · 2(1/2)(n−1), if n is even.

This completes the proof of the theorem.
Rado (1964) and de Bruijn were the first to study universal graphs;

they restricted their attention to infinite graphs. Theorem 25 is closely
related to a result Moon (1965) obtained for ordinary finite graphs.

Exercises

1. Verify that the graph H in Figure 8 is 3-universal.

2. Determine the exact values of λ(n) for n ≤ 4.

3. Obtain a result for directed graphs that is analogous to Theorem 25.

18. Expressing Oriented Graphs as the Union of Bilevel
Graphs

The rather complicated results in this section will be used to prove
other results in the next two sections. In order to prove these results for
tournaments, it is necessary to prove them for oriented graphs in general.
(Recall that an oriented graph differs from a tournament in that not all
pairs of nodes need be joined by an arc.)

Recall that an a by b bipartite tournament consists of two disjoint
sets A and B containing a and b nodes, respectively, such that each node
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in A is joined by an arc to each node in B. We shall consider special
a by b bipartite graphs H(a, b) in which all the arcs are similarly oriented,
say, from the nodes in A to the nodes in B. A bilevel graph H is any
oriented graph that can be expressed as the union of disjoint special graphs
H(ai, bi); the graphs H(ai, bi) are called the components of H. (We admit
the possibility that one of the node sets of one of the components of H is
empty.) The structure of a typical bilevel graph with four components is
illustrated in Figure 9.

A1 A2 A3 A4

B1 B2 B3

Figure 9

We are going to prove that any oriented graph with n nodes can be
expressed as the union of cn/ log n or fewer arc-disjoint bilevel graphs,
where c is a certain constant. First, however, we prove several lemmas.

The (total) degree of a node in an oriented graph is the total number of
arcs incident with it. The following lemma and some subsequent statements
are valid only for large values of n; when this is clear from the context, we
shall not mention this qualification explicitly.

Lemma 1. Let G be an oriented graph with n nodes and e arcs such that

n2

22r+4
< e ≤ n2

22r+1

for some nonnegative integer r where
log n

3(r + 3)
≥ 1. Then G contains a

special bipartite tournament H(a, b) with a = [
√
n] and b =

[
log n

3(r + 3)

]
where the degrees of the nodes of A do not exceed

16n

2r
in G.
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Proof. There can be at most n/2r+4 nodes whose degrees exceed 16n/2r

in G, for otherwise there would be too many arcs in G. Hence, there are
fewer than n2/22r+9 arcs joining two such nodes. If we disregard such arcs,
there will remain more than n2/22r+5 arcs with the property that at least
one of the nodes they join has degree at most 16n/2r. Let y1, y2, . . . , yt
denote the nodes whose degrees in G were at most 16n/2r originally. Then
it must be that

n

(
1− 1

2r+4

)
≤ t ≤ n.

If si denotes the number of arcs oriented away from yi, then we may
assume that

t∑
i=1

si ≥
n2

22r+6
.

(If this inequality is not satisfied, then in the special graph H(a, b) all the
arcs will be oriented from the nodes of B to the nodes of A, but this will
not affect the result.)

The number N of sets B of b nodes for which there exists some node yi
(1 ≤ i ≤ t) such that yi dominates every node of B is given by the formula

N =
t∑
i=1

(
si
b

)
.

(If there are h nodes yi that dominate every node of B, then B is
counted h times in this sum.) This sum will be minimized when t = n
and si =

[
n/(22r+6)

]
. If we can show that

N ≥ n

([ n

22r+6

]
b

)
> (a− 1)

(
n

b

)
, (1)

then it will follow from the box principle that at least one set B is counted
at least a times; this means that there exists a set A of a nodes (chosen
from the nodes whose degrees in G were at most 16n/2r originally) and a
set B of b nodes such that every node in A dominates every node in B.
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It is not difficult to show (see Exercise 1) that inequality (1) does in
fact hold when

a = [
√
n] and b =

[
log n

3(r + 3)

]
.

This completes the proof of Lemma 1.

Lemma 2. Let G be an oriented graph with n nodes and e arcs such that

n2

22r+3
< e ≤ n2

22r+1

for some nonnegative integer r such that r ≤ 4 log log n. Then G contains
a bilevel graph with at least (n log n)/(r + 3)2r+11 arcs.

Proof. We first disregard all arcs that join two nodes whose degrees
exceed 16n/2r; as before, there are fewer than n2/22r+9 such arcs so there
certainly remain more than n2/22r+13/4 arcs. Let H1 be the special sub-
graph of G described in Lemma 1. Since the degrees of the nodes in A1

and B1 are at most 16n/2r and n − 1, respectively, it follows that the
number of arcs incident with nodes of A1 ∪B1 is less than

n

(
16
√
n

2r
+ log n

)
<

17n3/2

2r
.

If we disregard these arcs, there still remain more than

n2

22r+13/4
− 17n3/2

2r
>

n2

22r+4

arcs. We now apply Lemma 1 again to obtain a special subgraph H2. (The
arcs in Hi need not all be oriented from nodes in Ai to nodes in Bi; it
may be that they are all oriented from nodes in Bi to nodes in Ai.) We
now disregard the arcs incident with the nodes of H2 and apply Lemma 1
again. When we have repeated this procedure

[√
n/(17 · 2r+5)

]
times, we

are left with a graph that still has more than

n2

22r+13/4
− 17n3/2

2r

[ √
n

17 · 2r+5

]
>

n2

22r+4
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arcs. If we apply Lemma 1 once more, then the bilevel graph with compo-
nents Hi, i = 1, 2, . . . ,

[√
n/(17 · 2r+5)

]
+ 1, has at least([ √

n

17 · 2r+5

]
+ 1

)
· [√n] ·

[
log n

3(r + 3)

]
>

n log n

(r + 3) · 2r+11

arcs. This proves the lemma.

Lemma 3. If G is an oriented graph with e arcs, then G contains a bilevel
subgraph with at least 1

2

√
e arcs.

Proof. This is trivially true when e = 0; the proof of the general case
is by induction. Let p be one of the nodes of largest degree d in G. We
may suppose that at least 1

2
d arcs are oriented away from p; use these

arcs to form one component of a bilevel subgraph of G. If α denotes the
number of arcs that are incident with any nodes that are joined to p, then
0 < α ≤ min(d2, e). We may now apply the induction hypothesis to the
other e− α arcs and assert that G has a bilevel subgraph with at least

1
2
(d+

√
e− α) ≥ 1

2

√
e (2)

arcs.

Lemma 4. If G is an oriented graph with e arcs, then G can be expressed
as the union of fewer that 4

√
e arc-disjoint bilevel graphs.

Proof. Suppose that G is the union of t arc-disjoint bilevel graphs
with e1, e2, . . . , et arcs, respectively, where e1 ≤ e2 ≤ · · · ≤ et. In view of
Lemma 3, we may assume that

ei ≥ 1
2

√
e1 + e2 + · · ·+ ei

or
4e2i − ei ≥ e1 + e2 + · · ·+ ei−1

for each i. From this inequality it follows by induction that ei ≥ 1
8
i for

each i. Therefore

e = e1 + e2 + · · ·+ ei ≥ 1
8

(
t+ 1

2

)
> (1

4
t)2,
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or t < 4
√
e.

We can now prove the following theorem due to Erdös and Moser
(1964a).

Theorem 26. There exists a constant c such that any oriented graph G
with n nodes can be expressed as the union of l arc-disjoint bilevel graphs,
all of which have the same n nodes, where

l ≤ cn

log n
.

Proof. We define oriented graphs Gi and G(i) inductively for i =
1, 2, . . . ,

[
213(n/ log n)

]
. The graph G(i) is obtained from G by removing

the arcs of G1, G2, . . . , Gi. Let G1 be a bilevel subgraph of G with a max-
imal number of arcs and let Gi+1 be similarly defined with respect to G(i).
(We may suppose that all the graphs Gi have n nodes.)

If there are ei arcs in G(i) and if ir is the smallest integer such that

eir ≤
n2

22r+1
, for r = 0, 1, . . . , [4 log log n],

then we shall show that

ir+1 − ir ≤ 211 · r + 3

2r+1
· n

log n
. (3)

We may suppose that

eir >
n2

22r+3
, for ir+1 − ir = 0

otherwise. If ir ≤ j < ir+1, then

n2

22r+3
< ej ≤

n2

22r+1
.

Hence, G(j) contains a bilevel subgraph with at least

n log n

(r + 3)2r+11
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arcs, by Lemma 2. This implies that

ej − ej+1 ≥
n log n

(r + 3)2r+11
.

If we sum this inequality over all j such that ir ≤ j < ir+1, we find that

n2

22r+1
≥ eir − eir+1 =

∑
(ej − ej+1) ≥ (ir+1 − ir) ·

n log n

(r + 3)2r+11
.

This implies inequality (3).
Therefore, upon removing at most

∑
0≤r≤[4 log logn]

(ir+1 − ir) <
211n

log n

∞∑
r=0

r + 3

2r+1
=

213n

log n

arc-disjoint bilevel graphs Gi, we are left with a graph G′ that has at most

n2

22([4 log logn]+1)+1
<

n2

(log n)5

arcs. But G′ is the union of fewer than 4n/(log n)5/2 arc-disjoint bilevel
graphs by Lemma 4. This completes the proof of Theorem 25.

Exercises

1. Prove that inequality (1) holds when a = [
√
n] and b =

[
log n

3(r + 3)

]
.

2. Verify inequality (2).

19. Oriented Graphs Induced by Voting Patterns

Suppose that m voters each rank n objects 1, 2, . . . , n in order of pref-
erence. Their preferences may be represented by an m by n matrix M ,
each row of which is a permutation of the objects 1, 2, . . . , n. The collec-
tive preferences of these voters induce an oriented graph Hn with n nodes
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p1, p2, . . . , pn in which the arc
−−→
pipj goes from node pi to node pj if and only

if i precedes j in a majority of the m rows of the matrix M . This graph
will be a tournament, unless m is even and some ties occur; then certain
nodes will not be joined by an arc.

Even though each voter’s preferences are transitive, the collective pref-
erences determined by the majority rule need not be transitive. For ex-
ample, three voters who rank three objects according to the preference
matrix

M =

∣∣∣∣∣∣
1 2 3
2 3 1
3 1 2

∣∣∣∣∣∣
induce a 3-cycle that is certainly not transitive.

McGarvey (1953) has shown that at most n(n−1) voters are necessary
to induce any oriented graph Hn. He associates a pair of voters with each

arc in the graph. The two voters associated with the arc
−−→
pipj rank the

n objects in the orders (i, j, 1, 2, . . . , n) and (n, n − 1, . . . , 1, i, j). Each

pair of voters thus determines one arc
−−→
pipj, since the preferences of the

remaining voters cancel out with respect to i and j.
Stearns (1959) showed, by a more complicated construction, that at

most n + 2 voters are necessary to induce any oriented graph Hn; he also
showed that at least 1

2
log 3(n/ log n) voters are necessary in some cases.

This lower bound is combined with an upper bound due to Erdös and
Moser (1964a) in the following result.

Theorem 27. If m(n) denotes the least integer m such that at most m
voters are necessary to induce any oriented graph Hn (n > 1), then there
exist constants c1 and c2 such that

c1n

log n
< m(n) <

c2n

log n
.

Proof. If no more than m voters are necessary to induce each of the

3

(
n
2

)
oriented graphs Hn, then it must be that

3

(
n
2

)
≤ (n! + 1)m,
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since each of the m possible voters can vote in one of n! ways or not vote
at all. The lower bound is obtained by solving for m.

We assert that any bilevel graph H can be induced by two voters. For,
suppose that H has three components and that A1, A2, A3 and B1, B2, B3

are the node sets of the components. If

Ai = {aij : j = 1, 2, . . . , ji} and Bi = {bik : k = 1, 2, . . . , ki},

then H can be induced by the preference matrix∣∣∣∣a11a12. . .a1j1b11b12 . . .b1k1a21a22. . .a2j2b21b22 . . .b2k2a31a32. . .a3j3b31b32 . . . b3k3a3j3 . . .a32a31b3k3 . . .b32b31a2j2 . . .a22a21b2k2 . . .b22b21a1j1 . . .a12a11b1k1 . . .b12b11

∣∣∣∣ .
This construction can easily be extended to the general case.

Therefore, if an oriented graph Hn can be expressed as the union of
l arc-disjoint bilevel graphs with n nodes, then Hn can be induced by
2l voters. The upper bound for m(n) now follows from Theorem 26.

Exercises

1. Prove the following results about the least integer g = g(n) such that
at most g voters are necessary to induce any tournament Tn, where n ≥ 2.

(a) g(n) is always odd.

(b) g(3) = g(4) = g(5) = 3.

(c) g(n+ 1) ≤ g(n) + 2.

(d) m(n) < 2g(n). [Stearns (unpublished).]

2. H. Robbins raised the following question: If an odd number m of voters
rank n objects randomly and independently, then what is the probability
p(m,n) that the tournament Tn they induce is transitive? Is it true that

lim
m→∞

p(m,n) =
n!

2

(
n
2

)
for each fixed value of n? [See DeMeyer and Plott (1967).]
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3. Characterize those oriented graphs that can be induced by m voters,
for m = 1, 2, 3.

20. Oriented Graphs Induced by Team Comparisons

Two teams of players can be compared by matching each player on one
team against each player on the other team. If the players on Team A
collectively win more games than they lose against players on Team B,
then we say that Team A is stronger than Team B (symbolically, A > B).
We admit the possibility of draws, both between individual players and
between teams. We denote both the names and the strengths of players by
a single number and we assume that the stronger player wins in any match
between two players. [Steinhaus and Trybula (1959) have mentioned a
possible industrial application of this method of comparing two samples of
objects.]

Let N players p1, p2, . . . , pN be split into n (n > 1) nonempty teams
T1, T2, . . . , Tn and suppose that every team is compared with every other
team. This induces an oriented graph Hn with n nodes t1, t2, . . . , tn in

which the arc
−→
titj goes from node ti to node tj if and only if Ti > Tj. For

example, the teams T1 = {6, 7, 2}, T2 = {1, 5, 9}, and T3 = {8, 3, 4} induce
the 3-cycle in Figure 10.

t1

t2 t3

Figure 10

We now show that any oriented graph can be induced by comparing
appropriate teams.

If the teams T1, T2, . . . , Tn generate the oriented graph Hn, let α(i, j)
denote the number of games won minus the number of games lost by players
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of Ti against players of Tj. (For example, α(1, 2) = α(2, 3) = α(3, 1) = 1 in
the illustration in Figure 10.) We call α(i, j) the net score of Ti against Tj;
notice that α(j, i) = −α(i, j).

If w and s denote the strengths of the weakest and strongest players on
the n teams, let w1, w2, s1, and s2 be any numbers such that w1 = w2 < w
and s1 > s2 > s. Add two players of strength w1 and s1 to Ti and two
players w2 and s2 to Tj. This will increase α(i, j) by one, but the net scores
between all other pairs of teams will not be affected (see Exercise 1).

We may assume that initially there are n players of equal strength, one
on each team; the net scores are all zero and the induced graph has no arcs.
The process described in the preceding paragraph can now be repeated as
often as necessary. We conclude, therefore, that if the (nonnegative) net
scores between the teams are prescribed in advance and their sum is β,
then no more than n+ 4β players are necessary to realize these scores. In
particular, any oriented graph Hn (for which the corresponding net scores

would all be zero or one) may be induced by n+ 4

(
n

2

)
= 2n2−n or fewer

players.
The preceding argument is due to Moser; Moon and Moser (1967) gave

the following sharper result that, in a sense, is the best possible.

Theorem 28. If N(n) denotes the least integer N such that at most N
players are necessary to induce any oriented graph Hn (n > 1), then there
exist constants c1 and c2 such that

c1n
2

log n
< N(n) <

c2n
2

log n
.

Proof. If m players can induce the graph Hn, let hi denote the number
of players that have strength i; we may suppose there exists an integer t
not exceeding m such that hi > 0 for i = 1, 2, . . . , t and

h1 + h2 + · · ·+ ht = m.

The number of solutions in positive integers to this equation is 2m−1 and
the m players corresponding to each solution can be split into n teams in
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at most nm ways. Consequently, if N or fewer players suffice to induce
every oriented graph Hn, it must be that

3

(
n
2

)
≤ 1

2

N∑
m=1

(2n)m < (2n)N ,

or

N >
log 3

2

n(n− 1)

log(2n)
,

since each allocation of players determines at most one graph. This implies
the lower bound of the theorem.

We assert that any bilevel graph Hn can be induced by 2n players,
two on each team. For, suppose that Hn has three components and that
A1, A2, A3 and B1, B2, B3 are the node sets of the components; then Hn is
induced if each node in the various node sets is associated with the team
indicated in the following list.

A1 : (1, 10) A2 : (2, 8) A3 : (3, 6)

B1 : (1, 9) B2 : (2, 7) B3 : (3, 5)

It is easy to extend this construction to the general case.
Suppose the oriented graph Hn can be expressed as the union of l arc-

disjoint bilevel graphs B(k) (k = 1, 2, . . . , l), all of which have the same n
nodes. We know that there exist teamsRki of two players each such that the
teams Rki (i = 1, 2, . . . , n) induce the bilevel graph B(k) (k = 1, 2, . . . , l).
We may assume that every player on any team Rkj is stronger than every
player on any team Rhi (1 ≤ h < k ≤ l). [This property can be ensured
by adding a suitable constant ck to the strength of every player on the
team Rki (k = 1, 2, . . . , l), if necessary.] The teams

Ti =
l⋃

k=1

Rki, i = 1, 2, . . . , n,

have 2l players each and it is not difficult to see that they generate the
oriented graph Hn.
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Therefore, if an oriented graph Hn can be expressed as the union of
l arc-disjoint bilevel graphs with n nodes, then Hn can be induced by
2ln players. This implies the upper bound for N(n) since, by Theorem 26,
we may suppose that l ≤ cn/ log n.

There are certain rather curious aspects of this mode of comparing
teams. In the example illustrated in Figure 10, the teams T1, T2, and T3
were such that T1 > T2 and T2 > T3. One might expect that T1 ∪ T2 >
T2 ∪ T3, and this is indeed the case. However, since T1 < T3, one might
equally well expect that T1 ∪ T2 < T2 ∪ T3, and this is false.

The following example is perhaps more striking. If A = {2, 3, 10} and
B = {1, 8, 9} then A > B by 5 wins to 4. If A1 = A∪{5} and B1 = B∪{4},
then the teams A1 and B1 are tied with 8 wins each. If A2 = A1 ∪{7} and
B2 = B1 ∪ {6}, then B2 > A2 by 13 wins to 12. Notice that at each stage
we added the stronger player to the team that was stronger originally, yet
the net effect was to reverse the relative strengths of the two teams. This
process can be continued. If A3 = A2 ∪ {12} and B3 = B2 ∪ {11}, then
A3 and B3 are tied with 18 wins each. Finally, if A4 = A3 ∪ {14} and
B4 = B3 ∪ {13}, then A4 > B4 by 25 wins to 24.

Exercises

1. Verify the unproved assertion about the effect upon the net scores of
adding players w1, s1, w2, and s2 to Ti and Tj.

2. Show that N(3) = 7.

3. The first argument in this section shows that N(n) ≤ 2n2 − n. Refine
this argument and show by induction that N(n) ≤ n2 + 3n− 11 if n ≥ 3.
[Notice that this upper bound for N(n) is superior to the upper bound in
Theorem 28, unless n is very large.]

4. Let w(i, j) and l(i, j) denote the number of games won and lost by
players of Ti against players of Tj. We have shown that the net scores
α(i, j) = w(i, j)−l(i, j) for the matches between n teams can be prescribed
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arbitrarily. Can the win-loss ratios w(i, j)/l(i, j) be prescribed arbitrarily?
[See Steinhaus and Trybula (1959), Trybula (1961), and Usiskin (1964).]

5. Modify the construction used in the proof of Theorem 28 and show
that any bilevel graph Hn can be induced by 2n players, two on each team,
such that different players do not have the same strength.

6. Characterize those oriented graphs that can be induced by comparing
teams with k players each, for k = 1, 2, 3.

7. Suppose two teams A andB are compared as follows. The ith strongest
player of A is matched against the ith strongest player of B, for i =
1, 2, . . . , h, where h denotes the number of players on the smaller team.
The stronger team is the one whose players win the most matches. Try to
obtain a result analogous to Theorem 28 when this method of comparing
teams is used.

21. Criteria for a Score Vector

The following result was first proved by Landau (1953); the proof we
give here is due to Ryser (1964). [See also Alway (1962a) and Fulkerson
(1966).]

Theorem 29. A set of integers (s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn,
is the score vector of some tournament Tn if and only if

k∑
i=1

si ≥
(
k

2

)
, (1)

for k = 1, 2, . . . , n with equality holding when k = n.

Proof. Any k nodes of a tournament are joined by

(
k

2

)
arcs, by defini-

tion. Consequently, the sum of the scores of any k nodes of a tournament

must be at least

(
k

2

)
. This shows the necessity of (1).
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The sufficiency of (1) when n = 1 is obvious. The proof for the gen-
eral case will be by induction. Let j and k be the smallest and largest
indices less than n such that sj = ssn = sk. Consider the set of integers
(s′1, s

′
2, . . . , s

′
n−1) defined as follows:

s′i = si if i = 1, 2, . . . , j − 1 or

i = k − (sn − j), . . . , k − 1, k;

s′i = si − 1 if i = j, j + 1, . . . , k − (sn − j)− 1 or

i = k + 1, k + 2, . . . , n− 1.

From this definition, it follows that

s′1 ≤ s′2 ≤ · · · ≤ s′n−1,

that s′1 = si for sn values of i, and that s′i = si − 1 for (n− 1)− sn values
of i. Consequently,

n−1∑
i=1

s′i =
n∑
i=1

si − (n− 1) =

(
n− 1

2

)
.

If there exists a tournament Tn−1 with score vector (s′1, s
′
2, . . . , s

′
n−1),

then there certainly exists a tournament Tn with score vector (s1, s2, . . . , sn);
namely, the tournament consisting of Tn−1 plus the node pn, where
pn dominates the sn nodes pi such that s′i = si and is dominated by the
remaining nodes. Therefore, we need only show that the inequality

h∑
i=1

s′i <

(
h

2

)
(2)

is impossible for every integer h such that 1 < h < n − 1 in order to
complete the proof by induction.

Consider the smallest value of h for which inequality (2) holds, if it ever
holds. Since

h−1∑
i=1

s′i ≥
(
h− 1

2

)
,
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it follows that sh ≤ h. Furthermore, j ≤ h, since the first j− 1 scores were
unchanged. Hence,

sh = sh+1 = · · · = sf

if we let
f = max(h, k).

Let t denote the number of values of i not exceeding h such that s′i =
si − 1. Then it must be that

sn ≤ f − t. (3)

Therefore, (
n

2

)
=

h∑
i=1

s′i +

f∑
i=h+1

si +
n−1∑
i=f+1

si + sn + t

<

(
h

2

)
+ (f − h)sh + (n− 1− f)sn + f

≤
(
h

2

)
+ h(f − h) + f(n− 1− f) + f

≤
(
f

2

)
+ f(n− f) ≤

(
n

2

)
.

Consequently, inequality (2) cannot hold and the theorem is proved.

Exercises

1. Show that, if the scores si of a tournament Tn are in nondecreasing
order, then (i− 1)/2 ≤ si ≤ (n+ i− 2)/2. [Landau (1953).]

2. Prove that
∑

k si ≤ k
[
n − (k + 1)/2

]
, where the sum is over any k

scores of a tournament Tn. [Landau (1953).]

3. Prove that, in any tournament, there exists a node p such that for any
other node q either p → q or there exists a node r such that p → r and
r → q. [Landau (1953).]
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4. Prove that, if a tournament has no nodes with score zero, then it has
at least three nodes u such that for any other node v either v → u or there
exists a node w such that v → w and w → u. [Silverman (1961).]

5. Let li denote the number of nodes that dominate pi in the tourna-
ment Tn so that si + li = n − 1 for all i. Prove in at least three different
ways that

n∑
i=1

s2i =
n∑
i=1

l2i .

6. Is it possible for two nonisomorphic tournaments to have the same
score vector?

7. Prove that among the class of all tournaments with score vector
(s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn, there exists a tournament Tn
whose matrix has only

∑′[si− (i− 1)
]

ones above the diagonal, where the
sum is over all i such that si > i− 1. [Ryser (1964) and Fulkerson (1965).]

22. Score Vectors of Generalizations of Tournaments

An n-partite tournament differs from an ordinary tournament in that
there are n nonempty sets of nodes Pi = (pi1, pi2, . . . , pini

) and two nodes
are joined by an oriented arc if and only if they do not belong to the same
set Pi. The score vectors of an n-partite tournament are defined in the
obvious way. The following theorem was proved by Moon (1962).

Theorem 30. The n sets of integers Si = (si1, si2, . . . , sini
), where si1 ≤

si2 ≤ · · · ≤ sini
for i = 1, 2, . . . , n, form the score vectors of some n-partite

tournament if and only if

n∑
i=1

ki∑
j=1

sij =
n−1∑
i=1

n∑
j=i+1

kikj,
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for all sets of n integers ki satisfying 0 ≤ ki ≤ ni with equality holding
when ki = ni for all i.

This reduces to Theorem 29 when n1 = n2 = · · · = nn = 1.
This case n = 2 is of special interest. There is a natural one-to-one

correspondence between bipartite tournaments and matrices of zeros and
ones; simply let p1i → p2j or p2j → p1i according as the (i, j) entry of
the matrix is one or zero. Gale (1957) and Ryser (1957) found necessary
and sufficient conditions for the existence of a matrix of zeros and ones
having prescribed row and column sums. It is not difficult to show that the
following statement is equivalent to their theorem [see also Vogel (1963)].

Corollary. There exists an m by n matrix of zeros and ones with row
sums ri, where r1 ≤ r2 · · · ≤ rm, and column sums cj, where c1 ≥ c2 ≥
· · · ≥ cn, if and only if

k∑
i=1

ri +
i∑

j=1

(m− cj) ≥ kl,

for k = 0, 1, . . . ,m and l = 0, 1, . . . , n with equality holding when k = m
and l = n.

A generalized tournament differs from an ordinary tournament in that

both the arcs
−−→
pipj and

−−→
pjpi join every pair of distinct nodes pi and pj; in

addition there is a weight αij associated with each arc
−−→
pipj. Let G∗ denote

some set of real numbers that contains 1 and that forms a group with
respect to addition. We assume that the weights are nonnegative members
of G∗ and that they satisfy the equation αij+αji = 1 for all pairs of distinct
values of i and j. The score of pi is then given by the formula

si =
n∑
j=1

αij,

if we adopt the convention that αii = 0.
The following generalization of Theorem 29 is valid.

Theorem 31. Let (s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn, be a set of
numbers belonging to a group G∗. Then (s1, s2, . . . , sn) is the score vector
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of some generalized tournament whose weights belong to G∗ if and only if

k∑
i=1

si ≥
(
k

2

)
, (1)

for k = 1, 2, . . . , n with equality holding when k = n.

Proofs of this have been given by Moon (1963) and Ryser (unpublished)
when G∗ is the group of all real numbers and by Ford and Fulkerson (1962;
p. 41) when G∗ is the group consisting of all multiples of 1/c for some
integer c.

Perhaps the easiest and most natural way to deal with problems of
this type is to use the theory of flows in networks. The following result,
which we state without proof, is an immediate consequence of the supply-
demand theorem due to Gale (1957). [See Ford and Fulkerson (1962) for
an exposition of the theory of flows in networks.]

Theorem 32. Let {Sj : j = 1, 2, . . . , N} be a family of nonempty subsets
of T = {1, 2, . . . ,m}. The numbers v1, v2, . . . , vm and k(S1), k(S2), . . . ,
k(SN) all belong to a set G of real numbers that forms a group with respect
to addition. Then the system of equations

Xij = 0 if i 6∈ Sj
N∑
j=1

Xij = vi i = 1, 2, . . . ,m

m∑
i=1

Xij = k(Sj) j = 1, 2, . . . , N

(2)

has a nonnegative solution in G if and only if for every subset S of T∑
i∈S

vi ≥
∑
Sj⊂S

k(Sj), (3)

with equality holding when S = T .

To deduce Theorem 31 from Theorem 32, we let T be the set of nodes of
the tournament and let the sets Sj be the pairs of distinct nodes; k(Sj) = 1



23. the number of score vectors 85

for all j and vi = si for all i. Then, if the nodes pi and pj form the subset Sl,
we let αij = Xil and αji = Xjl. It follows from (2) that this will define a
generalized tournament with the score vector (s1, s2, . . . , sn) and it is clear
that conditions (1) and (3) are equivalent. The only difference in proving
the corresponding generalization of Theorem 30 is that now the sets Sj are
the pairs of nodes belonging to different subsets Pi of nodes.

Exercises

1. Prove that the corollary to Theorem 30 is equivalent to the Gale-Ryser
theorem on the existence of a (0, 1) matrix with prescribed row and column
sums.

2. Deduce Theorem 32 from the theorem by Gale (1957).

3. Let M = [αij] be an n by n matrix of nonnegative real numbers such
that αij + αji = 1 for 1 ≤ i, j ≤ n. (In particular, αii = 1

2
for all i. We

may think of M as the matrix of a generalized tournament if we wish.)
Prove that M is positive semidefinite, that is, that XMXT ≥ 0 for all real
vectors X = (x1, x2, . . . , xn). [N. J. Pullman.]

23. The Number of Score Vectors

The score vectors of tournaments Tn may be generated by expanding
the product

Pn =
∏

1≤i<j≤n

(ai + aj).

For example,

P3 = (a1 + a2)(a1 + a3)(a2 + a3)

= a21a2 + a1a
2
2 + a21a3 + a1a

2
3 + a22a3 + a2a

2
3 + 2a1a2a3,

and there are essentially two different score vectors, namely, (0, 1, 2) and
(1, 1, 1). David (1959) used this scheme to determine the various score
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vectors and their frequency for n ≤ 8. Alway (1962b) extended these
results to the cases n = 9 and 10.

Let s(n) denote the number of different score vectors of size n, that is,
the number of sets of integers (s1, s2, . . . , sn) such that

s1 ≤ s2 ≤ · · · ≤ sn ≤ n− 1, (1)

s1 + s2 + · · ·+ sr ≥
(
r

2

)
, for r = 1, 2, . . . , n− 1, (2)

and

s1 + s2 + · · ·+ sn =

(
n

2

)
. (3)

There seems to be no simple explicit formula for s(n). We now describe a
recursive method for determining s(n) due to Bent and Narayana (1964)
[see also Bent (1964)].

Let [t, l]n denote the number of sets of integers (s1, s2, . . . , sn) that
satisfy (1), (2), and the conditions

s1 + s2 + · · ·+ sn = l (4)

and
sn = t,

where l ≥
(
n

2

)
. (If l <

(
n

2

)
, then we let [t, l]n = 0.)

Now

[t, l]1 =

{
1 if t− l,
0 otherwise,

and if n ≥ 2, then

[t, l]n =
∑
h≤t

[h, l − t]n−1.

The value of s(n) is given by the formula

s(n) =
∑
t

[
t,

(
n

2

)]n
. (5)
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It is convenient to enter the values of [t, l]n in a table and then use the
recurrence relation to form the table of values of [t, l]n+1. If we only want
to determine s(n) for n ≤ m, then we need only determine [t, l]n when

n− 1

2
≤ t ≤ m+ n− 2

2
(6)

and(
n

2

)
≤ l ≤

{
n
[
1
2
(m− 1)

]
if n ≤ 1

2
m,

1
2
m
[
1
2
(m− 1)

]
+ (n− 1

2
m)[1

2
m] if 1

2
m < m ≤ m.

(7)

We may assume that [t, l]n = 0 otherwise (see Exercise 1).
The following tables illustrate the use of this method for determining

s(n) when n ≤ 6.

[t, l]1

t l 0 1 2

0 1 0 0
1 0 1 0
2 0 0 1

[t, l]2

t l 1 2 3 4

1 1 1 0 0
2 0 1 1 1
3 0 0 1 1

[t, l]3

t l 3 4 5 6

1 1 0 0 0
2 1 2 1 1
3 0 1 2 2

[t, l]4

t l 6 7 8 9

2 2 1 1 0
3 2 3 3 3
4 0 2 3 3

[t, l]5

t l 10 11 12

2 1 0 0
3 4 4 3
4 4 6 7

[t, l]6

t l 15

3 3
4 10
5 9

If we sum the entries in the sixth table, we find that s(6) = 22.
Bent and Narayana determined the value of s(n) for n = 1, 2, . . . , 36,

with the aid of an electronic computer. (A slight refinement of the method
illustrated in the preceding paragraph was used when 28 ≤ n ≤ 36.) The
values of s(n) for n = 1, 2, . . . , 15 are given in Table 5. They conjectured
that for n ≥ 2 the sequence s(n + 1)/s(n) is monotone increasing with
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limit four. More recently, P. Stein∗ has determined the values of s(n) for
n = 1, 2, . . . , 51 by a different method and his data gives additional support
to this conjecture.

Table 5. s(n), the number of score vectors of size n.

n s(n)

1 1
2 1
3 2
4 4
5 9
6 22
7 59
8 167
9 490

10 1, 486
11 4, 639
12 14, 805
13 48, 107
14 158, 808
15 531, 469

The following bounds for s(n) are due to Erdös and Moser.†

Theorem 33. There exist constants c1 and c2 such that

c14
n

n5
< s(n) <

c14
n

n3/2
.

Proof. In proving the lower bound we may suppose that n is even, say
n = 2m. Let li denote the number of nodes that dominate the node p2m+i−1

∗Unpublished work.
†Unpublished work.
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with the ith largest score s2m+1−i in any tournament T2m, that is,

li = (2m− 1)− s2m+1−i. (8)

We now consider sets of integers s1, s2, . . . , sn and l1, l2, . . . , ln, such that

s1 + s2 + · · ·+ sm = l1 + l2 + · · ·+ lm, (9)

s1 ≤ s2 ≤ · · · ≤ sm = m− 1, (10)

si ≥ i− 1, i = 1, 2, . . . ,m, (11)

l1 ≤ l2 ≤ · · · ≤ lm = m− 1, (12)

and

li ≥ i− 1, i = 1, 2, . . . ,m. (13)

Conditions (8) and (9) imply (3) and conditions (8), (10), and (12)
imply (1). Furthermore, condition (11) implies (2) if r ≤ m and conditions
(8), (11), (13), and (1) imply (2) if m < r ≤ 2m− 1, since

s1 + · · ·+ sm + sm+1 + · · ·+ s2m−v

= s1 + · · ·+ s2m − (s2m−v+1 + · · ·+ s2m)

=

(
2m

2

)
− (2m− 1− l1)− · · · − (2m− 1− lv)

=

(
2m

2

)
− v(2m− 1) + (l1 + · · ·+ lv)

≥
(

2m

2

)
− v(2m− 1) +

(
v

2

)
=

(
2m− v

2

)
.

To obtain a lower bound for s(2m) we will estimate the number of

solutions of the system (9) to (13). There are (m + 1)−1
(

2m

m

)
sets of

integers, satisfying each of the systems (10) and (11), and (12) and (13)
(see Exercise 3). Consequently, the total number of solutions of (9) to (13)
will be

m2∑
i=1

u2i ,
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where ui is the number of solutions of (10) and (11) such that s1 + s2 +
· · ·+ sm = i. [It follows from (10) that i < m2.] But

m2∑
i=1

ui =
1

m+ 1

(
2m

m

)
,

so

s(2m) ≥
(

1

m2(m+ 1)2

(
2m

m

))2

m2

>
c4n

n5

for some constant c, by Jensen’s inequality and Stirling’s formula.
To obtain an upper bound for s(n), we shall estimate the number of

sets of nonnegative integers (s1, s2, . . . , sn), satisfying only (1) and (3). The
transformation ai = si + i induces a one-to-one correspondence between
these sets and sets of integers (a1, a2, . . . , an) such that

1 ≤ a1 < a2 < · · · < an ≤ 2n− 1 (14)

and
a1 + a2 + · · ·+ an = n2. (15)

The number of solutions of (14) is

(
2n− 1

n

)
. We shall divide these

solutions into classes of 2n − 1 solutions each, in such a way that no two
solutions in the same class have the same sum. Consequently, the number

of solutions of both (14) and (15) will not exceed (2n−1)−1
(

2n− 1

n

)
. The

upper bound of the theorem then follows immediately.
Place two solutions (a1, a2, . . . , an) and (b1, b2, . . . , bn) in the same class

if and only if the a’s and b’s, in some order, differ by only a constant
modulo 2n− 1. It is clear that each class will contain 2n− 1 solutions. If
(a1, a2, . . . , an) and (b1, b2, . . . , bn) are different solutions in the same class
and the b’s can be obtained from the a’s by adding a positive integer r to
each of the a’s modulo 2n− 1, then

a1 + a2 + · · ·+ an + rn ≡ b1 + b2 + · · ·+ bn (mod 2n− 1).



23. the number of score vectors 91

But, rn ≡ 1
2
r (mod 2n−1) if r is even and rn ≡ 1

2
(r−1)+n (mod 2n−1)

if r is odd; in either case rn 6≡ 0 (mod 2n− 1) for r = 1, 2, . . . , 2n− 2, so
a1 + a2 + · · · + an 6= b1 + b2 + · · · + bn. This completes the proof of the
theorem.

Exercises

1. Prove the correctness of the sentence containing inequalities (6)
and (7).

2. Prove that

[t, l]n = [t− 1, l − 1]n + [t, l − t]n−1, if t ≥ 2 and l >

(
n

2

)
.

Use this relation to extend the tables in the text and show that s(7) = 59.

3. If um denotes the number of solutions of (10) and (11), then show that

um = u0um−1 + u1um−2 + · · ·+ um−1u0,

where u0 = u1 = 1, so that if U(x) =
∑∞

m=0 umx
m, then

xU2(x) = U(x)− 1.

Deduce from this that

U(x) =
1−
√

1− 4x

2x
=

∞∑
m=0

(
2m

m

)
xm

m+ 1
.

4. Show that of the (m+1)−1
(

2m

m

)
solutions (s1, s2, . . . , sm) of (10) and

(11) at least
c3
m

(
2m

m

)
satisfy the inequality

(
m

2

)
≤ s1 + s2 + · · ·+ sm ≤

(
m

2

)
+m3/2.



topics on tournaments 92

Deduce from this that [Erdös and Moser]:

s(n) >
c44

n

n9/2
.

5. Whitworth (1878) and others have shown that there are (m +

1)−1
(

2m

m

)
sequences of m + 1’s and m − 1’s such that all the partial

sums are nonnegative. Describe a one-to-one correspondence between such
sequences and the solutions of (10) and (11).

24. The Largest Score in a Tournament

If the arcs in a tournament Tn are oriented randomly and indepen-
dently, then the score si of each node pi has a binomial distribution and
the distribution of the reduced score

wi =
si − 1

2
(n− 1)√

1
4
(n− 1)

tends to the normal distribution with zero mean and unit variance. Con-
sequently,

P{wi > x} ∼ 1

(2π)1/2x
e−(1/2)x

2

, (1)

if x3/
√

1
4
(n− 1) tends to zero as n and x tend to infinity. [See Feller (1957)

p. 158.]
The following theorem and its proof are special cases of a somewhat

more general result due to Huber (1963a).

Theorem 34. If w denotes the largest reduced score in a random tour-
nament Tn, then the probability that

|w −
√

2 log(n− 1)| ≤ ε
√

2 log(n− 1)

tends to one as n tends to infinity for any positive ε.
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Proof. If 0 < ε < 1, let

x±n = (1± ε)
√

2 log(n− 1);

it follows from (1) that

P{wi > x±n } ∼
1√

4π(1± ε)
√

log(n− 1)
· (n− 1)−(1±ε)

2

. (2)

Let c1 and c2 be positive constants such that c1 < 1/
√

4π(1 ± ε) < c2; if
the constant factor in (2) is replaced by c1 or c2, strict inequality will hold
for all sufficiently large values of n. Using Boole’s inequality, P{∪Ei} ≤∑
P{Ei}, we find that

P{w > x+n } < c2(n− 1)−2ε (3)

for all sufficiently large values of n.
We now show that

P{s1 < k1, . . . , sn < kn} ≤ P{s1 < k1} · · · · · P{sn < kn} (4)

for any positive integers k1, . . . , kn, where si =
∑

j 6=i aij, for 1 ≤ i, j ≤ n
and where the aij’s are random variables such that

P{aij = 1} = P{aij = 0} = 1/2 and aij + aji = 1

for 1 ≤ i, j ≤ n and i 6= j. Let bij, for 1 ≤ i, j ≤ n and i 6= j, denote
random variables with the same distribution as the aij’s except that we do
not impose the dependence condition that bij + bji = 1.

Suppose the ordered pairs {(u, v) : 1 ≤ u < v ≤ n} are assigned
the labels 1, 2, . . . ,m = n(n − 1)/2 in some convenient fashion. Let the

sequences {s(h)i : 1 ≤ i ≤ n} be defined as follows for 0 ≤ h ≤ m, starting

with {s(0)i } = {si}: if 1 ≤ h ≤ m and the label h has been assigned to the

pair (u, v), then s
(h)
u = (s

(h−1)
u − auv) + buv, s

(h)
v = (s

(h−1)
v − avu) + bvu, and

s
(h)
i = s

(h−1)
i if i 6= u, v. In other words, {s(h)i } differs from {s(h−1)i } in that

the dependent variables auv and avu have been replaced by the independent
variables buv and bvu.
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Now let Fh = P{s(h)1 < k1, . . . , s
(h)
n < kn}, for 0 ≤ h ≤ m, and consider

the quantities ∆h = Fh−Fh−1 for 1 ≤ h ≤ m. For notational convenience,
let us assume that the pair (1, 2) has been assigned label h; and let us write

s1h for s
(h−1)
1 − a12 = s

(h)
1 − b12 and s2h for s

(h−1)
2 − a21 = s

(h)
2 − b21. Then it

follows from the definitions and the fact that b12 and b21 are independent,
that ∆h is the sum of the products of

P{s1h < k1 − c12, s2h < k2 − c21, s(h)3 < k3, . . . }

and
P{b12 = c12} · P{b21 = c21} − P{a12 = c12, a21 = c21}

over all integers c12 and c21 such that 0 ≤ c12, c21 ≤ 1. Now P{b12 =
c12}·P{b21 = c21} = 1/4 for all such c12 and c21; and P{a12 = c12, a21 = c21}
equals 1

2
or 0 according as c12 + c21 does or does not equal 1. Therefore

∆h = (1
4
)
(
P{s1h < k1, s2h < k2, s

(h)
3 < k3, . . . }

− P{s1h < k1 − 1, s2h < k2, s
(h)
3 < k3, . . . }

− P{s1h < k1, s2h < k2 − 1, s
(h)
3 < k3, . . . }

+ P{s1h < k1 − 1, s2h < k2 − 1, s
(h)
3 < k3, . . . }

)
= (1

4
)P{s1h = k1 − 1, s2h = k2 − 1, s

(h)
3 < k3, . . . } ≥ 0;

And the same argument shows that the analogous relations hold no matter
which pair has label h, for h = 1, 2, . . . ,m. Consequently,

Fm − F0 = ∆1 + · · ·+ ∆m ≥ 0,

or

F0 = P{s1 < k1, . . . , sn < kn} ≤ Fm = P{s(m)
1 < k1, . . . , s

(m)
n < kn}.

But the variables s
(m)
i =

∑
j 6=i bji are independent and have the same dis-

tribution as the variables si =
∑

j 6=i aij. This implies relation (4).
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Using (2) and (4), we find that

P{w < x−n } <
(

1− c1(n− 1)−(1−ε)
2√

log(n− 1)

)n

< exp

(
−c1

(n− 1)2ε−ε
2√

log(n− 1)

)
< exp

(
−c1(n− 1)ε

)
(5)

for all sufficiently large values of n.
The theorem now follows from (3) and (5).
David (1959) has developed a test for determining whether the largest

score in a tournament is significantly larger than the average score. Other
significance tests for use in paired comparison experiments are discussed
in David and Starks (1961), David and Trawinski (1963), and Chapter 3
of David (1963).

Exercise

1. Prove Huber’s result that[
2 log(n− 1)− (1 + ε) log log(n− 1)

]1/2
< w <

[
2 log(n− 1)− (1− ε) log log(n− 1)

]1/2
for almost all tournaments Tn and any fixed positive ε.

25. A Reversal Theorem

We saw in Section 5 that the number of 3-cycles in a tournament de-
pends on its score vector and not on its structure, as such. If the nodes p, q,
and r form a 3-cycle in a tournament, then, reversing the orientation of
the arcs of this 3-cycle does not change any scores. The following theorem
is due to Ryser (1964); it is also a special case of a more general result due
to Kotzig (1966).

Theorem 35. If the tournaments Tn and T ′n have the same score vector
(s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn, then Tn can be transformed
into T ′n by successively reversing the orientation of appropriate 3-cycles.
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Proof. We first state the following simple lemma.

Lemma. If p→ q in a tournament and the score of p does not exceed the

score of q, then there exists a 3-cycle containing the arc
−→
pq.

It follows from the proof of Theorem 29 that there exists a canonical
tournament T ∗n with score vector (s1, s2, . . . , sn) that enjoys the following
properties:

(a) If p∗j → p∗n and p∗n → p∗i , then si ≤ sj.

(b) The scores s′i of the tournament T ∗n−1 obtained from T ∗n by removing
p∗n and its incident arcs satisfy the inequalities s′1 ≤ s′2 ≤ . . . s′n−1.

(c) The analogues of Properties (a) and (b) hold for T ∗n−1, T
∗
n−2, . . . .

To prove Theorem 35, we may assume that T ′n = T ∗n . Let us suppose the
arc joining pn and pj has the same orientation as the arc joining p∗n and p∗j
for j = k + 1, k + 2, . . . , n− 1 and that the first disagreement occurs when
j = k.

We treat first the case in which pn → pk and p∗k → p∗n. Then there
must exist a node pi such that pi → pn and p∗n → p∗i . Since i < k, it
follows that si ≤ sk. Consequently, we may suppose that pk → pi, for

otherwise, according to the lemma, there exists a 3-cycle containing
−−→
pipk

whose orientation could be reversed without affecting any arcs incident
with pn. We may now reverse the orientation of the 3-cycle (pn, pk, pi)
to obtain a tournament in which the arc joining pk and pn has the same
orientation as the corresponding arc in T ∗n . It is clear that the agreement
of the orientation of the arcs already considered has not been affected.

We now treat the other possibility, namely, that pk → pn and p∗k → p∗n.
As before, it follows that there exists a node pi such that pn → pi and
p∗i → p∗n. Now si ≤ sk, since i < k; but it follows from Property (a) that
sk ≤ si. Therefore, it must be that nodes pk and pi have the same score.
Hence, we can use the same argument as before to show that Tn can be
transformed, so that the arc joining pk and pn has the same orientation as
the corresponding arc in T ∗n .
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By repeating this process, we can transform Tn into a tournament in
which all arcs incident with pn have the same orientation as the corre-
sponding arcs in T ∗n . Now consider the tournament Tn−1 obtained from
this transformed tournament by removing pn and its incident edges; it has
the same score vector as T ∗n−1. The theorem now follows by induction, as
it is clearly true for small values of n.

Analogous results for other types of graphs have been given by Ryser
(1957) and Fulkerson, Hoffman, and McAndrew (1965).

Exercises

1. The theorem that Ryser (1964) actually proved differs from Theo-
rem 35 in that “3-cycles” is replaced by “3-cycles or 4-cycles.” Show that
the orientation of the arcs in any 4-cycle may be reversed by reversing the
orientation of the arcs in two 3-cycles.

2. When n ≥ 4, would Theorem 35 remain valid if “3-cycles” were re-
placed by “4-cycles”?

26. Tournaments with a Given Automorphism Group

Let α denote a dominance-preserving permutation of the nodes of a
given tournament Tn so that α(p)→ α(q) if and only if p→ q. The set of
all such permutations forms a group, the automorphism group G = G(Tn)
of Tn. The following theorem is due to Moon (1963).

Theorem 36. A finite group G is abstractly isomorphic to the auto-
morphism group of some tournament if and only if the order of G is odd.

Proof. Suppose a tournament has a group G of even order. Then G con-
tains at least one self-inverse element α other than the identity element.
Hence, there exist two different nodes p and q such that α(p) = q and
α(q) = p. We may assume that p → q; but then α(q) → α(p) and this
contradicts the definition of G. Thus, if a finite group G is to be isomorphic
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to the group of a tournament, a necessary condition is that the order of G
be odd. We now show that this condition is also sufficient.

Let G be a group of odd order whose elements are g1, g2, . . . , gn. Sup-
pose that g1, g2, . . . , gh forms a minimal set of generators for G; that is,
every element of G can be expressed as a finite product of powers of these
h elements, and no smaller set has this property. It is very easy to con-
struct a tournament whose group is a cyclic group of given odd order (see
Exercise 1) so we shall assume that h ≥ 2 henceforth.

In constructing a tournament whose group is isomorphic to G, we begin
by forming what is essentially the Cayley color graph T ∗ of G [see Cayley
(1878)]. The nodes of T ∗ correspond to the elements of G. For convenience,
we use the same symbol for a node and its corresponding group element.
With each generator gj we associate a certain set of arcs in T ∗ that are
said to have color j. There is an arc of color j (j = 1, 2, . . . , h) going from
p to q in T ∗ if and only if pgj = q. At each node, there is now one incoming
and one outgoing arc for each generator. No node is joined to itself by an
arc, since the identity element is not one of the generators. No two nodes
are joined by two arcs, one oriented in each direction, since the colors of
these arcs would correspond to two group elements that were the inverses
of each other; a minimal set of generators would not contain both of these
elements.

If two distinct nodes p and q are not joined by an arc in this procedure,
we introduce one of the 0th color oriented toward q or p according as the
element p−1q or q−1p has the larger subscript in the original listing of the
elements of G. (These products are not equal, since G contains no self-
inverse elements other than the identity.) If an arc of the 0th color goes
from p to q, then an arc of the 0th color also goes from q′ = pq−1p to p.
Each pair of distinct nodes of T ∗ is now joined by a colored arc and the
orientations are such that the score s(g) of each node g is equal to 1

2
(n−1).

(If G is the direct product of two cyclic groups of order three, generated
by r and s, then T ∗ is the graph illustrated in Figure 11; the arcs of the
0th color are omitted.)

The group of dominance and color-preserving automorphisms of T ∗ is
isomorphic to G. Our object is to maintain this property while transform-
ing T ∗ into a tournament T whose arcs all have the same color, or rather
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Figure 11

none at all. We accomplish this by introducing j new nodes for each arc
of color j (j = 0, 1, . . . , h).

The new nodes are labeled x(i, j, k) where i = 1, 2, . . . , n; j =
1, 2, . . . , h; and k = 1, 2, . . . , j. Consider any node gi; if there is an
arc of color j from q to gi in T ∗, that is, if q = gig

−1
j , then q → x(i, j, k)

and x(i, j, k)→ gi in T if 2 ≤ k ≤ j but x(i, j, 1) dominates both q and gi.
All the colored arcs in T ∗ are replaced by the corresponding uncolored arcs
in T . Any node of the type x(i, j, k) is said to belong to gi (we also say
that gi belongs to itself). If the nodes x and y belong to the nodes p and q
where p 6= q, then x→ y if and only if p→ q. Finally, x(i, j, k)→ x(i, l,m)
if and only if j > l or j = l and k > m. This completes the definition of
the tournament T . (If T ∗ is the graph in Figure 11, then a portion of T is
illustrated in Figure 12.)

It is not difficult to verify, appealing to the definition of T and recalling
the exceptional character of the nodes x(i, j, 1), that the following formulas
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hold for the scores of the nodes of T :

s(g) = (1 + 2 + · · ·+ h)h+ 1
2
(n− 2h− 1)

[
(1 + 2 + · · ·+ h) + 1

]
= 1

2
(n− 1) ·

(
h+ 1

2

)
+ 1

2
(n− 2h− 1)

for each node g associated with an element of G;

s
(
x(i, j, k)

)
= s(g) +

(
j

2

)
+ h+ k, if 2 ≤ k ≤ j,

and
s
(
x(i, j, 1)

)
= s
(
x(i, j, 2)

)
, for all i and j.

The important fact here is that s(x) > s(g) for every new node x and
that

s
(
x(i, j, k)

)
= s
(
x(t, l,m)

)
if and only if j = l, and k = m or km = 2. Since s(p) = s

(
α(p)

)
for any

admissible automorphism α of T , it follows, in particular, that the identity
of the sets of original nodes g and new nodes x is preserved by α.

We now prove that the automorphism group of T is isomorphic to G.
Let α be any automorphism that leaves some node gi fixed, that is,
α(gi) = gi. We first show that this implies that α leaves every node of T
fixed.

Consider any node x = x(i, j, k) where k ≥ 2 that belongs to gi. At
least one such node exists since h ≥ 2. Recall that x→ gi; hence α(x) could
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belong to a node gi in α(T ) such that gi → gl only if

α(x) = x(l, j, 1).

If this happens, there exists a node y (take y = x(l, 2, 2) if j = 1 or
y = x(l, j, 2) if j 6= 1) such that gi → y and y → α(x) in α(T ). But there
exists no such corresponding path from gi to x in T , so this possibility is
excluded. If α(x) belongs to a node gl in α(T ) such that gl → gi, then
α(x) → gl and gl → gi. But there is no corresponding path of length two
from x to gi in T whose intermediate node is one of the nodes g. The
only alternative is that α(x) belongs to gi itself. Since s(x) = s

(
α(x)

)
, it

follows that α(x) = x except, possibly, when k = 2 and α(x) = x(i, j, 1).
This last alternative can be ruled out by considering the types of paths of
length two from x to gi.

Now consider any remaining node

x = x(i, j, 1)

that belongs to gi. It follows by the same argument as before that α(x) can-
not belong to a node gi in α(T ) such that gi → gl. But if α(x) belongs
to gl where gl → gi, then

α(x)→ α
(
x(i, h, 2)

)
= x(i, h, 2).

This contradicts the fact that α preserves the orientation of the arc going
from x(i, h, 2) to x. Hence, α(x) belongs to gi. The only conclusion com-
patible with these results and the condition that s(x) = s

(
α(x)

)
is that, if

α(gi) = gi, then α(x) = x for every node x that belongs to gi.
Now consider any node g = gig

−1
j (1 ≤ j ≤ h). Since x(i, j, 1) → g

and g → gi, it must be that x(i, j, 1) → α(g) and α(g) → gi because
x(i, j, 1) and gi are fixed under α. But g is the only node associated with
an element of G that has this property. (This is where the exceptional
property of x(i, j, 1) is used.) Hence, α(g) = g for each such g.

The tournament T is strongly connected; this follows from the way T is
constructed from T ∗ which itself is strongly connected (see Exercise 3).
Hence, by repeating the above argument as often as is necessary we even-
tually conclude that, if α(gi) = gi for any node gi, then α(p) = p for every
node p in T .



topics on tournaments 102

We have shown that, if α is not the identity element, then α(g) 6= g for
every node g associated with an element of G. It follows from this that, for
any two such nodes gu and gv, there exists at most one automorphism α of T
such that α(gu) = gv, (see Exercise 4). But, the group element α = gvg

−1
u

induces such an automorphism defined as follows: α(g) = αg for all nodes g
associated with an element of G, and α

(
x(i, j, k)

)
= x(l, j, k) if gl = α(gi),

for all i, j, and k. It follows from these results that the group of the
tournament T is abstractly isomorphic to the group G. This completes the
proof of the theorem.

Exercises

1. Construct a tournament Tn whose group is the cyclic group Cn when
n is odd.

2. Verify the formulas given for the scores of the nodes of T .

3. Prove that the tournaments T ∗ and T are strongly connected.

4. Prove that there exists at most one automorphism α of T such that
α(gu) = gv where gu and gv are any two nodes of T that are associated
with elements of G.

5. Prove that, if G is a finite group of odd order, then there exist infinitely
many strong tournaments whose group is isomorphic to G.

6. Let t(G) denote the number of nodes in the smallest tournament whose
group is isomorphic to the group G. If G has odd order n and is generated
by h of its elements, then the tournament T shows that

t(G) ≤ n

(
h+ 1

2

)
+ n.

Prove that t(G) ≤ n if G is abelian.
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7. What is the smallest odd integer n (n ≥ 3) for which there exists a
regular tournament Tn such that G(Tn) is the identity group?

8. Construct a nontransitive infinite tournament T such that G(T ) is the
identity group. [See Chvátal (1965).]

27. The Group of the Composition of Two Tourna-
ments

Let R and T denote two tournaments with nodes r1, r2, . . . , ra and
t1, t2, . . . , tb. The composition of R with T is the tournament R◦T obtained
by replacing each node ri of R by a copy T (i) of T so that, if ri → rj in R,
then every node of T (i) dominates every node of T (j) in R ◦ T . More
precisely, there are ab nodes p(i, k) in R ◦ T (1 ≤ i ≤ a, 1 ≤ k ≤ b)
and p(i, k) → p(j, l) if and only if ri → rj, or i = j and tk → tl. The
composition of two 3-cycles is illustrated in Figure 13.

Let F and H denote two permutation groups with object sets U and V .
The composition [see Pólya (1937)] of F with H is the group F ◦H of all
permutations α of U × V = {(x, y) : x ∈ U, y ∈ V } of the type

α(x, y) =
(
f(x), hx(y)

)
,

where f is any element of F and hx, for each x, is any element of H. If the
objects of U × V are arranged in a matrix so that the rows and columns
correspond to the objects of U and V , respectively, then F ◦H is the group
of permutations obtained by permuting the objects in each row according
to some element of H (not necessarily the same element for every row) and
then permuting the rows themselves according to some element of F . If
F and H have order m and n and degree u and v, then F ◦H has order mnu

and degree uv.
We now prove that the group of the composition of two tournaments is

equal to the composition of their groups.

Theorem 37. G(R ◦ T ) = G(R) ◦G(T ).

Proof. The nodes p(i, k) in each copy T (i) may be permuted accord-
ing to any element of G(T ) and the copies themselves may be permuted
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Figure 13

according to any element of G(R), so G(R) ◦G(T ) is certainly a subgroup
of G(R ◦T ). To prove the groups are the same, it will suffice to show that,
if a permutation α of G(R ◦T ) takes any node of T (i) into a node of T (j),
then α takes every node of T (i) into T (j).

Suppose, on the contrary, that there exists a permutation α of G(R◦T )
such that the nodes of α

(
T (i)

)
do not all belong to T (j). Let X denote the

set of all nodes p(i, k) of T (i) such that α
(
p(i, k)

)
is in T (j), where X and

T (i)−X are nonempty. There is no loss of generality (see Exercise 1) if we
assume that i 6= j and that every node of X dominates every node of α(X)
(symbolically, X → α

(
X)). If any node p in T (i)−X both dominates and

is dominated by nodes of X, then α(p) must be in T (j) (see Exercise 2),
contrary to the definition of X. Hence, one of the following alternatives
holds with respect to T (i).

(1a) There exists a node p in T (i)−X such that p→ X.
(1b) Every node in X dominates every node in T (i)−X.
Similarly, one of the following alternatives holds with respect to T (j).
(2a) There exists a node q in T (j)− α(X) such that q → α(X).
(2b) Every node in α(X) dominates every node in T (j)− α(X).
We first suppose that alternatives (1a) and (2a) hold. Since p → X,

it follows that α(p) → α(X). Since α(p) is not in T (j), it must be that
α(p)→ T (j), appealing to the definition of R ◦ T ; in particular, α(p)→ q.
Similarly, α−1(q)→ X since q → α(X), and a−1(q)→ T (i) since α−1(q) is
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not in T (i); in particular, a−1(q)→ p. Thus there exist two nodes, α−1(q)
and p, such that α−1(q)→ p and α(p)→ α

(
α−1(q)

)
= q. This contradicts

the fact that α is dominance-preserving.
We next suppose that alternatives (1a) and (2b) hold. The score of any

node p(i, k) in R ◦ T is given by the formula

s
(
p(i, k)

)
= s(tk) + b · s(ri),

where s(tk) and s(ri) denote the scores of tk and ri in T and R. It follows
that if α

(
p(i, k)

)
− p(j, l) then s(tk) = s(tl), since

s(tk) + b · s(ri) = s(tl) + b · s(rj)

and 0 ≤ s(tk), s(tl) < b. Consequently,∑
p(i,k)∈X

s(tk) =
∑

p(j,l)∈α(X)

s(tl).

But if there are m nodes in X and in α(X), then∑
p(i,k)∈X

s(tk) ≤
(
m

2

)
+m(b− 1−m),

by (1a), and ∑
p(j,l)∈α(X)

s(tl) =

(
m

2

)
+m(b−m),

by (2b). Therefore, the two sums cannot be equal and we have again
reached a contradiction.

It remains to treat the cases when alternatives (1b) and (2a) or (2b)
hold. We shall omit the arguments for these cases, since they are similar
to the arguments already used (see Exercise 3).

It follows from these arguments that every permutation of G(R ◦ T )
preserves the identity of the various copies T (i). Since every permutation
with this property belongs to G(R) ◦G(T ), the theorem is proved.

Sabidussi (1961) and Hemminger (1966) have proved an analogous re-
sult for ordinary graphs; there the problem is complicated by the fact that
there are certain exceptional cases in which the result does not hold.
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Exercises

1. Why may we assume that X → α(X) in the proof of Theorem 37?

2. Why may we assume that α(p) is in T (j) if p both dominates and is
dominated by nodes of X?

3. Supply the arguments omitted in the proof of Theorem 37.

4. Let C1 denote a 3-cycle and let Ck = C1 ◦ Ck−1 for k ≥ 2. Show that
the group of Ck has order 3(1/2)(3k−1).

5. For what tournaments R and T is it true that R ◦ T = T ◦R?

28. The Maximum Order of the Group of a Tourna-
ment

The groups G(Tn) of the tournaments Tn are specified in the appendix
for n ≤ 6. If g(Tn) denotes the order of the group G(Tn), let g(n) denote the
maximum of g(Tn) taken over all tournaments Tn. The entries in Table 6
were given by Goldberg (1966).

Goldberg and Moon (1966) obtained bounds for g(n). Their argument
is based on a simple result of group theory [see Burnside (1911, pp. 170 and
185)].

Let G be a group of permutations that act on the elements of a finite
set X. Two elements x and y are equivalent (with respect to G) if and
only if there exists a permutation α in G such that α(x) = y. Then X can
be partitioned into classes of equivalent elements.

Theorem 38. If x ∈ X, let E(x) = {α(x) : α ∈ G} and F (x) = {γ : γ ∈
G and γ(x) = x}. Then

|G| = |E(x)| · |F (x)|.
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Table 6. g(n), the maximum possible order of the group of a tourna-
ment Tn.

n g(n) g(n)1/(n−1)

1 1 —
2 1 1
3 3 1.732
4 3 1.442
5 5 1.495
6 9 1.552
7 21 1.662
8 21 1.545
9 81 1.732

10 81 1.629
11 81 1.552
12 243 1.647
13 243 1.581
14 441 1.597

n g(n) g(n)1/(n−1)

15 1, 215 1.661
16 1, 701 1.643
17 1, 701 1.592
18 6, 561 1.677
19 6, 561 1.629
20 6, 561 1.588
21 45, 927 1.710
22 45, 927 1.667
23 45, 927 1.629
24 137, 781 1.673
25 137, 781 1.637
26 229, 635 1.639
27 1, 594, 323 1.732

Proof. If x and y are any two elements in the same equivalence class
of X with respect to G, let

g(x, y) =
∣∣{α : α ∈ G and α(x) = y}

∣∣.
We shall show that

g(x, y) = g(y, y). (1)

Suppose the equation αi(x) = y holds if and only if i = 1, 2, . . . , h.
Then βi(y) = y, where βi = αiα

−1
1 for i = 1, 2, . . . , h; the βi’s are clearly

distinct. If β(y) = y; then βα1(x) = y; consequently, βα1 = αi for some i
such that 1 ≤ i ≤ h and β = αiα

−1
1 . This completes the proof of (1).

Since g(x, y) = g(y, x), it follows from (1) that

g(x, x) = g(y, y)
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for all elements y in E = E(x). Therefore,

|G| =
∑
y∈E

g(x, y) =
∑
y∈E

g(y, y) = g(x, x)
∑
y∈E

1 = |F (x)| · |E(x)|,

since each element of G is counted once and only once in the first sum.

Theorem 39. The limit of g(n)1/n as n tends to infinity exists and lies
between

√
3 and 2.5, inclusive.

Proof. We shall first prove by induction that

g(n) ≤ (2.5)n

2n
(2)

if n ≥ 4. The exact values of g(n) in Table 6 can be used to verify that
this inequality holds when 4 ≤ n ≤ 9.

Consider any node p of an arbitrary tournament Tn, where n ≥ 10. Let
e denote the number of different nodes in the set

E = {α(p) : α ∈ G(Tn)}.

If Te and Tn−e denote the subtournaments determined by the nodes that
are in E and by the nodes that are not in E, then it is clear that

g(Tn) ≤ g(Te) · g(Tn−e) ≤ g(e) · g(n− e). (3)

If 3 < e < n− 3, then it follows from the induction hypothesis that

g(Tn) ≤ (2.5)e

2e
· (2.5)n−e

2(n− e) ≤
n

8(n− 4)
· (2.5)n

2n
<

(2.5)n

2n
.

If e = 3 or n− 3, then

g(Tn) ≤ 3 · (2.5)n−3

2(n− 3)
<

(2.5)n

2n
,

and if e = 1, 2, n− 2, or n− 1, then

g(Tn) ≤ 1 · 2n

5(n− 2)
· (2.5)n

2n
<

(2.5)n

2n
.



28. the maximum order of the group of a tournament 109

A different argument must be used when e = n.
There are 1

2
n(n−1) arcs in the tournaments Tn. Hence, if e = n and the

nodes of Tn are all similar to each other with respect to the group G(Tn),
it must be that each node has score 1

2
(n− 1). This can happen only when

n is odd.
Consider the subgroup F of automorphisms α ofG(Tn) such that α(p) =

p. It follows from Theorem 38 that, if e = n, then

g(Tn) = n|F |.

No element of F can transform one of the 1
2
(n− 1) nodes that dominate p

into one of the 1
2
(n− 1) nodes dominated by p, since p is fixed. Hence,

|F | ≤
(
g

(
n− 1

2

))2

.

Therefore, if e = n, then

g(Tn) ≤ n

(
(2.5)(1/2)(n−1)

n− 1

)2

=
4

5

(
n

n− 1

)2

· (2.5)n

2n
<

(2.5)n

2n
.

(Notice that 1
2
(n − 1) ≥ 5 if n ≥ 11, so we are certainly entitled to apply

the induction hypothesis to g
(
(n − 1)/2

)
.) This completes the proof of

inequality (2).
An immediate consequence of (2) is that

lim sup g(n)1/n < 2.5. (4)

If Ta ◦ Tb denotes the composition of Ta with Tb, then g(Ta ◦ Tb) =
g(Ta)

[
g(Tb)

]a
, by Theorem 37. Therefore,

g(ab) ≥ g(a)g(b)a (5)

for all integers a and b. Since g(3) = 3, it follows by induction that

g(n) ≥
√

3
n−1

(6)
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if n is a power of three (see Exercise 27.4). Hence,

lim sup g(n)1/n ≥
√

3. (7)

We now use inequality (5) to prove the following assertion: If
g(m)1/m > γ, then g(n)1/n > γ − ε for any positive ε and all sufficiently
large n.

We may suppose that γ > 1. Let l be the least integer such that
γ−1/l > 1 − ε/γ. Every sufficiently large integer n can be written in the
form n = km+ t, where k > l and 0 ≤ t < m. Then,

g(n)1/n = g(km+ t)1/km+t ≥ g(km)1/m(k+1)

≥
[
g(m)1/m

]k/k+1
> γk/k+1

> γl/l+1 > γ1−1/l

> γ

(
1− ε

γ

)
= γ − ε.

Let β = lim sup g(n)1/n. (We know that
√

3 ≤ β ≤ 21
2
.) For every

positive ε there exists an integer m such that

g(m)1/m > β − ε.

But then,
g(n)1/n > β − 2ε

for all sufficiently large n. Hence,

lim inf g(n)1/n > β − 2ε

for every positive ε. Therefore,

lim inf g(n)1/n = lim sup g(n)1/n. (8)

Theorem 39 now follows from (4), (7), and (8). (The actual value of
the limit is

√
3; see Exercise 5.)
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Exercises

1. Prove that g(n) = max{g(d) · g(n − d)}, d = 1, 3, 5, . . . , n − 1, if n is
even.

2. Verify the entries in Table 6 when 7 ≤ n ≤ 11.

3. Let Ta, Tb, . . . denote the subtournaments determined by the classes of
nodes that are equivalent with respect toG(Tn). Under what circumstances
is it true that

g(Tn) = g(Ta) · g(Tb) . . .?

4. Let h(n) denote the order of any largest subgroup H of odd order of the
symmetric group on n objects. Prove that h(n) = g(n). [Hint: Construct
a tournament Tn such that H is a subgroup of G(Tn).]

5. Prove that g(n) ≤
√

3
n−1

with equality holding if and only if n is a
power of three. [Dixon (1967).]

29. The Number of Nonisomorphic Tournaments

Before determining the number of nonisomorphic tournaments Tn, we
derive a result due to Burnside (1911, p. 191) that is used in dealing with a
general class of enumeration problems. A theory of enumeration has been
developed by Pólya (1937) and de Bruijn (1964); Harary (1964) has given
a summary of results on the enumeration of graphs.

Theorem 40. Let G denote a permutation group that acts on a finite
set X and let f(α) denote the number of elements of X left fixed by the
permutation α. Then the number m of equivalence classes of X with
respect to G is given by the formula

m =
1

|G|
∑
α∈G

f(α).
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Proof. We showed in proving Theorem 38 that∑
x∈E

g(x, x) = |G|,

where the sum is over the elements in any equivalence class E of X and
where g(x, x) denotes the number of permutations of G that leave x fixed.
Therefore, ∑

α∈G

f(α) =
∑
x∈X

g(x, x)

=
∑
E

(∑
x∈E

g(x, x)

)
=
∑
E

|G|

= m|G|.

This proves the theorem.
Davis (1953) used Theorem 40 to enumerate various relations on a

finite set; later, in (1954), he dealt specifically with the problem of de-
termining T (n), the number of nonisomorphic tournaments Tn. We now
derive his formula for T (n).

Any permutation π that belongs to the symmetric group Sn can be
expressed as a product of disjoint cycles. If the disjoint cycle representation
of π contains dk cycles of length k, for k = 1, 2, . . . , n, then π is said to be
of (cycle) type (d) = (d1, d2, . . . , dn). For example, the permutation

π =

(
1 2 3 4 5 6 7
1 2 4 3 6 7 5

)
= (1)(2)(34)(567)

is of type (2, 1, 1, 0, 0, 0, 0). Notice that

1 · d1 + 2 · d2 + · · ·+ n · dn = n.

In the present context, we think of the permutations π as acting on the
nodes of tournaments Tn; these permutations π then, in effect, define per-
mutations among the tournaments themselves. We must determine f(π),
the number of tournaments Tn such that π(Tn) = Tn. (Recall that Tn = T ′n
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if and only if the arc joining pi and pj has the same orientation in both
tournaments for all pairs of distinct values of i and j.)

Lemma. If the permutation π is of type (d1, d2, . . . , dn), then f(π) = 0 if
π has any cycles of even length; otherwise f(π) = 2D, where

D =
1

2

{
n∑

k,l=1

dkdl(k, l)−
n∑
k=1

dk

}
(1)

and (k, l) denotes the greatest common divisor of k and l.

Proof. We shall give the proof only for the case when all the cycles
of π have odd length (see Exercise 1). Let Tn be any tournament such that
π(Tn) = Tn. Then Tn can be partitioned into subtournaments T (1), T (2), . . .
in such a way that two nodes pi and pj belong to the same subtournament
if and only if i and j belong to the same cycle of π. Among the subtourna-
ments T (1), T (2), . . . , there are d1 that contain a single node, d3 that contain
three nodes, and so forth.

Let p1, p2, . . . , pk and pk+1, pk+2, . . . , pk+l denote the nodes of two of
these subtournaments, T (1) and T (2) say. We may suppose the permuta-
tion π contains the cycles (1, 2, . . . , k) and (k + 1, k + 2, . . . , k + l). If the
1
2
(k−1) arcs joining p1 to pi (i = 2, 3, . . . , 1

2
(k+1)) are oriented arbitrarily,

then the orientations of the remaining arcs of T (1) are determined uniquely
by the condition that π(Tn) = Tn. Furthermore, if the (k, l) arcs joining p1
to pk+i (i = 1, 2, . . . , (k, l)) are oriented arbitrarily, then the orientations
of the remaining arcs joining T (1) and T (2) also are determined uniquely
by the condition that π(Tn) = Tn. This argument can be repeated as
often as necessary. Therefore, in constructing tournaments Tn such that
π(Tn) = Tn, we are free to orient arbitrarily only

n∑
k=1

1

2
dk(k − 1) +

n∑
k=1

(
dk
2

)
(k, k) +

∑
k<l

dkdl(k, l)

=
1

2

{
n∑

k,l=1

dkdl(k, l)−
n∑
k=1

dk

}
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arcs, the orientations of the remaining arcs being determined by the orien-
tations of these. The lemma now follows.

We have seen that, if π is a permutation of degree n, then f(π) depends
only on the cycle type of π. There are

n!

N
=

n!

1d1d1! 2d2d2! · · ·ndndn!
(2)

permutations π of type (d1, d2, . . . , dn). (See Exercise 2.) The preceding
lemma and Theorem 40 imply the following result.

Theorem 41. If T (n) denotes the number of nonisomorphic tourna-
ments Tn, then

T (n) =
∑
(d)

2D

N
,

where D and N are as defined in (1) and (2) and where the sum is over all
solutions (d) in nonnegative integers of the equation

1 · d1 + 3 · d3 + 5 · d5 + · · · = n.

We illustrate the use of Theorem 41 by determining T (6). The necessary
calculations may be summarized as follows.

(d) N D

d1 = 6 6! 15

d1 = 3, d3 = 1 3 · 3! 7

d1 = 1, d5 = 1 5 3

d3 = 2 2 · 32 5

T (6) =
215

6!
+

27

3 · 3!
+

23

5
+

25

2 · 3!
= 56.

The values of T (n) for n = 1, 2, . . . , 12 are given in Table 7; the first
eight of these values were given by Davis (1954).

Theorem 42. T (n) ∼ 2

(
n
2

)
n!

as n tends to infinity.
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Table 7. T (n), the number of nonisomorphic tournaments Tn.

n T (n)
1 1
2 1
3 2
4 4
5 12
6 56
7 456
8 6, 880
9 191, 536

10 9, 733, 056
11 903, 753, 248
12 154, 108, 311, 168

Proof. The two largest terms in the formula for T (n) are

2

(
n
2

)
n!

and
2

(
n
2

)
−2(n−2)

3 · (n− 3)!
;

they arise from permutations of type (n, 0, . . . , 0) and (n − 3, 1, 0, . . . , 0).
(See Exercise 3.) The number of terms in the formula is equal to the num-
ber of partitions of n into odd integers. Erdös (1942) has shown that the

total number of partitions of n is less than 2cn
1/2

, where c = π(2
3
)1/2 log2 e.

Hence,

2

(
n
2

)
n!
≤ T (n) ≤ 2

(
n
2

)
n!

+ 2cn
1/2 · 2

(
n
2

)
−2(n−2)

3 · (n− 3)!
=

2

(
n
2

)
n!

(
1 + o(1)

)
.

Exercises

1. Prove that f(π) = 0 if the permutation π has any even cycles.

2. Prove the assertion involving expression (2).
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3. Prove the first assertion in the proof of Theorem 42.

4. Prove that

T (n) =
2

(
n
2

)
n!

+
2(1/2)(n2−5n+8)

3 · (n− 3)!

(
1 + o(1)

)
.

5. Let t(n) denote the number of nonisomorphic strong tournaments Tn.
Show that if

T (x) =
∞∑
n=1

T (n)xn and t(x) =
∞∑
n=1

t(n)xn,

then t(x) = T (x)/
[
1 + T (x)

]
. Use this result to determine t(n) for 1 ≤

n ≤ 6.

6. Is T (n) always even when n ≥ 3?

7. Determine the number of nonisomorphic tournaments Tn such that
Tn is not transitive but can be transformed into a transitive tournament
by reversing the orientation of one arc.

8. Use Theorem 41 to show that the number of nonisomorphic oriented
graphs with n nodes is given by the formula∑

(d)

3F

N
;

the sum is over all solutions (d) in nonnegative integers to the equation

1 · d1 + 2 · d2 + · · ·+ n · dn = n,

and

F =
1

2

{
n∑

k,l=1

dkdl(k, l)−
∑
k odd

dk − 2 ·
∑
k even

dk

}
.

[See Harary (1957).]
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9. Determine the number of tournaments Tn that are isomorphic to their
complement.

10. Kotzig (1964) has raised the problem of determining the number of
nonisomorphic regular tournaments Tn.



Appendix

The following drawings illustrate the nonisomorphic tournaments Tn
(n ≤ 6), their score vectors, the number of ways of labeling their nodes,
and their automorphism groups. Most of the material is taken from the
thesis of Goldberg (1966). Not all of the arcs have been included in the
drawings; if an arc joining two nodes has not been drawn, then it is to be
understood that the arc is oriented from the higher node to the lower node.

(0)
1 I

(0, 1)
2 I

(0, 1, 2)
6 I

(1, 1, 1)
2 C3

(0, 1, 2, 3)
24 I

(0, 2, 2, 2)
8 C3

(1, 1, 1, 3)
8 C3

(1, 1, 2, 2)
24 I

(0, 1, 2, 3, 4)
120 I

(0, 1, 3, 3, 3)
40 C3

(0, 2, 2, 3, 3)
120 I

(0, 2, 2, 2, 4)
40 C3

118
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(1, 1, 1, 3, 4)
40 C3

(1, 1, 2, 2, 4)
120 I

(1, 1, 2, 3, 3)
120 I

(1, 1, 2, 3, 3)
120 I

(1, 2, 2, 2, 3)
120 I

(1, 2, 2, 2, 3)
120 I

(1, 2, 2, 2, 3)
40 C3

(2, 2, 2, 2, 2)
24 C5

(0, 1, 2, 3, 4, 5)
720 I

(0, 1, 2, 4, 4, 4)
240 C3

(0, 1, 3, 3, 3, 5)
240 C3

(0, 1, 3, 3, 4, 4)
720 I
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(0, 2, 2, 2, 4, 5)
240 C3

(0, 2, 2, 3, 3, 5)
720 I

(0, 2, 2, 3, 4, 4)
720 I

(0, 2, 2, 3, 4, 4)
720 I

(0, 2, 3, 3, 3, 4)
720 I

(0, 2, 3, 3, 3, 4)
720 I

(0, 2, 3, 3, 3, 4)
240 C3

(0, 3, 3, 3, 3, 3)
144 C5

(1, 1, 1, 3, 4, 5)
240 C3

(1, 1, 1, 4, 4, 4)
80 C3 × C3

(1, 1, 2, 2, 4, 5)
720 I

(1, 1, 2, 3, 3, 5)
720 I
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(1, 1, 2, 3, 3, 5)
720 I

(1, 1, 2, 3, 4, 4)
720 I

(1, 1, 2, 3, 4, 4)
720 I

(1, 1, 2, 3, 4, 4)
720 I

(1, 1, 2, 3, 4, 4)
720 I

(1, 1, 3, 3, 3, 4)
720 I

(1, 1, 3, 3, 3, 4)
720 I

(1, 1, 3, 3, 3, 4)
240 C3

(1, 2, 2, 2, 3, 5)
720 I

(1, 2, 2, 2, 3, 5)
720 I

(1, 2, 2, 2, 3, 5)
240 C3

(1, 2, 2, 2, 4, 4)
720 I
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(1, 2, 2, 2, 4, 4)
720 I

(1, 2, 2, 2, 4, 4)
240 C3

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I
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(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 2, 3, 3, 4)
720 I

(1, 2, 3, 3, 3, 3)
720 I

(1, 2, 3, 3, 3, 3)
720 I

(1, 2, 3, 3, 3, 3)
240 C3

(1, 2, 3, 3, 3, 3)
720 I

(2, 2, 2, 2, 3, 4)
720 I

(2, 2, 2, 2, 3, 4)
240 C3

(2, 2, 2, 2, 3, 4)
720 I

(2, 2, 2, 2, 3, 4)
720 I

(2, 2, 2, 2, 2, 5)
144 C5

(2, 2, 2, 3, 3, 3)
720 I
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(2, 2, 2, 3, 3, 3)
720 I

(2, 2, 2, 3, 3, 3)
720 I

(2, 2, 2, 3, 3, 3)
240 C3

(2, 2, 2, 3, 3, 3)
240 C3
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