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MATTER. Our conceptions of the nature and structure of
matter have been profoundly influenced in recent years by
investigations on the Conduction of Electricity through Gases
(see Conduction, Electric) and on Radio-activity (q.v.).
These researches and the ideas which they have suggested have
already thrown much light on some of the most fundamental
questions connected with matter; they have, too, furnished us
with far more powerful methods for investigating many problems
connected with the structure of matter than those hitherto
available. There is thus every reason to believe that our
knowledge of the structure of matter will soon become far
more precise and complete than it is at present, for now we have
the means of settling by testing directly many points which
are still doubtful, but which formerly seemed far beyond the
reach of experiment.

The Molecular Theory of Matter—the only theory ever
seriously advocated—supposes that all visible forms of matter
are collocations of simpler and smaller portions. There has
been a continuous tendency as science has advanced to reduce
further and further the number of the different kinds of things
of which all matter is supposed to be built up. First came
the molecular theory teaching us to regard matter as made
up of an enormous number of small particles, each kind of
matter having its characteristic particle, thus the particles
of water were supposed to be different from those of air and
indeed from those of any other substance. Then came Dalton’s
Atomic Theory which taught that these molecules, in spite of
their almost infinite variety, were all built up of still smaller
bodies, the atoms of the chemical elements, and that the number
of different types of these smaller bodies was limited to the
sixty or seventy types which represent the atoms of the
substance regarded by chemists as elements.

In 1815 Prout suggested that the atoms of the heavier chemical
elements were themselves composite and that they were
all built up of atoms of the lightest element, hydrogen, so
that all the different forms of matter are edifices built of the
same material—the atom of hydrogen. If the atoms of hydrogen
do not alter in weight when they combine to form atoms
of other elements the atomic weights of all elements would be
multiples of that of hydrogen; though the number of elements
whose atomic weights are multiples or very nearly so of hydrogen
is very striking, there are several which are universally admitted
to have atomic weights differing largely from whole numbers.
We do not know enough about gravity to say whether this is
due to the change of weight of the hydrogen atoms when they
combine to form other atoms, or whether the primordial form
from which all matter is built up is something other than the hydrogen
atom. Whatever may be the nature of this primordial
form, the tendency of all recent discoveries has been to emphasize
the truth of the conception of a common basis of matter
of all kinds. That the atoms of the different elements have
a common basis, that they behave as if they consisted of different
numbers of small particles of the same kind, is proved to most
minds by the Periodic Law of Mendeléeff and Newlands (see
Element). This law shows that the physical and chemical
properties of the different elements are determined by their
atomic weights, or to use the language of mathematics, the
properties of an element are functions of its atomic weight.
Now if we constructed models of the atoms out of different
materials, the atomic weight would be but one factor out of
many which would influence the physical and chemical properties
of the model, we should require to know more than the
atomic weight to fix its behaviour. If we were to plot a curve
representing the variation of some property of the substance
with the atomic weight we should not expect the curve to be
a smooth one, for instance two atoms might have the same
atomic weight and yet if they were made of different materials
have no other property in common. The influence of the
atomic weight on the properties of the elements is nowhere
more strikingly shown than in the recent developments of
physics connected with the discharge of electricity through
gases and with radio-activity. The transparency of bodies
to Röntgen rays, to cathode rays, to the rays emitted by radio-active
substances, the quality of the secondary radiation
emitted by the different elements are all determined by the
atomic weight of the element. So much is this the case that
the behaviour of the element with respect to these rays has
been used to determine its atomic weight, when as in the case
of Indium, uncertainty as to the valency of the element makes
the result of ordinary chemical methods ambiguous.

The radio-active elements indeed furnish us with direct evidence
of this unity of composition of matter, for not only does
one element uranium, produce another, radium, but all the
radio-active substances give rise to helium, so that the substance
of the atoms of this gas must be contained in the atoms of the
radio-active elements.

It is not radio-active atoms alone that contain a common
constituent, for it has been found that all bodies can by suitable
treatment, such as raising them to incandescence or exposing
them to ultra-violet light, be made to emit negatively electrified
particles, and that these particles are the same from whatever
source they may be derived. These particles all carry the
same charge of negative electricity and all have the same mass,
this mass is exceedingly small even when compared with the
mass of an atom of hydrogen, which until the discovery of these
particles was the smallest mass known to science. These

particles are called corpuscles or electrons; their mass according
to the most recent determinations is only about 1⁄1700 of that
of an atom of hydrogen, and their radius is only about one
hundred-thousandth part of the radius of the hydrogen atom.
As corpuscles of this kind can be obtained from all substances,
we infer that they form a constituent of the atoms of all bodies.
The atoms of the different elements do not all contain the
same number of corpuscles—there are more corpuscles in the
atoms of the heavier elements than in the atoms of the lighter
ones; in fact, many different considerations point to the conclusion
that the number of corpuscles in the atom of any element
is proportional to the atomic weight of the element. Different
methods of estimating the exact number of corpuscles in the
atom have all led to the conclusion that this number is of the
same order as the atomic weight; that, for instance, the number
of corpuscles in the atom of oxygen is not a large multiple
of 16. Some methods indicate that the number of corpuscles in
the atom is equal to the atomic weight, while the maximum
value obtained by any method is only about four times the
atomic weight. This is one of the points on which further
experiments will enable us to speak with greater precision. Thus
one of the constituents of all atoms is the negatively charged
corpuscle; since the atoms are electrically neutral, this negative
charge must be accompanied by an equal positive one, so that
on this view the atoms must contain a charge of positive electricity
proportional to the atomic weight; the way in which
this positive electricity is arranged is a matter of great importance
in the consideration of the constitution of matter. The
question naturally arises, is the positive electricity done up
into definite units like the negative, or does it merely indicate
a property acquired by an atom when one or more corpuscles
leave it? It is very remarkable that we have up to the present
(1910), in spite of many investigations on this point, no direct
evidence of the existence of positively charged particles with
a mass comparable with that of a corpuscle; the smallest positive
particle of which we have any direct indication has a mass
equal to the mass of an atom of hydrogen, and it is a most
remarkable fact that we get positively charged particles having
this mass when we send the electric discharge through gases
at low pressures, whatever be the kind of gas. It is no doubt
exceedingly difficult to get rid of traces of hydrogen in vessels
containing gases at low pressures through which an electric
discharge is passing, but the circumstances under which the
positively electrified particles just alluded to appear, and the
way in which they remain unaltered in spite of all efforts to
clear out any traces of hydrogen, all seem to indicate that
these positively electrified particles, whose mass is equal to that
of an atom of hydrogen, do not come from minute traces of
hydrogen present as an impurity but from the oxygen, nitrogen,
or helium, or whatever may be the gas through which the discharge
passes. If this is so, then the most natural conclusion
we can come to is that these positively electrified particles
with the mass of the atom of hydrogen are the natural
units of positive electricity, just as the corpuscles are those of
negative, and that these positive particles form a part of all
atoms.

Thus in this way we are led to an electrical view of the constitution
of the atom. We regard the atom as built up of units
of negative electricity and of an equal number of units of positive
electricity; these two units are of very different mass, the mass
of the negative unit being only 1⁄1700 of that of the positive.
The number of units of either kind is proportional to the atomic
weight of the element and of the same order as this quantity.
Whether this is anything besides the positive and negative
electricity in the atom we do not know. In the present state
of our knowledge of the properties of matter it is unnecessary
to postulate the existence of anything besides these positive
and negative units.

The atom of a chemical element on this view of the constitution
of matter is a system formed by n corpuscles and n
units of positive electricity which is in equilibrium or in a
state of steady motion under the electrical forces which the
charged 2n constituents exert upon each other. Sir J. J. Thomson
(Phil. Mag., March 1904, “Corpuscular Theory of Matter”)
has investigated the systems in steady motion which can be
formed by various numbers of negatively electrified particles
immersed in a sphere of uniform positive electrification, a
case, which in consequence of the enormous volume of the
units of positive electricity in comparison with that of the
negative has much in common with the problem under consideration,
and has shown that some of the properties of n systems
of corpuscles vary in a periodic way suggestive of the Periodic
Law in Chemistry as n is continually increased.

Mass on the Electrical Theory of Matter.—One of the most
characteristic things about matter is the possession of mass.
When we take the electrical theory of matter the idea of mass
takes new and interesting forms. This point may be illustrated
by the case of a single electrified particle; when this moves it
produces in the region around it a magnetic field, the magnetic
force being proportional to the velocity of the electrified particle.1
In a magnetic field, however, there is energy, and the
amount of energy per unit volume at any place is proportional
to the square of the magnetic force at that place. Thus there
will be energy distributed through the space around the moving
particle, and when the velocity of the particle is small compared
with that of light we can easily show that the energy in the
region around the charged particle is μe2/3a, when v is the velocity
of the particle, e its charge, a its radius, and μ the magnetic
permeability of the region round the particle. If m is the
ordinary mass of the particle, the part of the kinetic energy
due to the motion of this mass is 1⁄2 mv2, thus the total kinetic
energy is 1⁄2 (m + 2⁄3μe2/a). Thus the electric charge on the particle
makes it behave as if its mass were increased by 2⁄3μe2/a. Since
this increase in mass is due to the energy in the region outside
the charged particle, it is natural to look to that region for
this additional mass. This region is traversed by the tubes
of force which start from the electrified body and move with
it, and a very simple calculation shows that we should get
the increase in the mass which is due to the electrification
if we suppose that these tubes of force as they move carry with
them a certain amount of the ether, and that this ether had
mass. The mass of ether thus carried along must be such
that the amount of it in unit volume at any part of the field
is such that if this were to move with the velocity of light its
kinetic energy would be equal to the potential energy of the
electric field in the unit volume under consideration. When
a tube moves this mass of ether only participates in the
motion at right angles to the tube, it is not set in motion by
a movement of the tube along its length. We may compare
the mass which a charged body acquires in virtue of its charge
with the additional mass which a ball apparently acquires when it
is placed in water; a ball placed in water behaves as if its mass
were greater than its mass when moving in vacuo; we can easily
understand why this should be the case, because when the ball in
the water moves the water around it must move as well; so
that when a force acting on the ball sets it in motion it has
to move some of the water as well as the ball, and thus the
ball behaves as if its mass were increased. Similarly in the
case of the electrified particle, which when it moves carries
with it its lines of force, which grip the ether and carry some
of it along with them. When the electrified particle is moved
a mass of ether has to be moved too, and thus the apparent
mass of the particle is increased. The mass of the electrified
particle is thus resident in every part of space reached by its
lines of force; in this sense an electrified body may be said to
extend to an infinite distance; the amount of the mass of the
ether attached to the particle diminishes so rapidly as we recede
from it that the contributions of regions remote from the particle

are quite insignificant, and in the case of a particle as small
as a corpuscle not one millionth part of its mass will be farther
away from it than the radius of an atom.

The increase in the mass of a particle due to given charges
varies as we have seen inversely as the radius of the particle;
thus the smaller the particle the greater the increase in the
mass. For bodies of appreciable size or even for those as
small as ordinary atoms the effect of any realizable electric
charge is quite insignificant, on the other hand for the smallest
bodies known, the corpuscle, there is evidence that the whole
of the mass is due to the electric charge. This result has
been deduced by the help of an extremely interesting
property of the mass due to a charge of electricity, which is
that this mass is not constant but varies with the velocity.
This comes about in the following way. When the charged
particle, which for simplicity we shall suppose to be spherical, is
at rest or moving very slowly the lines of electric force are
distributed uniformly around it in all directions; when the
sphere moves, however, magnetic forces are produced in the
region around it, while these, in consequence of electro-magnetic
induction in a moving magnetic field, give rise to electric forces
which displace the tubes of electric force in such a way as to
make them set themselves so as to be more at right angles to
the direction in which they are moving than they were before.
Thus if the charged sphere were moving along the line AB, the
tubes of force would, when the sphere was in motion, tend to
leave the region near AB and crowd towards a plane through
the centre of the sphere and at right angles to AB, where they
would be moving more nearly at right angles to themselves.
This crowding of the lines of force increases, however, the
potential energy of the electric field, and since the mass of the
ether carried along by the lines of force is proportional to the
potential energy, the mass of the charged particle will also be
increased. The amount of variation of the mass with the
velocity depends to some extent on the assumptions we make
as to the shape of the corpuscle and the way in which it is
electrified. The simplest expression connecting the mass with
the velocity is that when the velocity is v the mass is equal
to 2⁄3μe2/a [1/(1 − v2/c2)1/2] where c is the velocity of light. We see from
this that the variation of mass with velocity is very small unless
the velocity of the body approaches that of light, but when, as
in the case of the β particles emitted by radium, the velocity is
only a few per cent less than that of light, the effect of velocity
on the mass becomes very considerable; the formula indicates
that if the particles were moving with a velocity equal to that
of light they would behave as if their mass were infinite. By
observing the variation in the mass of a corpuscle as its velocity
changes we can determine how much of the mass depends upon
the electric charge and how much is independent of it. For since
the latter part of the mass is independent of the velocity, if it
predominates the variation with velocity of the mass of a
corpuscle will be small; if on the other hand it is negligible the
variation in mass with velocity will be that indicated by theory
given above. The experiment of Kaufmann (Göttingen Nach.,
Nov. 8, 1901), Bucherer (Ann. der Physik., xxviii. 513, 1909) on
the masses of the β particles shot out by radium, as well as those
by Hupka (Berichte der deutsch. physik. Gesell., 1909, p. 249)
on the masses of the corpuscle in cathode rays are in agreement
with the view that the whole of the mass of these particles is
due to their electric charge.

The alteration in the mass of a moving charge with its velocity
is primarily due to the increase in the potential energy which
accompanies the increase in velocity. The connexion between
potential energy and mass is general and holds for any arrangement
of electrified particles; thus if we assume the electrical
constitution of matter, there will be a part of the mass of any
system dependent upon the potential energy and in fact proportional
to it. Thus every change in potential energy, such for
example as occurs when two elements combine with evolution
or absorption of heat, must be attended by a change in mass.
The amount of this change can be calculated by the rule that if a
mass equal to the change in mass were to move with the velocity
of light its kinetic energy would equal the change in the potential
energy. If we apply this result to the case of the combination
of hydrogen and oxygen, where the evolution of heat, about
1.6 × 1011 ergs per gramme of water, is greater than in any other
known case of chemical combination, we see that the change in
mass would only amount to one part in 3000 million, which is
far beyond the reach of experiment. The evolution of energy
by radio-active substances is enormously larger than in ordinary
chemical transformations; thus one gramme of radium emits per
day about as much energy as is evolved in the formation of one
gramme of water, and goes on doing this for thousands of years.
We see, however, that even in this case it would require hundreds
of years before the changes in mass became appreciable.

The evolution of energy from the gaseous emanation given
off by radium is more rapid than that from radium itself, since
according to the experiments of Rutherford (Rutherford, Radio-activity,
p. 432) a gramme of the emanation would evolve about
2.1 × 1016 ergs in four days; this by the rule given above would
diminish the mass by about one part in 20,000; but since only
very small quantities of the emanation could be used the
detection of the change of mass does not seem feasible even
in this case.

On the view we have been discussing the existence of potential
energy due to an electric field is always associated with mass;
wherever there is potential energy there is mass. On the
electro-magnetic theory of light, however, a wave of light is
accompanied by electric forces, and therefore by potential energy;
thus waves of light must behave as if they possessed mass.
It may be shown that it follows from the same principles that
they must also possess momentum, the direction of the momentum
being the direction along which the light is travelling; when the
light is absorbed by an opaque substance the momentum in the
light is communicated to the substance, which therefore behaves
as if the light pressed upon it. The pressure exerted by light was
shown by Maxwell (Electricity and Magnetism, 3rd ed., p. 440)
to be a consequence of his electro-magnetic theory, its existence
has been established by the experiment of Lebedew, of Nichols
and Hull, and of Poynting.

We have hitherto been considering mass from the point of
view that the constitution of matter is electrical; we shall proceed
to consider the question of weight from the same
point of view. The relation between mass and weight
Weight.
is, while the simplest in expression, perhaps the most fundamental
and mysterious property possessed by matter. The weight of a
body is proportional to its mass, that is if the weights of a number
of substances are equal the masses will be equal, whatever the
substances may be. This result was verified to a considerable
degree of approximation by Newton by means of experiments
with pendulums; later, in 1830 Bessel by a very extensive and
accurate series of experiments, also made on pendulums, showed
that the ratio of mass to weight was certainly to one part in
60,000 the same for all the substances examined by him, these
included brass, silver, iron, lead, copper, ivory, water.

The constancy of this ratio acquires new interest when looked
at from the point of view of the electrical constitution of matter.
We have seen that the atoms of all bodies contain corpuscles,
that the mass of a corpuscle is only 1⁄1700 of the mass of an
atom of hydrogen, that it carries a constant charge of negative
electricity, and that its mass is entirely due to this charge, and
can be regarded as arising from ether gripped by the lines of
force starting from the electrical charge. The question at once
suggests itself, Is this kind of mass ponderable? does it add to the
weight of the body? and, if so, is the proportion between mass and
weight the same as for ordinary bodies? Let us suppose for a
moment that this mass is not ponderable, so that the corpuscles
increase the mass but not the weight of an atom. Then, since
the mass of a corpuscle is 1⁄1700 that of an atom of hydrogen,
the addition or removal of one corpuscle would in the case of an
atom of atomic weight x alter the mass by one part in 1700 x,
without altering the weight, this would produce an effect of the

same magnitude on the ratio of mass to weight and would in the
case of the atoms of the lighter elements be easily measurable
in experiments of the same order of accuracy as those made by
Bessel. If the number of corpuscles in the atom were proportional
to the atomic weight, then the ratio of mass to weight would be
constant whether the corpuscles were ponderable or not. If
the number were not proportional there would be greater discrepancies
in the ratio of mass to weight than is consistent with
Bessel’s experiments if the corpuscles had no weight. We have
seen there are other grounds for concluding that the number of
corpuscles in an atom is proportional to the atom weight, so
that the constancy of the ratio of mass to weight for a large
number of substances does not enable us to determine whether
or not mass due to charges of electricity is ponderable or not.

There seems some hope that the determination of this ratio
for radio-active substances may throw some light on this
point. The enormous amount of heat evolved by these bodies
may indicate that they possess much greater stores of potential
energy than other substances. If we suppose that the heat
developed by one gramme of a radio-active substance in the
transformations which it undergoes before it reaches the non-radio-active
stage is a measure of the excess of the potential
energy in a gramme of this substance above that in a gramme of
non-radio-active substance, it would follow that a larger part
of the mass was due to electric charges in radio-active than in
non-radio-active substances; in the case of uranium this difference
would amount to at least one part in 20,000 of the total mass.
If this extra mass had no weight the ratio of mass to weight for
uranium would differ from the normal amount by more than one
part in 20,000, a quantity quite within the range of pendulum
experiments. It thus appears very desirable to make experiments
on the ratio of mass to weight for radio-active substances. Sir
J. J. Thomson, by swinging a small pendulum whose bob was
made of radium bromide, has shown that this ratio for radium
does not differ from the normal by one part in 2000. The small
quantity of radium available prevented the attainment of greater
accuracy. Experiments just completed (1910) by Southerns at
the Cavendish Laboratory on this ratio for uranium show that
it is normal to an accuracy of one part in 200,000; indicating
that in non-radio-active, as in radio-active, substances the
electrical mass is proportional to the atomic weight.

Though but few experiments have been made in recent years
on the value of the ratio of mass to weight, many important
investigations have been made on the effect of alterations in
the chemical and physical conditions on the weight of bodies.
These have all led to the conclusion that no change which can
be detected by our present means of investigation occurs in the
weight of a body in consequence of any physical or chemical
changes yet investigated. Thus Landolt, who devoted a great
number of years to the question whether any change in weight
occurs during chemical combination, came finally to the conclusion
that in no case out of the many he investigated did any
measurable change of weight occur during chemical combination.
Poynting and Phillips (Proc. Roy. Soc., 76, p. 445), as
well as Southerns (78, p. 392), have shown that change in temperature
produces no change in the weight of a body; and Poynting
has also shown that neither the weight of a crystal nor the
attraction between two crystals depends at all upon the direction
in which the axis of the crystal points. The result of these
laborious and very carefully made experiments has been to
strengthen the conviction that the weight of a given portion
of matter is absolutely independent of its physical condition
or state of chemical combinations. It should, however, be
noticed that we have as yet no accurate investigation as to
whether or not any changes of weight occur during radio-active
transformations, such for example as the emanation from
radium undergoes when the atoms themselves of the substance
are disrupted.

It is a matter of some interest in connexion with a discussion
of any views of the constitution of matter to consider the theories
of gravitation which have been put forward to explain that
apparently invariable property of matter—its weight. It would
be impossible to consider in detail the numerous theories which
have been put forward to account for gravitation; a concise
summary of many of these has been given by Drude (Wied. Ann.
62, p. 1);2 there is no dearth of theories as to the cause of gravitation,
what is lacking is the means of putting any of them to a
decisive test.

There are, however, two theories of gravitation, both old,
which seem to be especially closely connected with the idea of
the electrical constitution of matter. The first of these is the
theory, associated with the two fluid theory of electricity,
that gravity is a kind of residual electrical effect, due to the
attraction between the units of positive and negative electricity
being a little greater than the repulsion between the units of
electricity of the same kind. Thus on this view two charges of
equal magnitude, but of opposite sign, would exert an attraction
varying inversely as the square of the distance on a charge of
electricity of either sign, and therefore an attraction on a system
consisting of two charges equal in magnitude but opposite in sign
forming an electrically neutral system. Thus if we had two
neutral systems, A and B, A consisting of m positive units of
electricity and an equal number of negative, while B has n units
of each kind, then the gravitational attraction between A and B
would be inversely proportional to the square of the distance
and proportional to n m. The connexion between this view of
gravity and that of the electrical constitution of matter is
evidently very close, for if gravity arose in this way the weight
of a body would only depend upon the number of units of electricity
in the body. On the view that the constitution of matter
is electrical, the fundamental units which build up matter are the
units of electric charge, and as the magnitude of these charges
does not change, whatever chemical or physical vicissitudes
matter, the weight of matter ought not to be affected by such
changes. There is one result of this theory which might possibly
afford a means of testing it: since the charge on a corpuscle is
equal to that on a positive unit, the weights of the two are equal;
but the mass of the corpuscle is only 1⁄1700 of that of the positive
unit, so that the acceleration of the corpuscle under gravity will
be 1700 times that of the positive unit, which we should expect
to be the same as that for ponderable matter or 981.

The acceleration of the corpuscle under gravity on this view
would be 1.6 × 106. It does not seem altogether impossible that
with methods slightly more powerful than those we now possess
we might measure the effect of gravity on a corpuscle if the
acceleration were as large as this.

The other theory of gravitation to which we call attention is
that due to Le Sage of Geneva and published in 1818. Le
Sage supposed that the universe was thronged with exceedingly
small particles moving with very great velocities. These
particles he called ultra-mundane corpuscles, because they
came to us from regions far beyond the solar system. He
assumed that these were so penetrating that they could pass
through masses as large as the sun or the earth without being
absorbed to more than a very small extent. There is, however,
some absorption, and if bodies are made up of the same kind of
atoms, whose dimensions are small compared with the distances
between them, the absorption will be proportional to the mass
of the body. So that as the ultra-mundane corpuscles stream
through the body a small fraction, proportional to the mass
of the body, of their momentum is communicated to it. If
the direction of the ultra-mundane corpuscles passing through
the body were uniformly distributed, the momentum communicated
by them to the body would not tend to move it in one
direction rather than in another, so that a body, A, alone in the
universe and exposed to bombardment by the ultra-mundane
corpuscles would remain at rest. If, however, there were a
second body, B, in the neighbourhood of A, B will shield A from
some of the corpuscles moving in the direction BA; thus A will
not receive as much momentum in this direction as when it
was alone; but in this case it only received just enough to

keep it in equilibrium, so that when B is present the momentum
in the opposite direction will get the upper hand and A will
move in the direction AB, and will thus be attracted by B.
Similarly, we see that B will be attracted by A. Le Sage proved
that the rate at which momentum was being communicated
to A or B by the passage through them of his corpuscles was
proportional to the product of the masses of A and B, and if the
distance between A and B was large compared with their
dimensions, inversely proportional to the square of the distance
between them; in fact, that the forces acting on them would
obey the same laws as the gravitational attraction between them.
Clerk Maxwell (article “Atom,” Ency. Brit., 9th ed.) pointed
out that this transference of momentum from the ultra-mundane
corpuscles to the body through which they passed involved the
loss of kinetic energy by the corpuscles, and if the loss of momentum
were large enough to account for the gravitational attraction,
the loss of kinetic energy would be so large that if converted into
heat it would be sufficient to keep the body white hot. We need
not, however, suppose that this energy is converted into heat; it
might, as in the case where Röntgen rays are produced by the
passage of electrified corpuscles through matter, be transformed
into the energy of a still more penetrating form of radiation,
which might escape from the gravitating body without heating
it. It is a very interesting result of recent discoveries that the
machinery which Le Sage introduced for the purpose of his
theory has a very close analogy with things for which we have
now direct experimental evidence. We know that small particles
moving with very high speeds do exist, that they possess considerable
powers of penetrating solids, though not, as far as we
know at present, to an extent comparable with that postulated
by Le Sage; and we know that the energy lost by them as they
pass through a solid is to a large extent converted into a still
more penetrating form of radiation, Röntgen rays. In Le Sage’s
theory the only function of the corpuscles is to act as carriers
of momentum, any systems which possessed momentum, moved
with a high velocity and had the power of penetrating solids,
might be substituted for them; now waves of electric and magnetic
force, such as light waves or Röntgen rays, possess momentum,
move with a high velocity, and the latter at any rate possess
considerable powers of penetration; so that we might formulate
a theory in which penetrating Röntgen rays replaced Le Sage’s
corpuscles. Röntgen rays, however, when absorbed do not,
as far as we know, give rise to more penetrating Röntgen rays
as they should to explain attraction, but either to less penetrating
rays or to rays of the same kind.

We have confined our attention in this article to the view
that the constitution of matter is electrical; we have done so
because this view is more closely in touch with experiment
than any other yet advanced. The units of which matter is
built up on this theory have been isolated and detected in the
laboratory, and we may hope to discover more and more of their
properties. By seeing whether the properties of matter are or
are not such as would arise from a collection of units having these
properties, we can apply to this theory tests of a much more
definite and rigorous character than we can apply to any other
theory of matter.

(J. J. T.)


 
1 We may measure this velocity with reference to any axes, provided
we refer the motion of all the bodies which come into consideration
to the same axes.

2 A theory published after Drude’s paper in that of Professor
Osborne Reynolds, given in his Rede lecture “On an Inversion of
Ideas as to the Structure of the Universe.”





MATTERHORN, one of the best known mountains (14,782 ft.)
in the Alps. It rises S.W. of the village of Zermatt, and on the
frontier between Switzerland (canton of the Valais) and Italy.
Though on the Swiss side it appears to be an isolated obelisk,
it is really but the butt end of a ridge, while the Swiss slope is not
nearly as steep or difficult as the grand terraced walls of the
Italian slope. It was first conquered, after a number of attempts
chiefly on the Italian side, on the 14th of July 1865, by Mr E.
Whymper’s party, three members of which (Lord Francis
Douglas, the Rev. C. Hudson and Mr Hadow) with the guide,
Michel Croz, perished by a slip on the descent. Three days later
it was scaled from the Italian side by a party of men from Val
Tournanche. Nowadays it is frequently ascended in summer,
especially from Zermatt.



MATTEUCCI, CARLO (1811-1868), Italian physicist, was born
at Forlì on the 20th of June 1811. After attending the École
Polytechnique at Paris, he became professor of physics successively
at Bologna (1832), Ravenna (1837) and Pisa (1840). From
1847 he took an active part in politics, and in 1860 was chosen
an Italian senator, at the same time becoming inspector-general
of the Italian telegraph lines. Two years later he was minister
of education. He died near Leghorn on the 25th of June
1868.


He was the author of four scientific treatises: Lezioni di fisica
(2 vols., Pisa, 1841), Lezioni sui fenomeni fisicochimici dei corpi
viventi (Pisa, 1844), Manuale di telegrafia elettrica (Pisa, 1850) and
Cours spécial sur l’induction, le magnetisme de rotation, &c. (Paris,
1854). His numerous papers were published in the Annales de
chimie et de physique (1829-1858); and most of them also appeared
at the time in the Italian scientific journals. They relate almost
entirely to electrical phenomena, such as the magnetic rotation of
light, the action of gas batteries, the effects of torsion on magnetism,
the polarization of electrodes, &c., sufficiently complete accounts
of which are given in Wiedemann’s Galvanismus. Nine memoirs,
entitled “Electro-Physiological Researches,” were published in
the Philosophical Transactions, 1845-1860. See Bianchi’s Carlo
Matteucci e l’Italia del suo tempo (Rome, 1874).





MATTHEW, ST (Μαθθαῖος or Ματθαῖος, probably a
shortened form of the Hebrew equivalent to Theodorus), one
of the twelve apostles, and the traditional author of the First
Gospel, where he is described as having been a tax-gatherer or
customs-officer (τελώνης, x. 3), in the service of the tetrarch
Herod. The circumstances of his call to become a follower of
Jesus, received as he sat in the “customs house” in one of the
towns by the Sea of Galilee—apparently Capernaum (Mark ii. 1,
13), are briefly related in ix. 9. We should gather from the
parallel narrative in Mark ii. 14, Luke v. 27, that he was at the
time known as “Levi the son of Alphaeus” (compare Simon
Cephas, Joseph Barnabas): if so, “James the son of Alphaeus”
may have been his brother. Possibly “Matthew” (Yahweh’s
gift) was his Christian surname, since two native names, neither
being a patronymic, is contrary to Jewish usage. It must
be noted, however, that Matthew and Levi were sometimes
distinguished in early times, as by Heracleon (c. 170 A.D.), and
more dubiously by Origen (c. Celsum, i. 62), also apparently
in the Syriac Didascalia (sec. iii.), V. xiv. 14. It has generally
been supposed, on the strength of Luke’s account (v. 29), that
Matthew gave a feast in Jesus’ honour (like Zacchaeus, Luke xix.
6 seq.). But Mark (ii. 15), followed by Matthew (ix. 10), may
mean that the meal in question was one in Jesus’ own home at
Capernaum (cf. v. 1). In the lists of the Apostles given in the
Synoptic Gospels and in Acts, Matthew ranks third or fourth in
the second group of four—a fair index of his relative importance
in the apostolic age. The only other facts related of Matthew on
good authority concern him as Evangelist. Eusebius (H.E. iii. 24)
says that he, like John, wrote only at the spur of necessity.
“For Matthew, after preaching to Hebrews, when about to go
also to others, committed to writing in his native tongue the
Gospel that bears his name; and so by his writing supplied, for
those whom he was leaving, the loss of his presence.” The value
of this tradition, which may be based on Papias, who certainly
reported that “Matthew compiled the Oracles (of the Lord) in
Hebrew,” can be estimated only in connexion with the study
of the Gospel itself (see below). No historical use can be made
of the artificial story, in Sanhedrin 43a, that Matthew was
condemned to death by a Jewish court (see Laihle, Christ in the
Talmud, 71 seq.). According to the Gnostic Heracleon, quoted by
Clement of Alexandria (Strom. iv. 9), Matthew died a natural
death. The tradition as to his ascetic diet (in Clem. Alex.
Paedag. ii. 16) maybe due to confusion with Matthias (cf. Mart.
Matthaei, i.). The earliest legend as to his later labours, one
of Syrian origin, places them in the Parthian kingdom, where
it represents him as dying a natural death at Hierapolis (= Mabog
on the Euphrates). This agrees with his legend as known to
Ambrose and Paulinus of Nola, and is the most probable in itself.
The legends which make him work with Andrew among the
Anthropophagi near the Black Sea, or again in Ethiopia (Rufinus,
and Socrates, H.E. i. 19), are due to confusion with Matthias,
who from the first was associated in his Acts with Andrew (see
M. Bonnet, Acta Apost. apocr., 1808, II. i. 65). Another

legend, his Martyrium, makes him labour and suffer in Mysore.
He is commemorated as a martyr by the Greek Church on
the 16th of November, and by the Roman on the 21st of September,
the scene of his martyrdom being placed in Ethiopia.
The Latin Breviary also affirms that his body was afterwards
translated to Salerno, where it is said to lie in the church built by
Robert Guiscard. In Christian art (following Jerome) the
Evangelist Matthew is generally symbolized by the “man” in the
imagery of Ezek. i. 10, Rev. iv. 7.


For the historical Matthew, see Ency. Bibl. and Zahn, Introd.
to New Test., ii. 506 seq., 522 seq. For his legends, as under Mark.



(J. V. B.)



MATTHEW, TOBIAS, or Tobie (1546-1628), archbishop of
York, was the son of Sir John Matthew of Ross in Herefordshire,
and of his wife Eleanor Crofton of Ludlow. He was born at
Bristol in 1546. He was educated at Wells, and then in succession
at University College and Christ Church, Oxford. He
proceeded B.A. in 1564, and M.A. in 1566. He attracted the
favourable notice of Queen Elizabeth, and his rise was steady
though not very rapid. He was public orator in 1569, president
of St John’s College, Oxford, in 1572, dean of Christ Church in
1576, vice-chancellor of the university in 1579, dean of Durham
in 1583, bishop of Durham in 1595, and archbishop of York in
1606. In 1581 he had a controversy with the Jesuit Edmund
Campion, and published at Oxford his arguments in 1638 under
the title, Piissimi et eminentissimi viri Tobiae Matthew, archiepiscopi
olim Eboracencis concio apologetica adversus Campianam.
While in the north he was active in forcing the recusants to
conform to the Church of England, preaching hundreds of
sermons and carrying out thorough visitations. During his later
years he was to some extent in opposition to the administration
of James I. He was exempted from attendance in the parliament
of 1625 on the ground of age and infirmities, and died on the
29th of March 1628. His wife, Frances, was the daughter of
William Barlow, bishop of Chichester.

His son, Sir Tobias, or Tobie, Matthew (1577-1655), is
remembered as the correspondent and friend of Francis Bacon.
He was educated at Christ Church, and was early attached to the
court, serving in the embassy at Paris. His debts and dissipations
were a great source of sorrow to his father, from whom he
is known to have received at different times £14,000, the modern
equivalent of which is much larger. He was chosen member for
Newport in Cornwall in the parliament of 1601, and member for
St Albans in 1604. Before this time he had become the intimate
friend of Bacon, whom he replaced as member for St Albans.
When peace was made with Spain, on the accession of James I.,
he wished to travel abroad. His family, who feared his conversion
to Roman Catholicism, opposed his wish, but he promised
not to go beyond France. When once safe out of England he
broke his word and went to Italy. The persuasion of some of his
countrymen in Florence, one of whom is said to have been the
Jesuit Robert Parsons, and a story he heard of the miraculous
liquefaction of the blood of San Januarius at Naples, led to his
conversion in 1606. When he returned to England he was
imprisoned, and many efforts were made to obtain his reconversion
without success. He would not take the oath of allegiance
to the king. In 1608 he was exiled, and remained out of England
for ten years, mostly in Flanders and Spain. He returned in 1617,
but went abroad again in 1619. His friends obtained his leave
to return in 1621. At home he was known as the intimate friend
of Gondomar, the Spanish ambassador. In 1623 he was sent
to join Prince Charles, afterwards Charles I., at Madrid, and was
knighted on the 23rd of October of that year. He remained in
England till 1640, when he was finally driven abroad by the
parliament, which looked upon him as an agent of the pope.
He died in the English college in Ghent on the 13th of October
1655. In 1618 he published an Italian translation of Bacon’s
essays. The “Essay on Friendship” was written for him. He
was also the author of a translation of The Confessions of the
Incomparable Doctor St Augustine, which led him into controversy.
His correspondence was published in London in
1660.


For the father, see John Le Neve’s Fasti ecclesiae anglicanae
(London, 1716), and Anthony Wood’s Athenae oxonienses. For
the son, the notice in Athenae oxonienses, an abridgment of his
autobiographical Historical Relation of his own life, published by
Alban Butler in 1795, and A. H. Matthew and A. Calthrop, Life of
Sir Tobie Matthew (London, 1907).





MATTHEW, GOSPEL OF ST, the first of the four canonical
Gospels of the Christian Church. The indications of the use of
this Gospel in the two or three generations following the Apostolic
Age (see Gospel) are more plentiful than of any of the others.
Throughout the history of the Church, also, it has held a place
second to none of the Gospels alike in public instruction and in
the private reading of Christians. The reasons for its having
impressed itself in this way and become thus familiar are in large
part to be found in the characteristics noticed below. But in
addition there has been from an early time the belief that it was
the work of one of those publicans whose heart Jesus touched
and of whose call to follow Him the three Synoptics contain an
interesting account, but who is identified as Matthew (q.v.) only in
this one (Matt. ix. 9-13 = Mark ii. 13-17 = Luke v. 27-32).

1. The Connexion of our Greek Gospel of Matthew with the
Apostle whose name it bears.—The earliest reference to a writing
by Matthew occurs in a fragment taken by Eusebius from the
same work of Papias from which he has given an account of the
composition of a record by Mark (Euseb. Hist. Eccl. iii. 39; see
Mark, Gospel of St). The statement about Matthew is much
briefer and is harder to interpret. In spite of much controversy,
the same measure of agreement as to its meaning cannot be said
to have been attained. This is the fragment: “Matthew,
however, put together and wrote down the Oracles (τὰ λόγια συνέγραψεν) in the Hebrew language, and each man interpreted
them as he was able.” Whether “the elder” referred to in the
passage on Mark, or some other like authority, was the source
of this statement also does not appear; but it is probable that
this was the case from the context in which Eusebius gives it.
Conservative writers on the Gospels have frequently maintained
that the writing here referred to was virtually the Hebrew original
of our Greek Gospel which bears his name. And it is indeed
likely that Papias himself closely associated the latter with the
Hebrew (or Aramaic) work by Matthew, of which he had been
told, since the traditional connexion of this Greek Gospel with
Matthew can hardly have begun later than this time. It is
reasonable also to suppose that there was some ground for it.
The description, however, of what Matthew did suits better the
making of a collection of Christ’s discourses and sayings than the
composition of a work corresponding in form and character to our
Gospel of Matthew.

The next reference in Christian literature to a Gospel-record
by Matthew is that of Irenaeus in his famous passage on the four
Gospels (Adv. haer. iii. i. r). He says that it was written in
Hebrew; but in all probability he regarded the Greek Gospel,
which stood first in his, as it does in our, enumeration, as in the
strict sense a translation of the Apostle’s work; and this was the
view of it universally taken till the 16th century, when some
of the scholars of the Reformation maintained that the Greek
Gospel itself was by Matthew.

The actual phenomena, however, of this Gospel, and of its
relation to sources that have been used in it, cannot be explained
consistently with either of the two views just mentioned. It is
a composite work in which two chief sources, known in Greek to
the author of our present Gospel, have, together with some other
matter, been combined. It is inconceivable that one of the
Twelve should have proceeded in this way in giving an account
of Christ’s ministry. One of the chief documents, however, here
referred to seems to correspond in character with the description
given in Papias’ fragment of a record of the compilation of “the
divine utterances” made by Matthew; and the use made of it
in our first Gospel may explain the connexion of this Apostle’s
name with it. In the Gospel of Luke also, it is true, this same
source has been used for the teaching of Jesus. But the original
Aramaic Logian document may have been more largely reproduced
in our Greek Matthew. Indeed, in the case of one important
passage (v. 17-48) this is suggested by a comparison with

Luke itself, and there are one or two others where from the
character of the matter it seems not improbable, especially
vi. 1-18 and xxiii. 1-5, 7b-10, 15-22. On the whole, as will be
seen below, what appears to be a Palestinian form of the Gospel-tradition
is most fully represented in this Gospel; but in many
instances at least this may well be due to some other cause than
the use of the original Logian document.

2. The Plan on which the Contents is arranged.—In two
respects the arrangement of the book itself is significant.


(a) As to the general outline in the first half of the account of the
Galilean ministry (iv. 23-xi. 30). Immediately after relating the
call of the first four disciples (iv. 18-22) the evangelist gives in iv. 23
a comprehensive summary of Christ’s work in Galilee under its
two chief aspects, teaching and healing. In the sequel both these
are illustrated. First, he gives in the Sermon on the Mount (v.-vii.)
a considerable body of teaching, of the kind required by the disciples
of Jesus generally, and a large portion of which probably also stood
not far from the beginning of the Logian document. After this he turns
to the other aspect. Up to this point he has mentioned no miracle.
He now describes a number in succession, introducing all but the first
of those told between Mark i. 23 and ii. 12, and also four specially
remarkable ones, which occurred a good deal later according to
Mark’s order (Matt. viii. 23-34 = Mark iv. 35-v. 20; Matt. ix. 18-26
= Mark v. 21-43); and he also adds some derived from another
source, or other sources (viii. 5-13; ix. 27-34). Then, after another
general description at ix. 35, similar to that at iv. 23, he brings
strikingly before us the needs of the masses of the people and Christ’s
compassion for them, and so introduces the mission of the Twelve
(which again occurs later according to Mark’s order, viz. at vi. 7 seq.),
whereby the ministry both of teaching and of healing was further
extended (ix. 36-x. 42). Finally, the message of John the Baptist,
and the reply of Jesus, and the reflections that follow (xi.), bring
out the significance of the preceding narrative. It should be observed
that examples have been given of every kind of mighty work referred
to in the reply of Jesus to the messengers of the Baptist; and that
in the discourse which follows their departure the perversity and
unbelief of the people generally are condemned, and the faith of the
humble-minded is contrasted therewith. The greater part of the
matter from ix. 37 to end of xi. is taken from the Logian document.
After this point, i.e. from xii. 1 onwards, the first evangelist follows
Mark almost step by step down to the point (Mark xvi. 8), after which
Mark’s Gospel breaks off, and another ending has been supplied;
and gives in substance almost the whole of Mark’s contents, with
the exception that he passes over the few narratives that he has
(as we have seen) placed earlier. At the same time he brings in
additional matter in connexion with most of the Marcan sections.

(b) With the accounts of the words of Jesus spoken on certain
occasions, which our first evangelist found given in one or another
of his sources, he has combined other pieces, taken from other parts
of the same source or from different sources, which seemed to him
connected in subject, e.g. into the discourse spoken on a mountain,
when crowds from all parts were present, given in the Logian document,
he has introduced some pieces which, as we infer from Luke,
stood separately in that document (cf. Matt. vi. 19-21 with Luke
xii. 33, 34; Matt. vi. 22, 23 with Luke xi. 34-36; Matt. vi. 24 with
Luke xvi. 13; Matt. vi. 25-34 with Luke xii. 22-32; Matt. vii. 7-11 with
Luke xi. 9-13). Again, the address to the Twelve in Mark vi. 7-11,
which in Matthew is combined with an address to disciples, from the
Logian document, is connected by Luke with the sending out of
seventy disciples (Luke x. 1-16). Our first evangelist has also added
here various other sayings (Matt. x. 17-39, 42). Again, with the
Marcan account of the charge of collusion with Satan and Christ’s
reply (Mark iii. 22-30), the first evangelist (xii. 24-45) combines
the parallel account in the Logian document and adds Christ’s reply
to another attack (Luke xi. 14-16, 17-26, 29-32). These are some
examples. He has in all in this manner constructed eight discourses
or collections of sayings, into which the greater part of Christ’s
teaching is gathered: (1) On the character of the heirs of the
kingdom (v.-vii.); (2) The Mission address (x.); (3) Teaching
suggested by the message of John the Baptist (xi.); (4) The reply
to an accusation and a challenge (xii. 22-45); (5) The teaching
by parables (xiii.); (6) On offences (xviii.); (7) Concerning
the Scribes and Pharisees (xxiii.); (8) On the Last Things (xxiv.,
xxv.). In this arrangement of his material the writer has in
many instances disregarded chronological considerations. But his
documents also gave only very imperfect indications of the occasions
of many of the utterances; and the result of his method of procedure
has been to give us an exceedingly effective representation of the
teaching of Jesus.

In the concluding verses of the Gospel, where the original Marcan
parallel is wanting, the evangelist may still have followed in part
that document while making additions as before. The account
of the silencing of the Roman guard by the chief priests is the sequel
to the setting of this guard and their presence at the Resurrection,
which at an earlier point arc peculiar to Matthew (xxvii. 62-66,
xxviii. 4). And, further, this matter seems to belong to the same
cycle of tradition as the story of Pilate’s wife and his throwing the
guilt of the Crucifixion of Jesus upon the Jews, and the testimony
borne by the Roman guard (as well as the centurion) who kept watch
by the cross (xxvii. 15-26, 54), all which also are peculiar to this
Gospel. It cannot but seem probable that these are legendary
additions which had arisen through the desire to commend the Gospel
to the Romans.

On the other hand, the meeting of Jesus with the disciples in
Galilee (Matt. xxviii. 16 seq.) is the natural sequel to the message to
them related in Mark xvi. 7, as well as in Matt, xxviii. 7. Again,
the commission to them to preach throughout the world is supported
by Luke xxiv. 47, and by the present ending of Mark (xvi. 15),
though neither of these mention Galilee as the place where it
was given. The baptismal formula in Matt. xxviii. 19, is, however,
peculiar, and in view of its non-occurrence in the Acts and
Epistles of the New Testament must be regarded as probably an
addition in accordance with Church usage at the time the Gospel
was written.



3. The Palestinian Element.—Teaching is preserved in this
Gospel which would have peculiar interest and be specially
required in the home of Judaism. The best examples of this
are the passages already referred to near end of § 1, as probably
derived from the Logian document. There are, besides, a good
many turns of expression and sayings peculiar to this Gospel
which have a Semitic cast, or which suggest a point of view that
would be natural to Palestinian Christians, e.g. “kingdom of
heaven” frequently for “kingdom of God”; xiii. 52 (“every
scribe”); xxiv. 20 (“neither on a Sabbath”). See also v. 35
and xix. 9; x. 5, 23. Again, several of the quotations which are
peculiar to this Gospel are not taken from the LXX., as those in
the other Gospels and in the corresponding contexts in this
Gospel commonly are, but are wholly or partly independent
renderings from the Hebrew (ii. 6, 15, 18; viii. 17, xii. 17-21, &c.).
Once more, there is somewhat more parallelism between the
fragments of the Gospel according to the Hebrews and this
Gospel than is the case with Luke, not to say Mark.

4. Doctrinal Character.—In this Gospel, more decidedly than
in either of the other two Synoptics, there is a doctrinal point of
view from which the whole history is regarded. Certain aspects
which are of profound significance are dwelt upon, and this
without there being any great difference between this Gospel
and the two other Synoptics in respect to the facts recorded or
the beliefs implied. The effect is produced partly by the comments
of the evangelist, which especially take the form of
citations from the Old Testament; partly by the frequency with
which certain expressions are used, and the prominence that
is given in this and other ways to particular traits and
topics.

He sets forth the restriction of the mission of Jesus during His
life on earth to the people of Israel in a way which suggests at
first sight a spirit of Jewish exclusiveness. But there are various
indications that this is not the true explanation. In particular
the evangelist brings out more strongly than either Mark or
Luke the national rejection of Jesus, while the Gospel ends with
the commission of Jesus to His disciples after His resurrection
to “make disciples of all the peoples.” One may divine in all
this an intention to “justify the ways of God” to the Jew, by
proving that God in His faithfulness to His ancient people had
given them the first opportunity of salvation through Christ,
but that now their national privilege had been rightly forfeited.
He was also specially concerned to show that prophecy is fulfilled
in the life and work of Jesus, but the conception of this fulfilment
which is presented to us is a large one; it is to be seen not merely
in particular events or features of Christ’s ministry, but in the
whole new dispensation, new relations between God and men,
and new rules of conduct which Christ has introduced. The
divine meaning of the work of Jesus is thus made apparent, while
of the majesty and glory of His person a peculiarly strong
impression is conveyed.

Some illustrations in detail of these points are subjoined.
Where there are parallels in the other Gospels they should be
compared and the words in Matthew noted which in many
instances serve to emphasize the points in question.


(a) The Ministry of Jesus among the Jewish People as their promised
Messiah, their rejection of Him, and the extension of the Gospel to the
Gentiles. The mission to Israel: Matt. i. 21; iv. 23 (note in these
passages the use of ὁ λαός, which here, as generally in Matthew,
denotes the chosen nation), ix. 33, 35, xv. 31. For the rule limiting

the work of Jesus while on earth see xv. 24 (and note ἰξελθοῦσα in
verse 22, which implies that Jesus had not himself entered the
heathen borders), and for a similar rule prescribed to the disciples,
x. 5, 6 and 23.

The rejection of Jesus by the people in Galilee, xi. 21; xiii. 13-15,
and by the heads of “the nation,” xxvi. 3, 47 and by “the whole
nation,” xxvii. 25; their condemnation xxiii. 38.

Mercy to the Gentiles and the punishment of “the sons of the
kingdom” is foretold viii. 11, 12. The commission to go and convert
Gentile peoples (ἔθνη) is given after Christ’s resurrection (xxviii. 19).

(b) The Fulfilment of Prophecy.—In the birth and childhood of
Jesus, i. 23; ii. 6, 15, 18, 23. By these citations attention is drawn
to the lowliness of the beginnings of the Saviour’s life, the unexpected
and secret manner of His appearing, the dangers to which from the
first He was exposed and from which He escaped.

The ministry of Christ’s forerunner, iii. 3. (The same prophecy,
Isa. xl. 3, is also quoted in the other Gospels.)

The ministry of Jesus. The quotations serve to bring out the
significance of important events, especially such as were turning-points,
and also to mark the broad features of Christ’s life and work,
iv. 15, 16; viii. 17; xii. 18 seq.; xiii. 35; xxi. 5; xxvii. 9.

(c) The Teaching on the Kingdom of God.—Note the collection
of parables “of the Kingdom” in xiii.; also the use of ἡ βασιλεία
(“the Kingdom”) without further definition as a term the reference of
which could not be misunderstood, especially in the following phrases
peculiar to this Gospel: τὁ εὐαγγέλιον τῆς βασιλείας (“the Gospel of
the Kingdom”) iv. 23, ix. 35, xxiv. 14; and ὁ λόγος τῆς βασιλείας
(“the word of the kingdom”) xiii. 19. The following descriptions
of the kingdom, peculiar to this Gospel, are also interesting ἡ βασιλεία τοῦ πατρὁς αὐτῶν (“the kingdom of their father”) xiii. 43 and
τοῦ πατρός μου(“of my father”) xxvi. 29.

(d) The Relation of the New Law to the Old.—Verses 17-48, cf. also,
addition at xxii. 40 and xix. 19b. Further, his use of δικαιοσύνη
(“righteousness”) and δίκαιος(“righteous”) (specially frequent
in this Gospel) is such as to connect the New with the Old; the
standard in mind is the law which “fulfilled” that previously
given.

(e) The Christian Ecclesia.—Chap. xvi. 18, xviii. 17.

(f) The Messianic Dignity and Glory of Jesus.—The narrative in
i. and ii. show the royalty of the new-born child. The title “Son
of David” occurs with special frequency in this Gospel. The following
instances are without parallels in the other Gospels: ix. 27;
xii. 23; xv. 22; xxi. 9; xxi. 15. The title “Son of God” is also
used with somewhat greater frequency than in Mark and Luke:
ii. 15; xiv. 33; xvi. 16; xxii. 2 seq. (where it is implied); xxvii.
40, 43.

The thought of the future coming of Christ, and in particular of
the judgment to be executed by Him then, is much more prominent
in this Gospel than in the others. Some of the following predictions
are peculiar to it, while in several others there are additional
touches: vii. 22, 23; x. 23, 32, 33; xiii. 39-43; xvi. 27, 28; xix. 28;
xxiv. 3, 27, 30, 31, 37, 39; xxv. 31-46; xxvi. 64.

The majesty of Christ is also impressed upon us by the signs at
His crucifixion, some of which are related only in this Gospel, xxvii.
51-53, and by the sublime vision of the Risen Christ at the close,
xxviii. 16-20.



(5) Time of Composition and Readers addressed.—The signs of
dogmatic reflection in this Gospel point to its having been composed
somewhat late in the 1st century, probably after Luke’s
Gospel, and this is in accord with the conclusion that some insertions
had been made in the Marcan document used by this
evangelist which were not in that used by Luke (see Luke,
Gospel of St). We may assign A.D. 80-100 as a probable time
for the composition.

The author was in all probability a Jew by race, and he
would seem to have addressed himself especially to Jewish
readers; but they were Jews of the Dispersion. For although
he was in specially close touch with Palestine, either personally
or through the sources at his command, or both, his book was
composed in Greek by the aid of Greek documents.


See commentaries by Th. Zahn (1903) and W. C. Allen (in the
series of International Critical Commentaries, 1907); also books
on the Four Gospels or the Synoptic Gospels cited at the end of
Gospel.



(V. H. S.)



MATTHEW CANTACUZENUS, Byzantine emperor, was the
son of John VI. Cantacuzenus (q.v.). In return for the support
he gave to his father during his struggle with John V. he was
allowed to annex part of Thrace under his own dominion and
in 1353 was proclaimed joint emperor. From his Thracian
principality he levied several wars against the Servians. An
attack which he prepared in 1350 was frustrated by the defection
of his Turkish auxiliaries. In 1357 he was captured by his
enemies, who delivered him to the rival emperor, John V.
Compelled to abdicate, he withdrew to a monastery, where he
busied himself with writing commentaries on the Scriptures.



MATTHEW OF PARIS (d. 1259), English monk and chronicler
known to us only through his voluminous writings. In spite of
his surname, and of his knowledge of the French language, his
attitude towards foreigners attests that he was of English birth.
He may have studied at Paris in his youth, but the earliest
fact which he records of himself is his admission as a monk at
St Albans in the year 1217. His life was mainly spent in this
religious house. In 1248, however, he was sent to Norway as
the bearer of a message from Louis IX. of France to Haakon VI.;
he made himself so agreeable to the Norwegian sovereign that
he was invited, a little later, to superintend the reformation of
the Benedictine monastery of St Benet Holme at Trondhjem.
Apart from these missions, his activities were devoted to the composition
of history, a pursuit for which the monks of St Albans
had long been famous. Matthew edited anew the works of
Abbot John de Cella and Roger of Wendover, which in their
altered form constitute the first part of his most important work,
the Chronica majora. From 1235, the point at which Wendover
dropped his pen, Matthew continued the history on the plan
which his predecessors had followed. He derived much of his
information from the letters of important personages, which he
sometimes inserts, but much more from conversation with the
eye-witnesses of events. Among his informants were Earl
Richard of Cornwall and Henry III. With the latter he appears
to have been on terms of intimacy. The king knew that Matthew
was writing a history, and showed some anxiety that it should be
as exact as possible. In 1257, in the course of a week’s visit to
St Albans, Henry kept the chronicler beside him night and day,
“and guided my pen,” says Paris, “with much good will and
diligence.” It is therefore curious that the Chronica majora
should give so unfavourable an account of the king’s policy.
Luard supposes that Matthew never intended his work to see
the light in its present form, and many passages of the autograph
have against them the note offendiculum, which shows that
the writer understood the danger which he ran. On the other
hand, unexpurgated copies were made in Matthew’s lifetime;
though the offending passages are duly omitted or softened in
his abridgment of his longer work, the Historia Anglorum
(written about 1253), the real sentiments of the author must have
been an open secret. In any case there is no ground for the old
theory that he was an official historiographer.


Matthew Paris was unfortunate in living at a time when English
politics were peculiarly involved and tedious. His talent is for
narrative and description. Though he took a keen interest in the
personal side of politics he has no claim to be considered a judge
of character. His appreciations of his contemporaries throw more
light on his own prejudices than on their aims and ideas. His work
is always vigorous, but he imputes motives in the spirit of a partisan
who never pauses to weigh the evidence or to take a comprehensive
view of the situation. His redeeming feature is his generous admiration
for strength of character, even when it goes along with a policy
of which he disapproves. Thus he praises Grosseteste, while he
denounces Grosseteste’s scheme of monastic reform. Matthew
is a vehement supporter of the monastic orders against their rivals,
the secular clergy and the mendicant friars. He is violently opposed
to the court and the foreign favourites. He despises the king as a
statesman, though for the man he has some kindly feeling. The
frankness with which he attacks the court of Rome for its exactions
is remarkable; so, too, is the intense nationalism which he displays
in dealing with this topic. His faults of presentment are more often
due to carelessness and narrow views than to deliberate purpose.
But he is sometimes guilty of inserting rhetorical speeches which
are not only fictitious, but also misleading as an account of the
speaker’s sentiments. In other cases he tampers with the documents
which he inserts (as, for instance, with the text of Magna
Carta). His chronology is, for a contemporary, inexact; and he
occasionally inserts duplicate versions of the same incident in different
places. Hence he must always be rigorously checked where
other authorities exist and used with caution where he is our sole
informant. None the less, he gives a more vivid impression of his
age than any other English chronicler; and it is a matter for regret
that his great history breaks off in 1259, on the eve of the crowning
struggle between Henry III and the baronage.

Authorities.—The relation of Matthew Paris’s work to those
of John de Cella and Roger of Wendover may best be studied
in H. R. Luard’s edition of the Chronica majora (7 vols., Rolls
series, 1872-1883), which contains valuable prefaces. The Historia

Anglorum sive historia minor (1067-1253) has been edited by F.
Madden (3 vols., Rolls series, 1866-1869). Matthew Paris is often
confused with “Matthew of Westminster,” the reputed author of
the Flores historiarum edited by H. R. Luard (3 vols., Rolls series,
1890). This work, compiled by various hands, is an edition of
Matthew Paris, with continuations extending to 1326. Matthew
Paris also wrote a life of Edmund Rich (q.v.), which is probably
the work printed in W. Wallace’s St Edmund of Canterbury (London,
1893) pp. 543-588, though this is attributed by the editor to the
monk Eustace; Vitae abbatum S Albani (up to 1225) which have
been edited by W. Watts (1640, &c.); and (possibly) the Abbreviatio
chronicorum (1000-1255), edited by F. Madden, in the third volume
of the Historia Anglorum. On the value of Matthew as an historian
see F. Liebermann in G. H. Pertz’s Scriptores xxviii. pp. 74-106;
A. Jessopp’s Studies by a Recluse (London, 1893); H. Plehn’s
Politische Character Matheus Parisiensis (Leipzig, 1897).



(H. W. C. D.)



MATTHEW OF WESTMINSTER, the name of an imaginary
person who was long regarded as the author of the Flores
Historiarum. The error was first discovered in 1826 by Sir F.
Palgrave, who said that Matthew was “a phantom who never
existed,” and later the truth of this statement was completely
proved by H. R. Luard. The name appears to have been taken
from that of Matthew of Paris, from whose Chronica majora
the earlier part of the work was mainly copied, and from Westminster,
the abbey in which the work was partially written.


The Flores historiarum is a Latin chronicle dealing with English
history from the creation to 1326, although some of the earlier
manuscripts end at 1306; it was compiled by various persons, and
written partly at St Albans and partly at Westminster. The part
from 1306 to 1326 was written by Robert of Reading (d. 1325) and
another Westminster monk. Except for parts dealing with the
reign of Edward I. its value is not great. It was first printed by
Matthew Parker, archbishop of Canterbury, in 1567, and the best
edition is the one edited with introduction by H. R. Luard for the
Rolls series (London, 1890). It has been translated into English
by C. D. Yonge (London, 1853). See Luard’s introduction, and C.
Bémont in the Revue critique d’histoire (Paris, 1891).





MATTHEWS, STANLEY (1824-1889), American jurist, was
born in Cincinnati, Ohio, on the 21st of July 1824. He graduated
from Kenyon College in 1840, studied law, and in 1842
was admitted to the bar of Maury county, Tennessee. In 1844
he became assistant prosecuting attorney of Hamilton county,
Ohio; and in 1846-1849 edited a short-lived anti-slavery paper,
the Cincinnati Herald. He was clerk of the Ohio House of
Representatives in 1848-1849, a judge of common pleas of Hamilton
county in 1850-1853, state senator in 1856-1858, and U.S.
district-attorney for the southern district of Ohio in 1858-1861.
First a Whig and then a Free-Soiler, he joined the Republican
party in 1861. After the outbreak of the Civil War he was
commissioned a lieutenant of the 23rd Ohio, of which Rutherford
B. Hayes was major; but saw service only with the 57th
Ohio, of which he was colonel, and with a brigade which he commanded
in the Army of the Cumberland. He resigned from the
army in 1863, and was judge of the Cincinnati superior court in
1863-1864. He was a Republican presidential elector in 1864
and 1868. In 1872 he joined the Liberal Republican movement,
and was temporary chairman of the Cincinnati convention
which nominated Horace Greeley for the presidency, but in the
campaign he supported Grant. In 1877, as counsel before the
Electoral Commission, he opened the argument for the Republican
electors of Florida and made the principal argument for the
Republican electors of Oregon. In March of the same year he
succeeded John Sherman as senator from Ohio, and served until
March 1879. In 1881 President Hayes nominated him as associate
justice of the Supreme Court, to succeed Noah H. Swayne;
there was much opposition, especially in the press, to this appointment,
because Matthews had been a prominent railway and
corporation lawyer and had been one of the Republican “visiting
statesmen” who witnessed the canvass of the vote of Louisiana1
in 1876; and the nomination had not been approved when the
session of Congress expired. Matthews was renominated by
President Garfield on the 15th of March, and the nomination
was confirmed by the Senate (22 for, 21 against) on the 12th of
May. He was an honest, impartial and conscientious judge.
He died in Washington, on the 22nd of March 1889.


 
1 It seems certain that Matthews and Charles Foster of Ohio gave
their written promise that Hayes, if elected, would recognize the
Democratic governors in Louisiana and South Carolina.





MATTHIAE, AUGUST HEINRICH (1769-1835), German
classical scholar, was born at Göttingen, on the 25th of December
1769, and educated at the university. He then spent some years
as a tutor in Amsterdam. In 1798 he returned to Germany, and
in 1802 was appointed director of the Friedrichsgymnasium at
Altenburg, which post he held till his death, on the 6th of January
1835. Of his numerous important works the best-known are
his Greek Grammar (3rd ed., 1835), translated into English by
E. V. Blomfield (5th ed., by J. Kenrick, 1832), his edition of
Euripides (9 vols., 1813-1829), Grundriss der Geschichte der
griechischen und römischen Litteratur (3rd ed., 1834, Eng. trans.,
Oxford, 1841) Lehrbuch für den ersten Unterricht in der Philosophie
(3rd ed., 1833), Encyklopädie und Methodologie der Philologie
(1835). His Life was written by his son Constantin (1845).

His brother, Friedrich Christian Matthiae (1763-1822),
rector of the Frankfort gymnasium, published valuable editions
of Seneca’s Letters, Aratus, and Dionysius Periegetes.



MATTHIAS, the disciple elected by the primitive Christian
community to fill the place in the Twelve vacated by Judas
Iscariot (Acts i. 21-26). Nothing further is recorded of him in
the New Testament. Eusebius (Hist. Eccl., I. xii.) says he
was, like his competitor, Barsabas Justus, one of the seventy,
and the Syriac version of Eusebius calls him throughout not
Matthias but Tolmai, i.e. Bartholomew, without confusing him
with the Bartholomew who was originally one of the Twelve,
and is often identified with the Nathanael mentioned in the
Fourth Gospel (Expository Times, ix. 566). Clement of Alexandria
says some identified him with Zacchaeus, the Clementine
Recognitions identify him with Barnabas, Hilgenfeld thinks he
is the same as Nathanael.


Various works—a Gospel, Traditions and Apocryphal Words—were
ascribed to him; and there is also extant The Acts of Andrew
and Matthias, which places his activity in “the city of the cannibals”
in Ethiopia. Clement of Alexandria quotes two sayings from the
Traditions: (1) Wonder at the things before you (suggesting, like
Plato, that wonder is the first step to new knowledge); (2) If an
elect man’s neighbour sin, the elect man has sinned.





MATTHIAS (1557-1619), Roman emperor, son of the emperor
Maximilian II. and Maria, daughter of the emperor Charles V.,
was born in Vienna, on the 24th of February 1557. Educated
by the diplomatist O. G. de Busbecq, he began his public life in
1577, soon after his father’s death, when he was invited to assume
the governorship of the Netherlands, then in the midst of the
long struggle with Spain. He eagerly accepted this invitation,
although it involved a definite breach with his Spanish kinsman,
Philip II., and entering Brussels in January 1578 was named
governor-general; but he was merely a cipher, and only held the
position for about three years, returning to Germany in October
1581. Matthias was appointed governor of Austria in 1593 by
his brother, the emperor Rudolph II.; and two years later, when
another brother, the archduke Ernest, died, he became a person
of more importance as the eldest surviving brother of the unmarried
emperor. As governor of Austria Matthias continued
the policy of crushing the Protestants, although personally he
appears to have been inclined to religious tolerance; and he
dealt with the rising of the peasants in 1595, in addition to representing
Rudolph at the imperial diets, and gaining some fame as
a soldier during the Turkish War. A few years later the discontent
felt by the members of the Habsburg family at the incompetence
of the emperor became very acute, and the lead was
taken by Matthias. Obtaining in May 1605 a reluctant consent
from his brother, he took over the conduct of affairs in Hungary,
where a revolt had broken out, and was formally recognized by
the Habsburgs as their head in April 1606, and was promised the
succession to the Empire. In June 1606 he concluded the peace
of Vienna with the rebellious Hungarians, and was thus in a
better position to treat with the sultan, with whom peace was
made in November. This pacific policy was displeasing to
Rudolph, who prepared to renew the Turkish War; but having
secured the support of the national party in Hungary and gathered
an army, Matthias forced his brother to cede to him this

kingdom, together with Austria and Moravia, both of which had
thrown in their lot with Hungary (1608). The king of Hungary,
as Matthias now became, was reluctantly compelled to grant
religious liberty to the inhabitants of Austria. The strained
relations which had arisen between Rudolph and Matthias as
a result of these proceedings were temporarily improved, and a
formal reconciliation took place in 1610; but affairs in Bohemia
soon destroyed this fraternal peace. In spite of the letter of
majesty (Majestätsbrief) which the Bohemians had extorted
from Rudolph, they were very dissatisfied with their ruler, whose
troops were ravaging their land; and in 1611 they invited
Matthias to come to their aid. Accepting this invitation, he
inflicted another humiliation upon his brother, and was crowned
king of Bohemia in May 1611. Rudolph, however, was successful
in preventing the election of Matthias as German king, or
king of the Romans, and when he died, in January 1612, no provision
had been made for a successor. Already king of Hungary
and Bohemia, however, Matthias obtained the remaining hereditary
dominions of the Habsburgs, and in June 1612 was
crowned emperor, although the ecclesiastical electors favoured
his younger brother, the archduke Albert (1559-1621).

The short reign of the new emperor was troubled by the
religious dissensions of Germany. His health became impaired
and his indolence increased, and he fell completely under the
influence of Melchior Klesl (q.v.), who practically conducted
the imperial business. By Klesl’s advice he took up an attitude
of moderation and sought to reconcile the contending religious
parties; but the proceedings at the diet of Regensburg in 1613
proved the hopelessness of these attempts, while their author was
regarded with general distrust. Meanwhile the younger Habsburgs,
led by the emperor’s brother, the archduke Maximilian,
and his cousin, Ferdinand, archduke of Styria, afterwards the
emperor Ferdinand II., disliking the peaceful policy of Klesl,
had allied themselves with the unyielding Roman Catholics,
while the question of the imperial succession was forcing its
way to the front. In 1611 Matthias had married his cousin
Anna (d. 1618), daughter of the archduke Ferdinand (d. 1595),
but he was old and childless and the Habsburgs were anxious to
retain his extensive possessions in the family. Klesl, on the one
hand, wished the settlement of the religious difficulties to precede
any arrangement about the imperial succession; the Habsburgs,
on the other, regarded the question of the succession as urgent
and vital. Meanwhile the disputed succession to the duchies of
Cleves and Jülich again threatened a European war; the imperial
commands were flouted in Cologne and Aix-la-Chapelle, and the
Bohemians were again becoming troublesome. Having decided
that Ferdinand should succeed Matthias as emperor, the Habsburgs
had secured his election as king of Bohemia in June 1617,
but were unable to stem the rising tide of disorder in that country.
Matthias and Klesl were in favour of concessions, but Ferdinand
and Maximilian met this move by seizing and imprisoning Klesl.
Ferdinand had just secured his coronation as king of Hungary
when there broke out in Bohemia those struggles which heralded
the Thirty Years’ War; and on the 20th of March 1619 the
emperor died at Vienna.


For the life and reign of Matthias the following works may be
consulted: J. Heling, Die Wahl des römischen Königs Matthias
(Belgrade, 1892); A. Gindely, Rudolf II. und seine Zeit (Prague,
1862-1868); F. Stieve, Die Verhandlungen über die Nachfolge Kaisers
Rudolf II. (Munich, 1880); P. von Chlumecky, Karl von Zierotin
und seine Zeit (Brünn, 1862-1879); A. Kerschbaumer, Kardinal
Klesel (Vienna, 1865); M. Ritter, Quellenbeiträge zur Geschichte des
Kaisers Rudolf II. (Munich, 1872); Deutsche Geschichte im Zeitalter
der Gegenreformation und des dreissigjährigen Krieges (Stuttgart,
1887, seq.); and the article on Matthias in the Allgemeine deutsche
Biographie, Bd. XX. (Leipzig, 1884); L. von Ranke, Zur deutschen
Geschichte vom Religionsfrieden bis zum 30-jährigen Kriege (Leipzig,
1888); and J. Janssen, Geschichte des deutschen Volks seit dem Ausgang
des Mittelalters (Freiburg, 1878 seq.), Eng. trans. by M. A. Mitchell
and A. M. Christie (London, 1896, seq.).





MATTHIAS I., HUNYADI (1440-1490), king of Hungary, also
known as Matthias Corvinus, a surname which he received from
the raven (corvus) on his escutcheon, second son of János Hunyadi
and Elizabeth Szilágyi, was born at Kolozsvár, probably on

the 23rd of February 1440. His tutors were the learned János
Vitéz, bishop of Nagyvárad, whom he subsequently raised to
the primacy, and the Polish humanist Gregory Sanocki. The
precocious lad quickly mastered the German, Latin and principal
Slavonic languages, frequently acting as his father’s interpreter
at the reception of ambassadors. His military training proceeded
under the eye of his father, whom he began to follow on his
campaigns when only twelve years of age. In 1453 he was
created count of Bistercze, and was knighted at the siege of Belgrade
in 1454. The same care for his welfare led his father to
choose him a bride in the powerful Cilli family, but the young
Elizabeth died before the marriage was consummated, leaving
Matthias a widower at the age of fifteen. On the death of his
father he was inveigled to Buda by the enemies of his house, and,
on the pretext of being concerned in a purely imaginary conspiracy
against Ladislaus V., was condemned to decapitation, but
was spared on account of his youth, and on the king’s death fell
into the hands of George Poděbrad, governor of Bohemia, the
friend of the Hunyadis, in whose interests it was that a national
king should sit on the Magyar throne. Poděbrad treated
Matthias hospitably and affianced him with his daughter
Catherine, but still detained him, for safety’s sake, in Prague,
even after a Magyar deputation had hastened thither to offer
the youth the crown. Matthias was the elect of the Hungarian
people, gratefully mindful of his father’s services to the state
and inimical to all foreign candidates; and though an influential
section of the magnates, headed by the palatine László
Garai and the voivode of Transylvania, Miklós Ujlaki, who had
been concerned in the judicial murder of Matthias’s brother
László, and hated the Hunyadis as semi-foreign upstarts, were
fiercely opposed to Matthias’s election, they were not strong
enough to resist the manifest wish of the nation, supported as it
was by Matthias’s uncle Mihály Szilágyi at the head of 15,000
veterans. On the 24th of January 1458, 40,000 Hungarian noblemen,
assembled on the ice of the frozen Danube, unanimously
elected Matthias Hunyadi king of Hungary, and on the 14th
of February the new king made his state entry into Buda.

The realm at this time was environed by perils. The Turks
and the Venetians threatened it from the south, the emperor
Frederick III. from the west, and Casimir IV. of Poland from
the north, both Frederick and Casimir claiming the throne.
The Czech mercenaries under Giszkra held the northern counties
and from thence plundered those in the centre. Meanwhile
Matthias’s friends had only pacified the hostile dignitaries by
engaging to marry the daughter of the palatine Garai to their
nominee, whereas Matthias not unnaturally refused to marry
into the family of one of his brother’s murderers, and on the 9th
of February confirmed his previous nuptial contract with the
daughter of George Poděbrad, who shortly afterwards was
elected king of Bohemia (March 2, 1458). Throughout 1458 the
struggle between the young king and the magnates, reinforced
by Matthias’s own uncle and guardian Szilágyi, was acute.
But Matthias, who began by deposing Garai and dismissing
Szilágyi, and then proceeded to levy a tax, without the consent
of the Diet, in order to hire mercenaries, easily prevailed.
Nor did these complications prevent him from recovering the
fortress of Galamboc from the Turks, successfully invading
Servia, and reasserting the suzerainty of the Hungarian crown
over Bosnia. In the following year there was a fresh rebellion,
when the emperor Frederick was actually crowned king by the
malcontents at Vienna-Neustadt (March 4, 1459); but Matthias
drove him out, and Pope Pius II. intervened so as to leave Matthias
free to engage in a projected crusade against the Turks,
which subsequent political complications, however, rendered impossible.
From 1461 to 1465 the career of Matthias was a perpetual
struggle punctuated by truces. Having come to an understanding
with his father-in-law Poděbrad, he was able to turn his
arms against the emperor Frederick, and in April 1462 Frederick
restored the holy crown for 60,000 ducats and was allowed to
retain certain Hungarian counties with the title of king; in return
for which concessions, extorted from Matthias by the necessity
of coping with a simultaneous rebellion of the Magyar noble

in league with Poděbrad’s son Victorinus, the emperor recognized
Matthias as the actual sovereign of Hungary. Only now
was Matthias able to turn against the Turks, who were again
threatening the southern provinces. He began by defeating
Ali Pasha, and then penetrated into Bosnia, and captured the
newly built fortress of Jajce after a long and obstinate defence
(Dec. 1463). On returning home he was crowned with the holy
crown on the 29th of March 1464, and, after driving the Czechs
out of his northern counties, turned southwards again, this time
recovering all the parts of Bosnia which still remained in Turkish
hands.

A political event of the first importance now riveted his attention
upon the north. Poděbrad, who had gained the throne
of Bohemia with the aid of the Hussites and Utraquists, had long
been in ill odour at Rome, and in 1465 Pope Paul II. determined
to depose the semi-Catholic monarch. All the neighbouring
princes, the emperor, Casimir IV. of Poland and Matthias, were
commanded in turn to execute the papal decree of deposition,
and Matthias gladly placed his army at the disposal of the Holy
See. The war began on the 31st of May 1468, but, as early as
the 27th of February 1469, Matthias anticipated an alliance between
George and Frederick by himself concluding an armistice
with the former. On the 3rd of May the Czech Catholics elected
Matthias king of Bohemia, but this was contrary to the wishes of
both pope and emperor, who preferred to partition Bohemia.
But now George discomfited all his enemies by suddenly excluding
his own son from the throne in favour of Ladislaus, the
eldest son of Casimir IV., thus skilfully enlisting Poland on his
side. The sudden death of Poděbrad on the 22nd of March
1471 led to fresh complications. At the very moment when
Matthias was about to profit by the disappearance of his most
capable rival, another dangerous rebellion, headed by the
primate and the chief dignitaries of the state, with the object
of placing Casimir, son of Casimir IV., on the throne, paralysed
Matthias’s foreign policy during the critical years 1470-1471.
He suppressed this domestic rebellion indeed, but in the meantime
the Poles had invaded the Bohemian domains with 60,000
men, and when in 1474 Matthias was at last able to take the field
against them in order to raise the siege of Breslau, he was obliged
to fortify himself in an entrenched camp, whence he so
skilfully harried the enemy that the Poles, impatient to return
to their own country, made peace at Breslau (Feb. 1475) on an
uti possidetis basis, a peace subsequently confirmed by the congress
of Olmütz (July 1479). During the interval between these
peaces, Matthias, in self-defence, again made war on the emperor,
reducing Frederick to such extremities that he was glad to accept
peace on any terms. By the final arrangement made between
the contending princes, Matthias recognized Ladislaus as
king of Bohemia proper in return for the surrender of Moravia,
Silesia and Upper and Lower Lusatia, hitherto component
parts of the Czech monarchy, till he should have redeemed them
for 400,000 florins. The emperor promised to pay Matthias
100,000 florins as a war indemnity, and recognized him as the
legitimate king of Hungary on the understanding that he should
succeed him if he died without male issue, a contingency at this
time somewhat improbable, as Matthias, only three years previously
(Dec. 15, 1476), had married his third wife, Beatrice of
Naples, daughter of Ferdinand of Aragon.

The endless tergiversations and depredations of the emperor
speedily induced Matthias to declare war against him for the
third time (1481), the Magyar king conquering all the fortresses
in Frederick’s hereditary domains. Finally, on the 1st of June
1485, at the head of 8000 veterans, he made his triumphal entry
into Vienna, which he henceforth made his capital. Styria,
Carinthia and Carniola were next subdued, and Trieste was only
saved by the intervention of the Venetians. Matthias consolidated
his position by alliances with the dukes of Saxony and
Bavaria, with the Swiss Confederation, and the archbishop of
Salzburg, and was henceforth the greatest potentate in central
Europe. His far-reaching hand even extended to Italy. Thus,
in 1480, when a Turkish fleet seized Otranto, Matthias, at the
earnest solicitation of the pope, sent Balasz Magyar to recover
the fortress, which surrendered to him on the 10th of May 1481.
Again in 1488, Matthias took Ancona under his protection for a
time and occupied it with a Hungarian garrison.

Though Matthias’s policy was so predominantly occidental
that he soon abandoned his youthful idea of driving the Turks
out of Europe, he at least succeeded in making them respect
Hungarian territory. Thus in 1479 a huge Turkish army, on
its return home from ravaging Transylvania, was annihilated
at Szászváros (Oct. 13), and in 1480 Matthias recaptured Jajce,
drove the Turks from Servia and erected two new military
banates, Jajce and Srebernik, out of reconquered Bosnian territory.
On the death of Mahommed II. in 1481, a unique opportunity
for the intervention of Europe in Turkish affairs presented
itself. A civil war ensued in Turkey between his sons Bayezid
and Jem, and the latter, being worsted, fled to the knights
of Rhodes, by whom he was kept in custody in France (see
Bayezid II.). Matthias, as the next-door neighbour of the
Turks, claimed the custody of so valuable a hostage, and would
have used him as a means of extorting concessions from Bayezid.
But neither the pope nor the Venetians would hear of such a
transfer, and the negotiations on this subject greatly embittered
Matthias against the Curia. The last days of Matthias were
occupied in endeavouring to secure the succession to the throne
for his illegitimate son János (see Corvinus, János); but Queen
Beatrice, though childless, fiercely and openly opposed the idea
and the matter was still pending when Matthias, who had long
been crippled by gout, expired very suddenly on Palm Sunday,
the 4th of April 1490.

Matthias Hunyadi was indisputably the greatest man of his
day, and one of the greatest monarchs who ever reigned. The
precocity and universality of his genius impress one the most.
Like Napoleon, with whom he has often been compared, he was
equally illustrious as a soldier, a statesman, an orator, a legislator
and an administrator. But in all moral qualities the brilliant
adventurer of the 15th was infinitely superior to the brilliant
adventurer of the 19th century. Though naturally passionate,
Matthias’s self-control was almost superhuman, and throughout
his stormy life, with his innumerable experiences of ingratitude
and treachery, he never was guilty of a single cruel or vindictive
action. His capacity for work was inexhaustible. Frequently
half his nights were spent in reading, after the labour of his most
strenuous days. There was no branch of knowledge in which he
did not take an absorbing interest, no polite art which he did not
cultivate and encourage. His camp was a school of chivalry,
his court a nursery of poets and artists. Matthias was a middle-sized,
broad-shouldered man of martial bearing, with a large
fleshy nose, hair reaching to his heels, and the clean-shaven,
heavy chinned face of an early Roman emperor.


See Vilmós Fraknói, King Matthias Hunyadi (Hung., Budapest,
1890, German ed., Freiburg, 1891); Ignácz Acsády, History of the
Hungarian Realm (Hung. vol. i., Budapest, 1904); József Teleki,
The Age of the Hunyadis in Hungary (Hung., vols. 3-5, Budapest,
1852-1890); V. Fraknói, Life of János Vitéz (Hung. Budapest
1879); Karl Schober, Die Eroberung Niederösterreichs durch Matthias
Corvinus (Vienna, 1879); János Huszár, Matthias’s Black Army
(Hung. Budapest, 1890); Antonio Bonfini, Rerum hungaricarum
decades (7th ed., Leipzig, 1771); Aeneas Sylvius, Opera (Frankfort,
1707); The Correspondence of King Matthias (Hung. and Lat.,
Budapest, 1893); V. Fraknói, The Embassies of Cardinal Carvajal
to Hungary (Hung., Budapest, 1889); Marzio Galeotti, De egregie
sapienter et jocose, dictis ac factis Matthiae regis (Script. reg. hung. I.)
(Vienna, 1746). Of the above the first is the best general sketch
and is rich in notes; the second somewhat chauvinistic but excellently
written; the third the best work for scholars; the seventh, eighth
and eleventh are valuable as being by contemporaries.
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MATTHISSON, FRIEDRICH VON (1761-1831), German poet,
was born at Hohendodeleben near Magdeburg, the son of the
village pastor, on the 23rd of January 1761. After studying
theology and philology at the university of Halle, he was
appointed in 1781 master at the classical school Philanthropin
in Dessau. This once famous seminary was, however, then
rapidly decaying in public favour, and in 1784 Matthisson was
glad to accept a travelling tutorship. He lived for two years
with the Swiss author Bonstetten at Nyon on the lake of Geneva.

In 1794 he was appointed reader and travelling companion to the
princess Louisa of Anhalt-Dessau. In 1812 he entered the service
of the king of Württemberg, was ennobled, created counsellor
of legation, appointed intendant of the court theatre and chief
librarian of the royal library at Stuttgart. In 1828 he retired
and settled at Wörlitz near Dessau, where he died on the 12th
of March 1831. Matthisson enjoyed for a time a great popularity
on account of his poems, Gedichte (1787; 15th ed., 1851; new ed.,
1876), which Schiller extravagantly praised for their melancholy
sweetness and their fine descriptions of scenery. The verse is
melodious and the language musical, but the thought and sentiments
they express are too often artificial and insincere. His
Adelaide has been rendered famous owing to Beethoven’s setting
of the song. Of his elegies, Die Elegie in den Ruinen eines alten
Bergschlosses is still a favourite. His reminiscences, Erinnerungen
(5 vols., 1810-1816), contain interesting accounts of his
travels.


Matthisson’s Schriften appeared in eight volumes (1825-1829),
of which the first contains his poems, the remainder his Erinnerungen;
a ninth volume was added in 1833 containing his biography by
H. Döring. His Literarischer Nachlass, with a selection from his correspondence,
was published in four volumes by F. R. Schoch in 1832.





MATTING, a general term embracing many coarse woven or
plaited fibrous materials used for covering floors or furniture,
for hanging as screens, for wrapping up heavy merchandise and
for other miscellaneous purposes. In the United Kingdom,
under the name of “coir” matting, a large amount of a coarse
kind of carpet is made from coco-nut fibre; and the same material,
as well as strips of cane, Manila hemp, various grasses and rushes,
is largely employed in various forms for making door mats.
Large quantities of the coco-nut fibre are woven in heavy looms,
then cut up into various sizes, and finally bound round the edges
by a kind of rope made from the same material. The mats may
be of one colour only, or they may be made of different colours
and in different designs. Sometimes the names of institutions
are introduced into the mats. Another type of mat is made
exclusively from the above-mentioned rope by arranging
alternate layers in sinuous and straight paths, and then stitching
the parts together. It is also largely used for the outer covering
of ships’ fenders. Perforated and otherwise prepared rubber,
as well as wire-woven material, are also largely utilized for door
and floor mats. Matting of various kinds is very extensively
employed throughout India for floor coverings, the bottoms of
bedsteads, fans and fly-flaps, &c.; and a considerable export trade
in such manufactures is carried on. The materials used are
numerous; but the principal substances are straw, the bulrushes
Typha elephantina and T. angustifolia, leaves of the date palm
(Phoenix sylvestris), of the dwarf palm (Chamaerops Ritchiana),
of the Palmyra palm (Borassus flabelliformis), of the coco-nut
palm (Cocos nucifera) and of the screw pine (Pandanus odoratissimus),
the munja or munj grass (Saccharum Munja) and allied
grasses, and the mat grasses Cyperus textilis and C. Pangorei,
from the last of which the well-known Palghat mats of the Madras
Presidency are made. Many of these Indian grass-mats are
admirable examples of elegant design, and the colours in which
they are woven are rich, harmonious and effective in the highest
degree. Several useful household articles are made from the
different kinds of grasses. The grasses are dyed in all shades
and plaited to form attractive designs suitable for the purposes
to which they are to be applied. This class of work obtains
in India, Japan and other Eastern countries. Vast quantities
of coarse matting used for packing furniture, heavy and coarse
goods, flax and other plants, &c., are made in Russia from the
bast or inner bark of the lime tree. This industry centres in
the great forest governments of Viatka, Nizhniy-Novgorod,
Kostroma, Kazan, Perm and Simbirsk.



MATTOCK (O.E. mattuc, of uncertain origin), a tool having a
double iron head, of which one end is shaped like an adze, and
the other like a pickaxe. The head has a socket in the centre
in which the handle is inserted transversely to the blades. It
is used chiefly for grubbing and rooting among tree stumps in
plantations and copses, where the roots are too close for the use
of a spade, or for loosening hard soil.



MATTO GROSSO, an inland state of Brazil, bounded N. by
Amazonas and Pará, E. by Goyaz, Minas Geraes, São Paulo and
Paraná, S. by Paraguay and S.W. and W. by Bolivia. It ranks
next to Amazonas in size, its area, which is largely unsettled and
unexplored, being 532,370 sq. m., and its population only 92,827
in 1890 and 118,025 in 1900. No satisfactory estimate of its
Indian population can be made. The greater part of the state
belongs to the western extension of the Brazilian plateau, across
which, between the 14th and 16th parallels, runs the watershed
which separates the drainage basins of the Amazon and La Plata.
This elevated region is known as the plateau of Matto Grosso,
and its elevations so far as known rarely exceed 3000 ft. The
northern slope of this great plateau is drained by the Araguaya-Tocantins,
Xingú, Tapajos and Guaporé-Mamoré-Madeira,
which flow northward, and, except the first, empty into the
Amazon; the southern slope drains southward through a multitude
of streams flowing into the Paraná and Paraguay. The
general elevation in the south part of the state is much lower,
and large areas bordering the Paraguay are swampy, partially
submerged plains which the sluggish rivers are unable to drain.
The lowland elevations in this part of the state range from 300
to 400 ft. above sea-level, the climate is hot, humid and unhealthy,
and the conditions for permanent settlement are apparently
unfavourable. On the highlands, however, which contain
extensive open campos, the climate, though dry and hot, is
considered healthy. The basins of the Paraná and Paraguay
are separated by low mountain ranges extending north from
the sierras of Paraguay. In the north, however, the ranges
which separate the river valleys are apparently the remains of
the table-land through which deep valleys have been eroded.
The resources of Matto Grosso are practically undeveloped,
owing to the isolated situation of the state, the costs of
transportation and the small population.

The first industry was that of mining, gold having been discovered
in the river valleys on the southern slopes of the plateau,
and diamonds on the head-waters of the Paraguay, about
Diamantino and in two or three other districts. Gold is found
chiefly in placers, and in colonial times the output was large,
but the deposits were long ago exhausted and the industry is
now comparatively unimportant. As to other minerals little
is definitely known. Agriculture exists only for the supply of
local needs, though tobacco of a superior quality is grown.
Cattle-raising, however, has received some attention and is the
principal industry of the landowners. The forest products
of the state include fine woods, rubber, ipecacuanha, sarsaparilla,
jaborandi, vanilla and copaiba. There is little export,
however, the only means of communication being down the
Paraguay and Paraná rivers by means of subsidized steamers.
The capital of the state is Cuyabá, and the chief commercial
town is Corumbá at the head of navigation for the larger river
boats, and 1986 m. from the mouth of the La Plata. Communication
between these two towns is maintained by a line of
smaller boats, the distance being 517 m.

The first permanent settlements in Matto Grosso seem to
have been made in 1718 and 1719, in the first year at Forquilha
and in the second at or near the site of Cuyabá, where rich
placer mines had been found. At this time all this inland
region was considered a part of São Paulo, but in 1748 it was
made a separate capitania and was named Matto Grosso (“great
woods”). In 1752 its capital was situated on the right bank of
the Guaporé river and was named Villa Bella da Santissima
Trindade de Matto Grosso, but in 1820 the seat of government
was removed to Cuyabá and Villa Bella has fallen into decay.
In 1822 Matto Grosso became a province of the empire and in
1889 a republican state. It was invaded by the Paraguayans
in the war of 1860-65.



MATTOON, a city of Coles county, Illinois, U.S.A., in the east
central part of the state, about 12 m. south-east of Peoria. Pop.
(1890), 6833; (1900), 9622, of whom 430 were foreign-born;
(1910 census) 11,456. It is served by the Illinois Central
and Cleveland, Cincinnati, Chicago & St Louis railways, which
have repair shops here, and by inter-urban electric lines. The

city has a public library, a Methodist Episcopal Hospital, and
an Old Folks’ Home, the last supported by the Independent
Order of Odd Fellows. Mattoon is an important shipping point
for Indian corn and broom corn, extensively grown in the vicinity,
and for fruit and livestock. Among its manufactures are
foundry and machine shop products, stoves and bricks; in 1905
the factory product was valued at $1,308,781, an increase of
71.2% over that in 1900. The municipality owns the waterworks
and an electric lighting plant. Mattoon was first settled
about 1855, was named in honour of William Mattoon, an early
landowner, was first chartered as a city in 1857, and was reorganized
under a general state law in 1879.



MATTRESS (O.Fr. materas, mod. matelas; the origin is the
Arab. al-materah, cushion, whence Span. and Port. almadraque,
Ital. materasso), the padded foundation of a bed, formed of
canvas or other stout material stuffed with wool, hair, flock or
straw; in the last case it is properly known as a “palliasse”
(Fr. paille, straw; Lat. palea); but this term is often applied to
an under-mattress stuffed with substances other than straw. The
padded mattress on which lay the feather-bed has been replaced
by the “wire-mattress,” a network of wire stretched on a light
wooden or iron frame, which is either a separate structure or a
component part of the bedstead itself. The “wire-mattress”
has taken the place of the “spring mattress,” in which spiral
springs support the stuffing. The term “mattress” is used in
engineering for a mat of brushwood, faggots, &c., corded together
and used as a foundation or as surface in the construction
of dams, jetties, dikes, &c.



MATURIN, CHARLES ROBERT (1782-1824), Irish novelist
and dramatist, was born in Dublin in 1782. His grandfather,
Gabriel Jasper Maturin, had been Swift’s successor in the
deanery of St Patrick. Charles Maturin was educated at Trinity
College, Dublin, and became curate of Loughrea and then of
St Peter’s, Dublin. His first novels, The Fatal Revenge; or, the
Family of Montorio (1807), The Wild Irish Boy (1808), The
Milesian Chief (1812), were issued under the pseudonym of
“Dennis Jasper Murphy.” All these were mercilessly ridiculed,
but the irregular power displayed in them attracted the notice
of Sir Walter Scott, who recommended the author to Byron.
Through their influence Maturin’s tragedy of Bertram was produced
at Drury Lane in 1816, with Kean and Miss Kelly in the
leading parts. A French version by Charles Nodier and Baron
Taylor was produced in Paris at the Théâtre Favart. Two more
tragedies, Manuel (1817) and Fredolfo (1819), were failures, and
his poem The Universe (1821) fell flat. He wrote three more
novels, Women (1818), Melmoth, the Wanderer (1820), and The
Albigenses (1824). Melmoth, which forms its author’s title to
remembrance, is the best of them, and has for hero a kind of
“Wandering Jew.” Honoré de Balzac wrote a sequel to it under
the title of Melmoth réconcilié à l’église (1835). Maturin died in
Dublin on the 30th of October 1824.



MATVYEEV, ARTAMON SERGYEEVICH (  -1682),
Russian statesman and reformer, was one of the greatest of the
precursors of Peter the Great. His parentage and the date of his
birth are uncertain. Apparently his birth was humble, but when
the obscure figure of the young Artamon emerges into the light
of history we find him equipped at all points with the newest
ideas, absolutely free from the worst prejudices of his age, a ripe
scholar, and even an author of some distinction. In 1671 the
tsar Alexius and Artamon were already on intimate terms, and
on the retirement of Orduin-Nashchokin Matvyeev became the
tsar’s chief counsellor. It was at his house, full of all the
wondrous, half-forbidden novelties of the west, that Alexius,
after the death of his first consort, Martha, met Matvyeev’s
favourite pupil, the beautiful Natalia Naruishkina, whom he
married on the 21st of January 1672. At the end of the year
Matvyeev was raised to the rank of okolnichy, and on the 1st of
September 1674 attained the still higher dignity of boyar.
Matvyeev remained paramount to the end of the reign and
introduced play-acting and all sorts of refining western novelties
into Muscovy. The deplorable physical condition of Alexius’s
immediate successor, Theodore III. suggested to Matvyeev the
desirability of elevating to the throne the sturdy little tsarevich
Peter, then in his fourth year. He purchased the allegiance of
the stryeltsi, or musketeers, and then, summoning the boyars
of the council, earnestly represented to them that Theodore,
scarce able to live, was surely unable to reign, and urged the
substitution of little Peter. But the reactionary boyars, among
whom were the near kinsmen of Theodore, proclaimed him tsar
and Matvyeev was banished to Pustozersk, in northern Russia,
where he remained till Theodore’s death (April 27, 1682).
Immediately afterwards Peter was proclaimed tsar by the
patriarch, and the first ukaz issued in Peter’s name summoned
Matvyeev to return to the capital and act as chief adviser to the
tsaritsa Natalia. He reached Moscow on the 15th of May,
prepared “to lay down his life for the tsar,” and at once proceeded
to the head of the Red Staircase to meet and argue with
the assembled stryeltsi, who had been instigated to rebel by the
anti-Petrine faction. He had already succeeded in partially
pacifying them, when one of their colonels began to abuse the
still hesitating and suspicious musketeers. Infuriated, they
seized and flung Matvyeev into the square below, where he was
hacked to pieces by their comrades.


See R. Nisbet Bain, The First Romanovs (London, 1905); M. P.
Pogodin, The First Seventeen Years of the Life of Peter the Great (Rus.),
(Moscow, 1875); S. M. Solovev, History of Russia (Rus.), (vols. 12, 13,
(St Petersburg, 1895, &c.); L. Shehepotev, A. S. Matvyeev as an Educational
and Political Reformer (Rus.), (St Petersburg, 1906).
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MAUBEUGE, a town of northern France, in the department
of Nord, situated on both banks of the Sambre, here canalized,
231⁄2 m. by rail E. by S. of Valenciennes, and about 2 m. from the
Belgian frontier. Pop. (1906), town 13,569, commune 21,520.
As a fortress Maubeuge has an old enceinte of bastion trace which
serves as the centre of an important entrenched camp of 18 m.
perimeter, constructed for the most part after the war of 1870,
but since modernized and augmented. The town has a board
of trade arbitration, a communal college, a commercial and industrial
school; and there are important foundries, forges and
blast-furnaces, together with manufactures of machine-tools,
porcelain, &c. It is united by electric tramway with Hautmont
(pop. 12,473), also an important metallurgical centre.

Maubeuge (Malbodium) owes its origin to a double monastery,
for men and women, founded in the 7th century by St Aldegonde
relics of whom are preserved in the church. It subsequently
belonged to the territory of Hainault. It was burnt by Louis
XI., by Francis I., and by Henry II., and was finally assigned
to France by the Treaty of Nijmwegen. It was fortified at
Vauban by the command of Louis XIV., who under Turenne
first saw military service there. Besieged in 1793 by Prince
Josias of Coburg, it was relieved by the victory of Wattignies,
which is commemorated by a monument in the town. It was
unsuccessfully besieged in 1814, but was compelled to capitulate,
after a vigorous resistance, in the Hundred Days.



MAUCH CHUNK, a borough and the county-seat of Carbon
county, Pennsylvania, U.S.A., on the W. bank of the Lehigh
river and on the Lehigh Coal and Navigation Company’s
Canal, 46 m. by rail W.N.W. of Easton. Pop. (1800), 4101;
(1900), 4029 (571 foreign-born); (1910), 3952. Mauch Chunk
is served by the Central of New Jersey railway and, at East
Mauch Chunk, across the river, connected by electric railway,
by the Lehigh Valley railway. The borough lies in the valley
of the Lehigh river, along which runs one of its few streets
and in another deeply cut valley at right angles to the river;
through this second valley east and west runs the main street,
on which is an electric railway; parallel to it on the south is High
Street, formerly an Irish settlement; half way up the steep hill,
and on the north at the top of the opposite hill is the ward of
Upper Mauch Chunk, reached by the electric railway. An
incline railway, originally used to transport coal from the mines
to the river and named the “Switch-Back,” now carries tourists
up the steep slopes of Mount Pisgah and Mount Jefferson, to
Summit Hill, a rich anthracite coal region, with a famous
“burning mine,” which has been on fire since 1832, and then
back. An electric railway to the top of Flagstaff Mountain,
built in 1900, was completed in 1901 to Lehighton, 4 m. south-east

of Mauch Chunk, where coal is mined and silk and stoves
are manufactured, and which had a population in 1900 of 4629,
and in 1910 of 5316. Immediately above Mauch Chunk the
river forms a horseshoe; on the opposite side, connected by a
bridge, is the borough of East Mauch Chunk (pop. 1900, 3458;
1910, 3548); and 2 m. up the river is Glen Onoko, with fine falls
and cascades. The principal buildings in Mauch Chunk are the
county court house, a county gaol, a Young Men’s Christian
Association building, and the Dimmick Memorial Library (1890).
The borough was long a famous shipping point for coal. It now
has ironworks and foundries, and in East Mauch Chunk there
are silk mills. The name is Indian and means “Bear Mountain,”
this English name being used for a mountain on the east side of
the river. The borough was founded by the Lehigh Coal and
Navigation Company in 1818. This company began in 1827
the operation of the “Switch-Back,” probably the first railway
in the country to be used for transporting coal. In 1831 the
town was opened to individual enterprise, and in 1850 it was
incorporated as a borough. Mauch Chunk was for many years
the home of Asa Packer, the projector and builder of the
Lehigh Valley railroad from Mauch Chunk to Easton.



MAUCHLINE, a town in the division of Kyle, Ayrshire,
Scotland. Pop. (1901), 1767. It lies 8 m. E.S.E. of Kilmarnock
and 11 m. E. by N. of Ayr by the Glasgow and South-Western
railway. It is situated on a gentle slope about 1 m. from the
river Ayr, which flows through the south of the parish of Mauchline.
It is noted for its manufacture of snuff-boxes and knick-knacks
in wood, and of curling-stones. There is also some
cabinet-making, besides spinning and weaving, and its horse
fairs and cattle markets have more than local celebrity. The
parish church, dating from 1829, stands in the middle of the
village, and on the green a monument, erected in 1830, marks
the spot where five Covenanters were killed in 1685. Robert
Burns lived with his brother Gilbert on the farm of Mossgiel,
about a mile to the north, from 1784 to 1788. Mauchline
kirkyard was the scene of the “Holy Fair”; at “Poosie Nansie’s”
(Agnes Gibson’s)—still, though much altered, a popular inn—the
“Jolly Beggars” held their high jinks; near the church (in the
poet’s day an old, barn-like structure) was the Whiteford Arms
inn, where on a pane of glass Burns wrote the epitaph on John
Dove, the landlord; “auld Nanse Tinnock’s” house, with the
date of 1744 above the door, nearly faces the entrance to the
churchyard; the Rev. William Auld was minister of Mauchline,
and “Holy Willie,” whom the poet scourged in the celebrated
“Prayer,” was one of “Daddy Auld’s” elders; behind the
kirkyard stands the house of Gavin Hamilton, the lawyer and
firm friend of Burns, in which the poet was married. The
braes of Ballochmyle, where he met the heroine of his song,
“The Lass o’ Ballochmyle,” lie about a mile to the south-east.
Adjoining them is the considerable manufacturing town of
Catrine (pop. 2340), with cotton factories, bleach fields and
brewery, where Dr Matthew Stewart (1717-1785), the father
of Dugald Stewart—had a mansion, and where there is a big
water-wheel said to be inferior in size only to that of Laxey in the
Isle of Man. Barskimming House, 2 m. south by west of Mauchline,
the seat of Lord-President Miller (1717-1789), was burned
down in 1882. Near the confluence of the Fail and the Ayr was
the scene of Burns’s parting with Highland Mary.



MAUDE, CYRIL (1862-  ), English actor, was born in
London and educated at Charterhouse. He began his career
as an actor in 1883 in America, and from 1896 to 1905 was
co-manager with F. Harrison of the Haymarket Theatre, London.
There he became distinguished for his quietly humorous acting
in many parts. In 1906 he went into management on his own
account, and in 1907 opened his new theatre The Playhouse.
In 1888 he married the actress Winifred Emery (b. 1862), who
had made her London début as a child in 1875, and acted with
Irving at the Lyceum between 1881 and 1887. She was a
daughter of Samuel Anderson Emery (1817-1881) and granddaughter
of John Emery (1777-1822), both well-known actors in
their day.



MAULE, a coast province of central Chile, bounded N. by
Talea, E. by Linares and Nuble, and S. by Concepción, and lying
between the rivers Maule and Itata, which form its northern
and southern boundaries. Pop. (1895), 119,791; area, 2475
sq. m. Maule is traversed from north to south by the coast
range and its surfaces are much broken. The Buchupureo
river flows westward across the province. The climate is mild
and healthy. Agriculture and stock-raising are the principal
occupations, and hides, cattle, wheat and timber are exported.
Transport facilities are afforded by the Maule and the Itata,
which are navigable, and by a branch of the government railway
from Cauquenes to Parral, an important town of southern
Linares. The provincial capital, Cauquenes (pop., in 1895,
8574; 1902 estimate, 9895), is centrally situated on the Buchupureo
river, on the eastern slopes of the coast cordilleras. The
town and port of Constitución (pop., in 1900, about 7000) on
the south bank of the Maule, one mile above its mouth, was
formerly the capital of the province. The port suffers from a
dangerous bar at the mouth of the river, but is connected with
Talca by rail and has a considerable trade.

The Maule river, from which the province takes its name, is of
historic interest because it is said to have marked the southern
limits of the Inca Empire. It rises in the Laguna del Maule, an
Andean lake near the Argentine frontier, 7218 ft. above sea-level,
and flows westward about 140 m. to the Pacific, into which it
discharges in 35° 18′ S. The upper part of its drainage basin, to
which the Anuario Hydrografico gives an area of 8000 sq. m.,
contains the volcanoes of San Pedro (11,800 ft.), the Descabezado
(12,795 ft.), and others of the same group of lower elevations.
The upper course and tributaries of the Maule, principally in the
province of Linares, are largely used for irrigation.



MAULÉON, SAVARI DE (d. 1236), French soldier, was the son
of Raoul de Mauléon, vicomte de Thouars and lord of Mauléon
(now Châtillon-sur-Sèvre). Having espoused the cause of Arthur
of Brittany, he was captured at Mirebeau (1202), and imprisoned
in the château of Corfe. But John set him at liberty in 1204,
gained him to his side and named him seneschal of Poitou (1205).
In 1211 Savari de Mauléon assisted Raymond VI. count of
Toulouse, and with him besieged Simon de Montfort in Castelnaudary.
Philip Augustus bought his services in 1212 and gave
him command of a fleet which was destroyed in the Flemish port
of Damme. Then Mauléon returned to John, whom he aided in his
struggle with the barons in 1215. He was one of those whom
John designated on his deathbed for a council of regency (1216).
Then he went to Egypt (1219), and was present at the taking of
Damietta. Returning to Poitou he was a second time seneschal
for the king of England. He defended Saintonge against Louis
VIII. in 1224, but was accused of having given La Rochelle
up to the king of France, and the suspicions of the English again
threw him back upon the French. Louis VIII. then turned over
to him the defence of La Rochelle and the coast of Saintonge.
In 1227 he took part in the rising of the barons of Poitiers and
Anjou against the young Louis IX. He enjoyed a certain
reputation for his poems in the langue d’oc.


See Chilhaud-Dumaine, “Savari de Mauléon,” in Positions des
Thèses des élèves de l’École des Chartes (1877); Histoire littéraire
de la France, xviii. 671-682.





MAULSTICK, or Mahlstick, a stick with a soft leather or
padded head, used by painters to support the hand that holds the
brush. The word is an adaptation of the Dutch maalstok, i.e. the
painter’s stick, from malen, to paint.



MAUNDY THURSDAY (through O.Fr. mandé from Lat.
mandatum, commandment, in allusion to Christ’s words: “A new
commandment give I unto you,” after he had washed the disciples’
feet at the Last Supper), the Thursday before Easter. Maundy
Thursday is sometimes known as Sheer or Chare Thursday,
either in allusion, it is thought, to the “shearing” of heads and
beards in preparation for Easter, or more probably in the word’s
Middle English sense of “pure,” in allusion to the ablutions of the
day. The chief ceremony, as kept from the early middle ages
onwards—the washing of the feet of twelve or more poor men or
beggars—was in the early Church almost unknown. Of Chrysostom
and St Augustine, who both speak of Maundy Thursday

as being marked by a solemn celebration of the Sacrament, the
former does not mention the foot-washing, and the latter merely
alludes to it. Perhaps an indication of it may be discerned as
early as the 4th century in a custom, current in Spain, northern
Italy and elsewhere, of washing the feet of the catechumens
towards the end of Lent before their baptism. It was not,
however, universal, and in the 48th canon of the synod of Elvira
(A.D. 306) it is expressly prohibited (cf. Corp. Jur. Can., c. 104,
caus. i. qu. 1). From the 4th century ceremonial foot-washing
became yearly more common, till it was regarded as a necessary
rite, to be performed by the pope, all Catholic sovereigns,
prelates, priests and nobles. In England the king washed the
feet of as many poor men as he was years old, and then distributed
to them meat, money and clothes. At Durham Cathedral, until
the 16th century, every charity-boy had a monk to wash his feet.
At Peterborough Abbey, in 1530, Wolsey made “his maund in
Our Lady’s Chapel, having fifty-nine poor men whose feet he
washed and kissed; and after he had wiped them he gave every
of the said poor men twelve pence in money, three ells of good
canvas to make them shirts, a pair of new shoes, a cast of red
herrings and three white herrings.” Queen Elizabeth performed
the ceremony, the paupers’ feet, however, being first washed by
the yeomen of the laundry with warm water and sweet herbs.
James II. was the last English monarch to perform the rite.
William III. delegated the washing to his almoner, and this was
usual until the middle of the 18th century. Since 1754 the foot-washing
has been abandoned, and the ceremony now consists
of the presentation of Maundy money, officially called Maundy
Pennies. These were first coined in the reign of Charles II.
They come straight from the Mint, and have their edges unmilled.
The service which formerly took place in the Chapel Royal,
Whitehall, is now held in Westminster Abbey. A procession
is formed in the nave, consisting of the lord high almoner representing
the sovereign, the clergy and the yeomen of the guard,
the latter carrying white and red purses in baskets. The
clothes formerly given are now commuted for in cash. The full
ritual is gone through by the Roman Catholic archbishop of
Westminster, and abroad it survives in all Catholic countries, a
notable example being that of the Austrian emperor. In the
Greek Church the rite survives notably at Moscow, St Petersburg
and Constantinople. It is on Maundy Thursday that in the
Church of Rome the sacred oil is blessed, and the chrism prepared
according to an elaborate ritual which is given in the Pontificale.



MAUPASSANT, HENRI RENÉ ALBERT GUY DE (1850-1893),
French novelist and poet, was born at the Château of Miromesnil
in the department of Seine-Inférieure on the 5th August 1850.
His grandfather, a landed proprietor of a good Lorraine family,
owned an estate at Neuville-Champ-d’Oisel near Rouen, and
bequeathed a moderate fortune to his son, a Paris stockbroker,
who married Mademoiselle Laure Lepoitevin. Maupassant was
educated at Yvetot and at the Rouen lycée. A copy of verses
entitled Le Dieu créateur, written during his year of philosophy,
has been preserved and printed. He entered the ministry of
marine, and was promoted by M. Bardoux to the Cabinet de
l’Instruction publique. A pleasant legend says that, in a report
by his official chief, Maupassant is mentioned as not reaching the
standard of the department in the matter of style. He may very
well have been an unsatisfactory clerk, as he divided his time
between rowing expeditions and attending the literary gatherings
at the house of Gustave Flaubert, who was not, as he is often
alleged to be, connected with Maupassant by any blood tie.
Flaubert was not his uncle, nor his cousin, nor even his godfather,
but merely an old friend of Madame de Maupassant, whom he
had known from childhood. At the literary meetings Maupassant
seldom shared in the conversation. Upon those who met
him—Tourgenieff, Alphonse Daudet, Catulle Mendès, José-Maria
de Heredia and Émile Zola—he left the impression of a
simple young athlete. Even Flaubert, to whom Maupassant
submitted some sketches, was not greatly struck by their talent,
though he encouraged the youth to persevere. Maupassant’s
first essay was a dramatic piece twice given at Étretat in 1873
before an audience which included Tourgenieff, Flaubert and
Meilhac. In this indecorous performance, of which nothing
more is heard, Maupassant played the part of a woman. During
the next seven years he served a severe apprenticeship to Flaubert,
who by this time realized his pupil’s exceptional gifts. In
1880 Maupassant published a volume of poems, Des Vers, against
which the public prosecutor of Etampes took proceedings that
were finally withdrawn through the influence of the senator
Cordier. From Flaubert, who had himself been prosecuted for
his first book, Madame Bovary, there came a letter congratulating
the poet on the similarity between their first literary experiences.
Des Vers is an extremely interesting experiment, which shows
Maupassant to us still hesitating in his choice of a medium; but
he recognized that it was not wholly satisfactory, and that its
chief deficiency—the absence of verbal melody—was fatal.
Later in the same year he contributed to the Soirées de Médan, a
collection of short stories by MM. Zola, J.-K. Huysmans, Henry
Céard, Léon Hennique and Paul Alexis; and in Boule de suif the
young unknown author revealed himself to his amazed collaborators
and to the public as an admirable writer of prose and a
consummate master of the conte. There is perhaps no other
instance in modern literary history of a writer beginning, as a
fully equipped artist, with a genuine masterpiece. This early
success was quickly followed by another. The volume entitled
La Maison Tellier (1881) confirmed the first impression, and
vanquished even those who were repelled by the author’s
choice of subjects. In Mademoiselle Fifi (1883) he repeated his
previous triumphs as a conteur, and in this same year he, for the
first time, attempted to write on a larger scale. Choosing to
portray the life of a blameless girl, unfortunate in her marriage,
unfortunate in her son, consistently unfortunate in every
circumstance of existence, he leaves her, ruined and prematurely
old, clinging to the tragic hope, which time, as one feels, will belie,
that she may find happiness in her grandson. This picture of an
average woman undergoing the constant agony of disillusion
Maupassant calls Une Vie (1883), and as in modern literature
there is no finer example of cruel observation, so there is no
sadder book than this, while the effect of extreme truthfulness
which it conveys justifies its sub-title—L’Humble vérité. Certain
passages of Une Vie are of such a character that the sale of the
volume at railway bookstalls was forbidden throughout France.
The matter was brought before the chamber of deputies, with
the result of drawing still more attention to the book, and of
advertising the Contes de la bécasse (1883), a collection of stories
as improper as they are clever. Au soleil (1884), a book of
travels which has the eminent qualities of lucid observation and
exact description, was less read than Clair de lune, Miss Harriet,
Les Sœurs Rondoli and Yvette, all published in 1883-1884 when
Maupassant’s powers were at their highest level. Three further
collections of short tales, entitled Contes et nouvelles, Monsieur
Parent, and Contes du jour et de la nuit, issued in 1885, proved
that while the author’s vision was as incomparable as ever, his
fecundity had not improved his impeccable form. To 1885 also
belongs an elaborate novel, Bel-ami, the cynical history of a
particularly detestable, brutal scoundrel who makes his way in
the world by means of his handsome face. Maupassant is here
no less vivid in realizing his literary men, financiers and frivolous
women than in dealing with his favourite peasants, boors and
servants, to whom he returned in Toine (1886) and in La Petite
roque (1886). About this time appeared the first symptoms of
the malady which destroyed him; he wrote less, and though the
novel Mont-Oriol (1887) shows him apparently in undiminished
possession of his faculty, Le Horla (1887) suggests that he was
already subject to alarming hallucinations. Restored to some
extent by a sea-voyage, recorded in Sur l’eau (1888), he went
back to short stories in Le Rosier de Madame Husson (1888), a
burst of Rabelaisian humour equal to anything he had ever
written. His novels Pierre et Jean (1888), Fort comme la mort
(1889), and Notre cœur (1890) are penetrating studies touched
with a profounder sympathy than had hitherto distinguished
him; and this softening into pity for the tragedy of life is deepened
in some of the tales included in Inutile beauté (1890). One
of these, Le Champ d’Oliviers, is an unsurpassable example of

poignant, emotional narrative. With La Vie errante (1890), a
volume of travels, Maupassant’s career practically closed.
Musotte, a theatrical piece written in collaboration with M.
Jacques Normand, was published in 1891. By this time inherited
nervous maladies, aggravated by excessive physical exercises
and by the imprudent use of drugs, had undermined his constitution.
He began to take an interest in religious problems,
and for a while made the Imitation his handbook; but his
misanthropy deepened, and he suffered from curious delusions
as to his wealth and rank. A victim of general paralysis, of
which La Folie des grandeurs was one of the symptoms, he drank
the waters at Aix-les-Bains during the summer of 1891, and retired
to Cannes, where he purposed passing the winter. The
singularities of conduct which had been observed at Aix-les-Bains
grew more and more marked. Maupassant’s reason slowly
gave way. On the 6th of January 1892 he attempted suicide,
and was removed to Paris, where he died in the most painful
circumstances on the 6th of July 1893. He is buried in the
cemetery of Montparnasse. The opening chapters of two
projected novels, L’Angélus and L’Ame étrangère, were found
among his papers; these, with La Paix du ménage, a comedy in
two acts, and two collections of tales, Le Père Milon (1898)
and Le Colporteur (1899), have been published posthumously.
A correspondence, called Amitié amoureuse (1897), and dedicated
to his mother, is probably unauthentic. Among the
prefaces which he wrote for the works of others, only one—an
introduction to a French prose version of Mr Swinburne’s
Poems and Ballads—is likely to interest English readers.

Maupassant began as a follower of Flaubert and of M. Zola,
but, whatever the masters may have called themselves, they both
remained essentially romantiques. The pupil is the last of the
“naturalists”: he even destroyed naturalism, since he did all
that can be done in that direction. He had no psychology, no
theories of art, no moral or strong social prejudices, no disturbing
imagination, no wealth of perplexing ideas. It is no paradox to
say that his marked limitations made him the incomparable
artist that he was. Undisturbed by any external influence, his
marvellous vision enabled him to become a supreme observer,
and, given his literary sense, the rest was simple. He prided
himself in having no invention; he described nothing that he
had not seen. The peasants whom he had known as a boy figure
in a score of tales; what he saw in Government offices is set down
in L’Héritage; from Algiers he gathers the material for Maroca;
he drinks the waters and builds up Mont-Oriol; he enters
journalism, constructs Bel-ami, and, for the sake of precision,
makes his brother, Hervé de Maupassant, sit for the infamous
hero’s portrait; he sees fashionable society, and, though it wearied
him intensely, he transcribes its life in Fort comme la mort and
Notre cœur. Fundamentally he finds all men alike. In every
grade he finds the same ferocious, cunning, animal instincts at
work: it is not a gay world, but he knows no other; he is possessed
by the dread of growing old, of ceasing to enjoy; the
horror of death haunts him like a spectre. It is an extremely
simple outlook. Maupassant does not prefer good to bad, one
man to another; he never pauses to argue about the meaning
of life, a senseless thing which has the one advantage of yielding
materials for art; his one aim is to discover the hidden aspect of
visible things, to relate what he has observed, to give an objective
rendering of it, and he has seen so intensely and so serenely that
he is the most exact transcriber in literature. And as the
substance is, so is the form: his style is exceedingly simple and
exceedingly strong; he uses no rare or superfluous word, and is
content to use the humblest word if only it conveys the exact
picture of the thing seen. In ten years he produced some thirty
volumes. With the exception of Pierre et Jean, his novels,
excellent as they are, scarcely represent him at his best, and of
over two hundred contes a proportion must be rejected. But
enough will remain to vindicate his claim to a permanent place
in literature as an unmatched observer and the most perfect
master of the short story.


See also F. Brunetière, Le Roman naturaliste (1883); T. Lemaître,
Les Contemporains (vols. i. v. vi.); R. Doumic, Ecrivains d’aujourd’hui
(1894); an introduction by Henry James to The Odd Number ...
(1891); a critical preface by the earl of Crewe to Pierre and Jean
(1902); A. Symons, Studies in Prose and Verse (1904). There are
many references to Maupassant in the Journal des Goncourt, and
some correspondence with Marie Bashkirtseff was printed with
Further Memoirs of that lady in 1901.



(J. F. K.)



MAUPEOU, RENÉ NICOLAS CHARLES AUGUSTIN (1714-1792),
chancellor of France, was born on the 25th of February
1714, being the eldest son of René Charles de Maupeou (1688-1775),
who was president of the parlement of Paris from 1743 to
1757. He married in 1744 a rich heiress, Anne de Roncherolles,
a cousin of Madame d’Épinay. Entering public life, he was his
father’s right hand in the conflicts between the parlement and
Christophe de Beaumont, archbishop of Paris, who was supported
by the court. Between 1763 and 1768, dates which cover
the revision of the case of Jean Calas and the trial of the comte de
Lally, Maupeou was himself president of the parlement. In
1768, through the protection of Choiseul, whose fall two years
later was in large measure his work, he became chancellor in
succession to his father, who had held the office for a few days
only. He determined to support the royal authority against
the parlement, which in league with the provincial magistratures
was seeking to arrogate to itself the functions of the states-general.
He allied himself with the duc d’Aiguillon and Madame du Barry,
and secured for a creature of his own, the Abbé Terrai, the office
of comptroller-general. The struggle came over the trial of the
case of the duc d’Aiguillon, ex-governor of Brittany, and of La
Chalotais, procureur-général of the province, who had been
imprisoned by the governor for accusations against his administration.
When the parlement showed signs of hostility against
Aiguillon, Maupeou read letters patent from Louis XV. annulling
the proceedings. Louis replied to remonstrances from the parlement
by a lit de justice, in which he demanded the surrender of the
minutes of procedure. On the 27th of November 1770 appeared
the Édit de règlement et de discipline, which was promulgated by
the chancellor, forbidding the union of the various branches of
the parlement and correspondence with the provincial magistratures.
It also made a strike on the part of the parlement
punishable by confiscation of goods, and forbade further obstruction
to the registration of royal decrees after the royal reply had
been given to a first remonstrance. This edict the magistrates
refused to register, and it was registered in a lit de justice held
at Versailles on the 7th of December, whereupon the parlement
suspended its functions. After five summonses to return to
their duties, the magistrates were surprised individually on the
night of the 19th of January 1771 by musketeers, who required
them to sign yes or no to a further request to return. Thirty-eight
magistrates gave an affirmative answer, but on the exile
of their former colleagues by lettres de cachet they retracted, and
were also exiled. Maupeou installed the council of state to
administer justice pending the establishment of six superior
courts in the provinces, and of a new parlement in Paris. The
cour des aides was next suppressed.

Voltaire praised this revolution, applauding the suppression
of the old hereditary magistrature, but in general Maupeou’s
policy was regarded as the triumph of tyranny. The remonstrances
of the princes, of the nobles, and of the minor courts,
were met by exile and suppression, but by the end of 1771 the
new system was established, and the Bar, which had offered a
passive resistance, recommenced to plead. But the death of
Louis XV. in May 1774 ruined the chancellor. The restoration of
the parlements was followed by a renewal of the quarrels between
the new king and the magistrature. Maupeou and Terrai were
replaced by Malesherbes and Turgot. Maupeou lived in retreat
until his death at Thuit on the 29th of July 1792, having lived
to see the overthrow of the ancien régime. His work, in so far
as it was directed towards the separation of the judicial and
political functions and to the reform of the abuses attaching to
a hereditary magistrature, was subsequently endorsed by the
Revolution; but no justification of his violent methods or defence
of his intriguing and avaricious character is possible. He aimed
at securing absolute power for Louis XV., but his action was in
reality a serious blow to the monarchy.




The chief authority for the administration of Maupeou is the
compte rendu in his own justification presented by him to Louis
XVI. in 1789, which included a dossier of his speeches and edicts,
and is preserved in the Bibliothèque nationale. These documents,
in the hands of his former secretary, C. F. Lebrun, duc de Plaisance,
formed the basis of the judicial system of France as established
under the consulate (cf. C. F. Lebrun, Opinions, rapports et choix
d’écrits politiques, published posthumously in 1829). See further
Maupeouana (6 vols., Paris, 1775), which contains the pamphlets
directed against him; Journal hist. de la révolution opérée ... par
M. de Maupeou (7 vols., 1775); the official correspondence of
Mercy-Argenteau, the letters of Mme d’Épinay; and Jules Flammermont,
Le Chancelier Maupeou et les parlements (1883).





MAUPERTUIS, PIERRE LOUIS MOREAU DE (1698-1759),
French mathematician and astronomer, was born at St Malo on
the 17th of July 1698. When twenty years of age he entered
the army, becoming lieutenant in a regiment of cavalry, and
employing his leisure on mathematical studies. After five years
he quitted the army and was admitted in 1723 a member of the
Academy of Sciences. In 1728 he visited London, and was
elected a fellow of the Royal Society. In 1736 he acted as chief
of the expedition sent by Louis XV. into Lapland to measure the
length of a degree of the meridian (see Earth, Figure of), and
on his return home he became a member of almost all the
scientific societies of Europe. In 1740 Maupertuis went to
Berlin on the invitation of the king of Prussia, and took part in
the battle of Mollwitz, where he was taken prisoner by the
Austrians. On his release he returned to Berlin, and thence to
Paris, where he was elected director of the Academy of Sciences
in 1742, and in the following year was admitted into the Academy.
Returning to Berlin in 1744, at the desire of Frederick II., he
was chosen president of the Royal Academy of Sciences in 1746.
Finding his health declining, he repaired in 1757 to the south of
France, but went in 1758 to Basel, where he died on the 27th of
July 1759. Maupertuis was unquestionably a man of considerable
ability as a mathematician, but his restless, gloomy disposition
involved him in constant quarrels, of which his controversies
with König and Voltaire during the latter part of his
life furnish examples.


The following are his most important works: Sur la figure de la
terre (Paris, 1738); Discours sur la parallaxe de la lune (Paris, 1741);
Discours sur la figure des astres (Paris, 1742); Éléments de la géographie
(Paris, 1742); Lettre sur la comète de 1742 (Paris, 1742); Astronomie
nautique (Paris, 1745 and 1746); Vénus physique (Paris, 1745); Essai
de cosmologie (Amsterdam, 1750). His Œuvres were published in
1752 at Dresden and in 1756 at Lyons.





MAU RANIPUR, a town of British India in Jahnsi district, in
the United Provinces. Pop. (1901), 17,231. It contains a
large community of wealthy merchants and bankers. A special
variety of red cotton cloth, known as kharua, is manufactured
and exported to all parts of India. Trees line many of the streets,
and handsome temples ornament the town.



MAUREL, ABDIAS (d. 1705), Camisard leader, became a
cavalry officer in the French army and gained distinction in
Italy; here he served under Marshal Catinat, and on this account
he himself is sometimes known as Catinat. In 1702, when the
revolt in the Cévennes broke out, he became one of the Camisard
leaders, and in this capacity his name was soon known and
feared. He refused to accept the peace made by Jean Cavalier in
1704, and after passing a few weeks in Switzerland he returned
to France and became one of the chiefs of those Camisards who
were still in arms. He was deeply concerned in a plot to capture
some French towns, a scheme which, it was hoped, would be
helped by England and Holland. But it failed; Maurel was
betrayed, and with three other leaders of the movement was
burned to death at Nîmes on the 22nd of April 1705. He was a
man of great physical strength; but he was very cruel, and
boasted he had killed 200 Roman Catholics with his own hands.



MAUREL, VICTOR (1848-  ), French singer, was born at
Marseilles, and educated in music at the Paris Conservatoire.
He made his début in opera at Paris in 1868, and in London in
1873, and from that time onwards his admirable acting and
vocal method established his reputation as one of the finest
of operatic baritones. He created the leading part in Verdi’s
Otello, and was equally fine in Wagnerian and Italian opera.



MAURENBRECHER, KARL PETER WILHELM (1838-1892),
German historian, was born at Bonn on the 21st of December,
1838, and studied in Berlin and Munich under Ranke and Von
Sybel, being especially influenced by the latter historian. After
doing some research work at Simancas in Spain, he became
professor of history at the university of Dorpat in 1867; and was
then in turn professor at Königsberg, Bonn and Leipzig. He died
at Leipzig on the 6th of November, 1892.


Many of Maurenbrecher’s works are concerned with the Reformation,
among them being England im Reformationszeitalter (Düsseldorf,
1866); Karl V. und die deutschen Protestanten (Düsseldorf, 1865);
Studien und Skizzen zur Geschichte der Reformationszeit (Leipzig,
1874); and the incomplete Geschichte der Katholischen Reformation
(Nördlingen, 1880). He also wrote Don Karlos (Berlin, 1876);
Gründung des deutschen Reiches 1859-1871 (Leipzig, 1892, and again
1902); and Geschichte der deutschen Königswahlen (Leipzig, 1889).
See G. Wolf, Wilhelm Maurenbrecher (Berlin, 1893).





MAUREPAS, JEAN FRÉDÉRIC PHÉLYPEAUX, Comte de
(1701-1781), French statesman, was born on the 9th of July 1701
at Versailles, being the son of Jérôme de Pontchartrain, secretary
of state for the marine and the royal household. Maurepas
succeeded to his father’s charge at fourteen, and began his
functions in the royal household at seventeen, while in 1725 he
undertook the actual administration of the navy. Although
essentially light and frivolous in character, Maurepas was
seriously interested in scientific matters, and he used the best
brains of France to apply science to questions of navigation and
of naval construction. He was disgraced in 1749, and exiled
from Paris for an epigram against Madame de Pompadour. On
the accession of Louis XVI., twenty-five years later, he became
a minister of state and Louis XVI.’s chief adviser. He gave
Turgot the direction of finance, placed Lamoignon-Malesherbes
over the royal household and made Vergennes minister for foreign
affairs. At the outset of his new career he showed his weakness
by recalling to their functions, in deference to popular clamour,
the members of the old parlement ousted by Maupeou, thus reconstituting
the most dangerous enemy of the royal power.
This step, and his intervention on behalf of the American states,
helped to pave the way for the French revolution. Jealous of his
personal ascendancy over Louis XVI., he intrigued against
Turgot, whose disgrace in 1776 was followed after six months of
disorder by the appointment of Necker. In 1781 Maurepas
deserted Necker as he had done Turgot, and he died at
Versailles on the 21st of November 1781.


Maurepas is credited with contributions to the collection of
facetiae known as the Étrennes de la Saint Jean (2nd ed., 1742).
Four volumes of Mémoires de Maurepas, purporting to be collected
by his secretary and edited by J. L. G. Soulavie in 1792, must be
regarded as apocryphal. Some of his letters were published in
1896 by the Soc. de l’hist. de Paris. His éloge in the Academy of
Sciences was pronounced by Condorcet.





MAURER, GEORG LUDWIG VON (1790-1872), German
statesman and historian, son of a Protestant pastor, was born
at Erpolzheim, near Dürkheim, in the Rhenish Palatinate, on
the 2nd of November 1790. Educated at Heidelberg, he went
in 1812 to reside in Paris, where he entered upon a systematic
study of the ancient legal institutions of the Germans. Returning
to Germany in 1814, he received an appointment under the
Bavarian government, and afterwards filled several important
official positions. In 1824 he published at Heidelberg his
Geschichte des altgermanischen und namentlich altbayrischen
öffentlich-mündlichen Gerichtsverfahrens, which obtained the first
prize of the academy of Munich, and in 1826 he became professor
in the university of Munich. In 1829 he returned to official life,
and was soon offered an important post. In 1832, when Otto
(Otho), son of Louis I., king of Bavaria, was chosen to fill the
throne of Greece, a council of regency was nominated during
his minority, and Maurer was appointed a member. He applied
himself energetically to the task of creating institutions adapted
to the requirements of a modern civilized community; but grave
difficulties soon arose and Maurer was recalled in 1834, when he
returned to Munich. This loss was a serious one for Greece.
Maurer was the ablest, most energetic and most liberal-minded
member of the council, and it was through his enlightened

efforts that Greece obtained a revised penal code, regular tribunals
and an improved system of civil procedure. Soon after
his recall he published Das griechische Volk in öffentlicher,
kirchlicher, und privatrechtlicher Beziehung vor und nach dem
Freiheitskampfe bis zum 31 Juli 1834 (Heidelberg, 1835-1836),
a useful source of information for the history of Greece before
Otto ascended the throne, and also for the labours of the council
of regency to the time of the author’s recall. After the fall of
the ministry of Karl von Abel (1788-1859) in 1847, he became
chief Bavarian minister and head of the departments of foreign
affairs and of justice, but was overthrown in the same year. He
died at Munich on the 9th of May 1872. His only son, Conrad
von Maurer (1823-1902), was a Scandinavian scholar of some
repute, and like his father was a professor at the university of
Munich.


Maurer’s most important contribution to history is a series of
books on the early institutions of the Germans. These are: Einleitung
zur Geschichte der Mark-, Hof-, Dorf-, und Stadtverfassung
und der öffentlichen Gewalt (Munich, 1854); Geschichte der Markenverfassung
in Deutschland (Erlangen, 1856); Geschichte der
Fronhöfe, der Bauernhöfe, und der Hofverfassung in Deutschland
(Erlangen, 1862-1863); Geschichte der Dorfverfassung in Deutschland
(Erlangen, 1865-1866); and Geschichte der Slädteverfassung in
Deutschland (Erlangen, 1869-1871). These works are still important
authorities for the early history of the Germans. Among other
works are, Das Stadt- und Landrechtsbuch Ruprechts von Freising,
ein Beitrag zur Geschichte des Schwabenspiegels (Stuttgart, 1839);
Über die Freipflege (plegium liberale), und die Entstehung der grossen
und kleinen Jury in England (Munich, 1848); and Über die deutsche
Reichsterritorial- und Rechtsgeschichte (1830).

Sec K. T. von Heigel, Denkwürdigkeiten des bayrischen Staatsrats
G. L. von Maurer (Munich, 1903).





MAURETANIA, the ancient name of the north-western angle
of the African continent, and under the Roman Empire also of
a large territory eastward of that angle. The name had different
significations at different times; but before the Roman occupation,
Mauretania comprised a considerable part of the modern Morocco
i.e. the northern portion bounded on the east by Algiers. Towards
the south we may suppose it bounded by the Atlas range, and
it seems to have been regarded by geographers as extending
along the coast to the Atlantic as far as the point where that
chain descends to the sea, in about 30 N. lat. (Strabo, p. 825).
The magnificent plateau in which the city of Morocco is situated
seems to have been unknown to ancient geographers, and was
certainly never included in the Roman Empire. On the other
hand, the Gaetulians to the south of the Atlas range, on the
date-producing slopes towards the Sahara, seem to have
owned a precarious subjection to the kings of Mauretania, as
afterwards to the Roman government. A large part of the
country is of great natural fertility, and in ancient times
produced large quantities of corn, while the slopes of Atlas
were clothed with forests, which, besides other kinds of timber,
produced the celebrated ornamental wood called citrum (Plin.
Hist. Nat. 13-96), for tables of which the Romans gave fabulous
prices. (For physical geography, see Morocco.)


Mauretania, or Maurusia as it was called by Greek writers, signified
the land of the Mauri, a term still retained in the modern name of
Moors (q.v.). The origin and ethnical affinities of the race are uncertain;
but it is probable that all the inhabitants of this northern
tract of Africa were kindred races belonging to the great Berber
family, possibly with an intermingled fair-skinned race from Europe
(see Tissot, Géographie comparée de la province romaine d’Afrique,
i. 400 seq.; also Berbers). They first appear in history at the time
of the Jugurthine War (110-106 B.C.), when Mauretania was under
the government of Bocchus and seems to have been recognized
as organized state (Sallust, Jugurtha, 19). To this Bocchus was
given, after the war, the western part of Jugurtha’s kingdom of
Numidia, perhaps as far east as Saldae (Bougie). Sixty years later,
at the time of the dictator Caesar, we find two Mauretanian kingdoms,
one to the west of the river Mulucha under Bogud, and the
other to the east under a Bocchus; as to the date or cause of the
division we are ignorant. Both these kings took Caesar’s part in
the civil wars, and had their territory enlarged by him (Appian,
B.C. 4, 54). In 25 B.C., after their deaths, Augustus gave the two
kingdoms to Juba II. of Numidia (see under Juba), with the river
Ampsaga as the eastern frontier (Plin. 5. 22; Ptol. 4. 3. 1). Juba
and his son Ptolemaeus after him reigned till A.D. 40, when the latter
was put to death by Caligula, and shortly afterwards Claudius
incorporated the kingdom into the Roman state as two provinces,
viz. Mauretania Tingitana to the west of the Mulucha and M.
Caesariensis to the east of that river, the latter taking its name from
the city Caesarea (formerly Iol), which Juba had thus named and
adopted as his capital. Thus the dividing line between the two
provinces was the same as that which had originally separated
Mauretania from Numidia (q.v.). These provinces were governed
until the time of Diocletian by imperial procurators, and were
occasionally united for military purposes. Under and after Diocletian
M. Tingitana was attached administratively to the dioicesis
of Spain, with which it was in all respects closely connected; while
M. Caesariensis was divided by making its eastern part into a separate
government, which was called M. Sitifensis from the Roman colony
Sitifis.

In the two provinces of Mauretania there were at the time of Pliny
a number of towns, including seven (possibly eight) Roman colonies
in M. Tingitana and eleven in M. Caesariensis; others were added
later. These were mostly military foundations, and served the
purpose of securing civilization against the inroads of the natives,
who were not in a condition to be used as material for town-life
as in Gaul and Spain, but were under the immediate government of
the procurators, retaining their own clan organization. Of these
colonies the most important, beginning from the west, were Lixus
on the Atlantic, Tingis (Tangier), Rusaddir (Melila, Melilla),
Cartenna (Tenes), Iol or Caesarea (Cherchel), Icosium (Algiers),
Saldae (Bougie), Igilgili (Jijelli) and Sitifis (Setif). All these were
on the coast but the last, which was some distance inland. Besides
these there were many municipia or oppida civium romanorum
(Plin. 5. 19 seq.), but, as has been made clear by French archaeologists
who have explored these regions, Roman settlements are less
frequent the farther we go west, and M. Tingitana has as yet yielded
but scanty evidence of Roman civilization. On the whole Mauretania
was in a flourishing condition down to the irruption of the Vandals
in A.D. 429; in the Notitia nearly a hundred and seventy episcopal
sees are enumerated here, but we must remember that numbers of
these were mere villages.

In 1904 the term Mauretania was revived as an official designation
by the French government, and applied to the territory north of
the lower Senegal under French protection (see Senegal).

To the authorities quoted under Africa, Roman, may be added
here Göbel, Die West-küste Afrikas im Alterthum.



(W. W. F.*)



MAURIAC, a town of central France, capital of an arrondissement
in the department of Cantal, 39 m. N.N.W. of Aurillac by
rail. Pop. (1906), 2558. Mauriac, built on the slope of a
volcanic hill, has a church of the 12th century, and the buildings
of an old abbey now used as public offices and dwellings; the
town owes its origin to the abbey, founded during the 6th
century. It is the seat of a sub-prefect and has a tribunal of
first instance and a communal college. There are marble
quarries in the vicinity.



MAURICE [or Mauritius], ST (d. c. 286), an early Christian
martyr, who, with his companions, is commemorated by the
Roman Catholic Church on the 22nd of September. The oldest
form of his story is found in the Passio ascribed to Eucherius,
bishop of Lyons, c. 450, who relates how the “Theban” legion
commanded by Mauritius was sent to north Italy to reinforce
the army of Maximinian. Maximinian wished to use them in
persecuting the Christians, but as they themselves were of this
faith, they refused, and for this, after having been twice decimated,
the legion was exterminated at Octodurum (Martigny)
near Geneva. In late versions this legend was expanded and
varied, the martyrdom was connected with a refusal to take
part in a great sacrifice ordered at Octodurum and the name of
Exsuperius was added to that of Mauritius. Gregory of Tours
(c. 539-593) speaks of a company of the same legion which
suffered at Cologne.


The Magdeburg Centuries, in spite of Mauritius being the patron
saint of Magdeburg, declared the whole legend fictitious; J. A. du
Bordien La Légion thébéenne (Amsterdam, 1705); J. J. Hottinger
in Helvetische Kirchengeschichte (Zürich, 1708); and F. W. Rettberg,
Kirchengeschichte Deutschlands (Göttingen, 1845-1848) have also
demonstrated its untrustworthiness, while the Bollandists, De
Rivaz and Joh. Friedrich uphold it. Apart from the a priori
improbability of a whole legion being martyred, the difficulties are
that in 286 Christians everywhere throughout the empire were
not molested, that at no later date have we evidence of the
presence of Maximinian in the Valais, and that none of the writers
nearest to the event (Eusebius, Lactantius, Orosius, Sulpicius
Severus) know anything of it. It is of course quite possible that
isolated cases of officers being put to death for their faith occurred
during Maximinian’s reign, and on some such cases the legend may
have grown up during the century and a half between Maximinian
and Eucherius. The cult of St Maurice and the Theban legion
is found in Switzerland (where two places bear the name in Valais,

besides St Moritz in Grisons), along the Rhine, and in north Italy.
The foundation of the abbey of St Maurice (Agaunum) in the Valais
is usually ascribed to Sigismund of Burgundy (515). Relics of the
saint are preserved here and at Brieg and Turin.





MAURICE (Mauricius Flavius Tiberius) (c. 539-602),
East Roman emperor from 582 to 602, was of Roman descent,
but a native of Arabissus in Cappadocia. He spent his youth at
the court of Justin II., and, having joined the army, fought with
distinction in the Persian War (578-581). At the age of forty-three
he was declared Caesar by the dying emperor Tiberius II.,
who bestowed upon him the hand of his daughter Constantina.
Maurice brought the Persian War to a successful close by the
restoration of Chosroes II. to the throne (591). On the northern
frontier he at first bought off the Avars by payments which
compelled him to exercise strict economy in his general administration,
but after 595 inflicted several defeats upon them through
his general Crispus. By his strict discipline and his refusal to
ransom a captive corps he provoked to mutiny the army on the
Danube. The revolt spread to the popular factions in Constantinople,
and Maurice consented to abdicate. He withdrew to
Chalcedon, but was hunted down and put to death after witnessing
the slaughter of his five sons.


The work on military art (στρατηγικά) ascribed to him is a contemporary
work of unknown authorship (ed. Scheffer, Arriani
tactica et Mauricii ars militaris, Upsala, 1664; see Max Jähns,
Gesch. d. Kriegswissensch., i. 152-156).

See Theophylactus Simocatta, Vita Mauricii (ed. de Boor, 1887);
E. Gibbon, The Decline and Fall of the Roman Empire (ed. Bury,
London, 1896, v. 19-21, 57); J. B. Bury, The Later Roman Empire
(London, 1889, ii. 83-94); G. Finlay, History of Greece (ed. 1877,
Oxford, i. 299-306).





MAURICE (1521-1553), elector of Saxony, elder son of Henry,
duke of Saxony, belonging to the Albertine branch of the
Wettin family, was born at Freiberg on the 21st of March 1521.
In January 1541 he married Agnes, daughter of Philip, landgrave
of Hesse. In that year he became duke of Saxony by his father’s
death, and he continued Henry’s work in forwarding the progress
of the Reformation. Duke Henry had decreed that his lands
should be divided between his two sons, but as a partition was
regarded as undesirable the whole of the duchy came to his
elder son. Maurice, however, made generous provision for his
brother Augustus, and the desire to compensate him still further
was one of the minor threads of his subsequent policy. In
1542 he assisted the emperor Charles V. against the Turks, in
1543 against William, duke of Cleves, and in 1544 against the
French; but his ambition soon took a wider range. The harmonious
relations which subsisted between the two branches of
the Wettins were disturbed by the interference of Maurice in
Cleves, a proceeding distasteful to the Saxon elector, John
Frederick; and a dispute over the bishopric of Meissen having
widened the breach, war was only averted by the mediation of
Philip of Hesse and Luther. About this time Maurice seized
the idea of securing for himself the electoral dignity held by
John Frederick, and his opportunity came when Charles was
preparing to attack the league of Schmalkalden. Although
educated as a Lutheran, religious questions had never seriously
appealed to Maurice. As a youth he had joined the league of
Schmalkalden, but this adhesion, as well as his subsequent
declaration to stand by the confession of Augsburg, cannot be
regarded as the decision of his maturer years. In June 1546 he
took a decided step by making a secret agreement with Charles
at Regensburg. Maurice was promised some rights over the
archbishopric of Magdeburg and the bishopric of Halberstadt;
immunity, in part at least, for his subjects from the Tridentine
decrees; and the question of transferring the electoral dignity
was discussed. In return the duke probably agreed to aid
Charles in his proposed attack on the league as soon as he could
gain the consent of the Saxon estates, or at all events to remain
neutral during the impending war. The struggle began in July
1546, and in October Maurice declared war against John Frederick.
He secured the formal consent of Charles to the transfer
of the electoral dignity and took the field in November. He
had gained a few successes when John Frederick hastened from
south Germany to defend his dominions. Maurice’s ally, Albert
Alcibiades, prince of Bayreuth, was taken prisoner at Rochlitz;
and the duke, driven from electoral Saxony, was unable to prevent
his own lands from being overrun. Salvation, however, was at
hand. Marching against John Frederick, Charles V., aided by
Maurice, gained a decisive victory at Mühlberg in April 1547,
after which by the capitulation of Wittenberg John Frederick
renounced the electoral dignity in favour of Maurice, who also
obtained a large part of his kinsman’s lands. The formal investiture
of the new elector took place at Augsburg in February
1548.

The plans of Maurice soon took a form less agreeable to the
emperor. The continued imprisonment of his father-in-law,
Philip of Hesse, whom he had induced to surrender to Charles and
whose freedom he had guaranteed, was neither his greatest nor
his only cause of complaint. The emperor had refused to
complete the humiliation of the family of John Frederick; he
had embarked upon a course of action which boded danger to
the elector’s Lutheran subjects, and his increased power was a
menace to the position of Maurice. Assuring Charles of his
continued loyalty, the elector entered into negotiations with the
discontented Protestant princes. An event happened which
gave him a base of operations, and enabled him to mask his
schemes against the emperor. In 1550 he had been entrusted
with the execution of the imperial ban against the city of
Magdeburg, and under cover of these operations he was able to
collect troops and to concert measures with his allies. Favourable
terms were granted to Magdeburg, which surrendered and
remained in the power of Maurice, and in January 1552 a treaty
was concluded with Henry II. of France at Chambord. Meanwhile
Maurice had refused to recognize the Interim issued from
Augsburg in May 1548 as binding on Saxony; but a compromise
was arranged on the basis of which the Leipzig Interim was drawn
up for his lands. It is uncertain how far Charles was ignorant
of the elector’s preparations, but certainly he was unprepared
for the attack made by Maurice and his allies in March 1552.
Augsburg was taken, the pass of Ehrenberg was forced, and in
a few days the emperor left Innsbruck as a fugitive. Ferdinand
undertook to make peace, and the Treaty of Passau, signed in
August 1552, was the result. Maurice obtained a general
amnesty and freedom for Philip of Hesse, but was unable to
obtain a perpetual religious peace for the Lutherans. Charles
stubbornly insisted that this question must be referred to the
Diet, and Maurice was obliged to give way. He then fought
against the Turks, and renewed his communications with Henry
of France. Returning from Hungary the elector placed himself
at the head of the princes who were seeking to check the career
of his former ally, Albert Alcibiades, whose depredations were
making him a curse to Germany. The rival armies met at
Sievershausen on the 9th of July 1553, where after a fierce
encounter Albert was defeated. The victor, however, was
wounded during the fight and died two days later.

Maurice was a friend to learning, and devoted some of the
secularized church property to the advancement of education.
Very different estimates have been formed of his character. He
has been represented as the saviour of German Protestantism on
the one hand, and on the other as a traitor to his faith and
country. In all probability he was neither the one nor the other,
but a man of great ambition who, indifferent to religious considerations,
made good use of the exigencies of the time. He
was generous and enlightened, a good soldier and a clever
diplomatist. He left an only daughter Anna (d. 1577), who
became the second wife of William the Silent, prince of Orange.


The elector’s Politische Korrespondenz has been edited by E.
Brandenburg (Leipzig, 1900-1904); and a sketch of him is given
by Roger Ascham in A Report and Discourse of the Affairs and State
of Germany (London, 1864-1865). See also F. A. von Langenn,
Moritz Herzog und Churfürst zu Sachsen (Leipzig, 1841); G. Voigt,
Moritz von Sachsen (Leipzig, 1876); E. Brandenburg, Moritz von
Sachsen (Leipzig, 1898); S. Issleib, Moritz von Sachsen als protestantischer
Fürst (Hamburg, 1898); J. Witter, Die Beziehung und der
Verkehr des Kurfürsten Moritz mit König Ferdinand (Jena, 1886);
L. von Ranke, Deutsche Geschichte im Zeitalter der Reformation,
Bde. IV. and V. (Leipzig, 1882); and W. Maurenbrecher in the
Allgemeine deutsche Biographie, Bd. XXII. (Leipzig, 1885). For

bibliography see Maurenbrecher; and The Cambridge Modern
History, vol. ii. (Cambridge, 1903).





MAURICE, JOHN FREDERICK DENISON (1805-1872),
English theologian, was born at Normanston, Suffolk, on the
29th of August, 1805. He was the son of a Unitarian minister,
and entered Trinity College, Cambridge, in 1823, though it was
then impossible for any but members of the Established Church
to obtain a degree. Together with John Sterling (with whom
he founded the Apostles’ Club) he migrated to Trinity Hall,
whence he obtained a first class in civil law in 1827; he then
came to London, and gave himself to literary work, writing a
novel, Eustace Conyers, and editing the London Literary
Chronicle until 1830, and also for a short time the Athenaeum.
At this time he was much perplexed as to his religious opinions,
and he ultimately found relief in a decision to take a further
university course and to seek Anglican orders. Entering Exeter
College, Oxford, he took a second class in classics in 1831. He
was ordained in 1834, and after a short curacy at Bubbenhall
in Warwickshire was appointed chaplain of Guy’s Hospital, and
became thenceforward a sensible factor in the intellectual and
social life of London. From 1839 to 1841 Maurice was editor of
the Education Magazine. In 1840 he was appointed professor
of English history and literature in King’s College, and to this
post in 1846 was added the chair of divinity. In 1845 he was
Boyle lecturer and Warburton lecturer. These chairs he held
till 1853. In that year he published Theological Essays, wherein
were stated opinions which savoured to the principal, Dr R. W.
Jelf, and to the council, of unsound theology in regard to eternal
punishment. He had previously been called on to clear himself
from charges of heterodoxy brought against him in the Quarterly
Review (1851), and had been acquitted by a committee of inquiry.
Now again he maintained with great warmth of conviction that
his views were in close accordance with Scripture and the
Anglican standards, but the council, without specifying any
distinct “heresy” and declining to submit the case to the judgment
of competent theologians, ruled otherwise, and he was
deprived of his professorships. He held at the same time the
chaplaincy of Lincoln’s Inn, for which he had resigned Guy’s
(1846-1860), but when he offered to resign this the benchers
refused. Nor was he assailed in the incumbency of St. Peter’s,
Vere Street, which he held for nine years (1860-1869), and
where he drew round him a circle of thoughtful people. During
the early years of this period he was engaged in a hot and bitter
controversy with H. L. Mansel (afterwards dean of St Paul’s),
arising out of the latter’s Bampton lecture upon reason and
revelation.

During his residence in London Maurice was specially identified
with two important movements for education. He helped to
found Queen’s College for the education of women (1848), and
the Working Men’s College (1854), of which he was the first
principal. He strongly advocated the abolition of university
tests (1853), and threw himself with great energy into all that
affected the social life of the people. Certain abortive attempts
at co-operation among working men, and the movement known
as Christian Socialism, were the immediate outcome of his
teaching. In 1866 Maurice was appointed professor of moral
philosophy at Cambridge, and from 1870 to 1872 was incumbent
of St Edward’s in that city. He died on the 1st of April 1872.

He was twice married, first to Anna Barton, a sister of John
Sterling’s wife, secondly to a half-sister of his friend Archdeacon
Hare. His son Major-General Sir J. Frederick Maurice (b. 1841),
became a distinguished soldier and one of the most prominent
military writers of his time.

Those who knew Maurice best were deeply impressed with the
spirituality of his character. “Whenever he woke in the night,”
says his wife, “he was always praying.” Charles Kingsley called
him “the most beautiful human soul whom God has ever allowed
me to meet with.” As regards his intellectual attainments we
may set Julius Hare’s verdict “the greatest mind since Plato”
over against Ruskin’s “by nature puzzle-headed and indeed
wrong-headed.” Such contradictory impressions bespeak a life
made up of contradictory elements. Maurice was a man of
peace, yet his life was spent in a series of conflicts; of deep
humility, yet so polemical that he often seemed biased; of large
charity, yet bitter in his attack upon the religious press of his
time; a loyal churchman who detested the label “Broad,” yet
poured out criticism upon the leaders of the Church. With an
intense capacity for visualizing the unseen, and a kindly dignity,
he combined a large sense of humour. While most of the
“Broad Churchmen” were influenced by ethical and emotional
considerations in their repudiation of the dogma of everlasting
torment, he was swayed by purely intellectual and theological
arguments, and in questions of a more general liberty he often
opposed the proposed Liberal theologians, though he as often
took their side if he saw them hard pressed. He had a wide
metaphysical and philosophical knowledge which he applied to
the history of theology. He was a strenuous advocate of
ecclesiastical control in elementary education, and an opponent
of the new school of higher biblical criticism, though so far an
evolutionist as to believe in growth and development as applied
to the history of nations.


As a preacher, his message was apparently simple; his two great
convictions were the fatherhood of God, and that all religious systems
which had any stability lasted because of a portion of truth
which had to be disentangled from the error differentiating them from
the doctrines of the Church of England as understood by himself.
His love to God as his Father was a passionate adoration which filled
his whole heart. The prophetic, even apocalyptic, note of his preaching
was particularly impressive. He prophesied in London as
Isaiah prophesied to the little towns of Palestine and Syria, “often
with dark foreboding, but seeing through all unrest and convulsion
the working out of a sure divine purpose.” Both at King’s College
and at Cambridge Maurice gathered round him a band of earnest
students, to whom he directly taught much that was valuable drawn
from wide stores of his own reading, wide rather than deep, for
he never was, strictly speaking, a learned man. Still more did he
encourage the habit of inquiry and research, more valuable than his
direct teaching. In his Socratic power of convincing his pupils
of their ignorance he did more than perhaps any other man of his
time to awaken in those who came under his sway the desire for
knowledge and the process of independent thought.

As a social reformer, Maurice was before his time, and gave his
eager support to schemes for which the world was not ready. From
an early period of his life in London the condition of the poor
pressed upon him with consuming force; the enormous magnitude
of the social questions involved was a burden which he could hardly
bear. For many years he was the clergyman whom working men
of all opinions seemed to trust even if their faith in other religious
men and all religious systems had faded, and he had a marvellous
power of attracting the zealot and the outcast.

His works cover nearly 40 volumes, often obscure, often tautological,
and with no great distinction of style. But their high purpose
and philosophical outlook give his writings a permanent place
in the history of the thought of his time. The following are the more
important works—some of them were rewritten and in a measure
recast, and the date given is not necessarily that of the first appearance
of the book, but of its more complete and abiding form:
Eustace Conway, or the Brother and Sister, a novel (1834); The Kingdom
of Christ (1842); Christmas Day and Other Sermons (1843); The
Unity of the New Testament (1844); The Epistle to the Hebrews (1846);
The Religions of the World (1847); Moral and Metaphysical Philosophy
(at first an article in the Encyclopaedia Metropolitana, 1848); The
Church a Family (1850); The Old Testament (1851); Theological
Essays (1853); The Prophets and Kings of the Old Testament (1853);
Lectures on Ecclesiastical History (1854); The Doctrine of Sacrifice
(1854); The Patriarchs and Lawgivers of the Old Testament (1855);
The Epistles of St John (1857); The Commandments as Instruments
of National Reformation (1866); On the Gospel of St Luke (1868);
The Conscience: Lectures on Casuistry (1868); The Lord’s Prayer,
a Manual (1870). The greater part of these works were first delivered
as sermons or lectures. Maurice also contributed many prefaces
and introductions to the works of friends, as to Archdeacon
Hare’s Charges, Kingsley’s Saint’s Tragedy, &c.

See Life by his son (2 vols., London, 1884), and a monograph by
C. F. G. Masterman (1907) in “Leader of the Church” series;
W. E. Collins in Typical English Churchmen, pp. 327-360 (1902), and
T. Hughes in The Friendship of Books (1873).





MAURICE OF NASSAU, prince of Orange (1567-1625), the
second son of William the Silent, by Anna, only daughter of the
famous Maurice, elector of Saxony, was born at Dillenburg. At
the time of his father’s assassination in 1584 he was being
educated at the university of Leiden, at the expense of the states
of Holland and Zeeland. Despite his youth he was made stadtholder
of those two provinces and president of the council of

state. During the period of Leicester’s governorship he remained
in the background, engaged in acquiring a thorough knowledge
of the military art, and in 1586 the States of Holland conferred
upon him the title of prince. On the withdrawal of Leicester
from the Netherlands in August 1587, Johan van Oldenbarneveldt,
the advocate of Holland, became the leading statesman
of the country, a position which he retained for upwards of
thirty years. He had been a devoted adherent of William the
Silent and he now used his influence to forward the interests of
Maurice. In 1588 he was appointed by the States-General
captain and admiral-general of the Union, in 1590 he was elected
stadtholder of Utrecht and Overysel, and in 1591 of Gelderland.
From this time forward, Oldenbarneveldt at the head of the
civil government and Maurice in command of the armed forces
of the republic worked together in the task of rescuing the
United Netherlands from Spanish domination (for details see
Holland). Maurice soon showed himself to be a general second
in skill to none of his contemporaries. He was especially famed
for his consummate knowledge of the science of sieges. The
twelve years’ truce on the 9th of April 1609 brought to an end
the cordial relations between Maurice and Oldenbarneveldt.
Maurice was opposed to the truce, but the advocate’s policy
triumphed and henceforward there was enmity between them.
The theological disputes between the Remonstrants and contra-Remonstrants
found them on different sides; and the theological
quarrel soon became a political one. Oldenbarneveldt, supported
by the states of Holland, came forward as the champion of provincial
sovereignty against that of the states-general; Maurice
threw the weight of his sword on the side of the union. The
struggle was a short one, for the army obeyed the general who
had so often led them to victory. Oldenbarneveldt perished
on the scaffold, and the share which Maurice had in securing the
illegal condemnation by a packed court of judges of the aged
patriot must ever remain a stain upon his memory.

Maurice, who had on the death of his elder brother Philip
William, in February 1618, become prince of Orange, was now
supreme in the state, but during the remainder of his life he
sorely missed the wise counsels of the experienced Oldenbarneveldt.
War broke out again in 1621, but success had ceased
to accompany him on his campaigns. His health gave way,
and he died, a prematurely aged man, at the Hague on the
4th of April 1625. He was buried by his father’s side at
Delft.


Bibliography.—I. Commelin, Wilhelm en Maurits v. Nassau,
pr. v. Orangien, haer leven en bedrijf (Amsterdam, 1651); G. Groen
van Prinsterer, Archives ou correspondance de la maison d’Orange-Nassau,
1e série, 9 vols. (Leiden, 1841-1861); G. Groen van Prinsterer,
Maurice et Barneveldt (Utrecht, 1875); J. L. Motley, Life and
Death of John of Barneveldt (2 vols., The Hague, 1894); C. M. Kemp,
v.d. Maurits v. Nassau, prins v. Oranje in zijn leven en verdiensten
(4 vols., Rotterdam, 1845); M. O. Nutting, The Days of Prince
Maurice (Boston and Chicago, 1894).





MAURISTS, a congregation of French Benedictines called
after St Maurus (d. 565), a disciple of St Benedict and the
legendary introducer of the Benedictine rule and life into Gaul.1
At the end of the 16th century the Benedictine monasteries of
France had fallen into a state of disorganization and relaxation.
In the abbey of St Vaune near Verdun a reform was initiated by
Dom Didier de la Cour, which spread to other houses in Lorraine,
and in 1604 the reformed congregation of St Vaune was established,
the most distinguished members of which were Ceillier
and Calmet. A number of French houses joined the new congregation;
but as Lorraine was still independent of the French
crown, it was considered desirable to form on the same lines a
separate congregation for France. Thus in 1621 was established
the famous French congregation of St Maur. Most of the
Benedictine monasteries of France, except those belonging to
Cluny, gradually joined the new congregation, which eventually
embraced nearly two hundred houses. The chief house was
Saint-Germain-des-Prés, Paris, the residence of the superior-general
and centre of the literary activity of the congregation.
The primary idea of the movement was not the undertaking of
literary and historical work, but the return to a strict monastic
régime and the faithful carrying out of Benedictine life; and
throughout the most glorious period of Maurist history the
literary work was not allowed to interfere with the due performance
of the choral office and the other duties of the monastic
life. Towards the end of the 18th century a tendency crept in,
in some quarters, to relax the monastic observances in favour of
study; but the constitutions of 1770 show that a strict monastic
régime was maintained until the end. The course of Maurist
history and work was checkered by the ecclesiastical controversies
that distracted the French Church during the 17th and 18th
centuries. Some of the members identified themselves with
the Jansenist cause; but the bulk, including nearly all the
greatest names, pursued a middle path, opposing the lax moral
theology condemned in 1679 by Pope Innocent XI., and adhering
to those strong views on grace and predestination associated
with the Augustinian and Thomist schools of Catholic theology;
and like all the theological faculties and schools on French soil,
they were bound to teach the four Gallican articles. It seems
that towards the end of the 18th century a rationalistic and free-thinking
spirit invaded some of the houses. The congregation
was suppressed and the monks scattered at the revolution, the
last superior-general with forty of his monks dying on the scaffold
in Paris. The present French congregation of Benedictines
initiated by Dom Guéranger in 1833 is a new creation and has
no continuity with the congregation of St Maur.

The great claim of the Maurists to the gratitude and admiration
of posterity is their historical and critical school, which
stands quite alone in history, and produced an extraordinary
number of colossal works of erudition which still are of permanent
value. The foundations of this school were laid by Dom
Tarisse, the first superior-general, who in 1632 issued instructions
to the superiors of the monasteries to train the young monks in
the habits of research and of organized work. The pioneers in
production were Ménard and d’Achery.


The following tables give, divided into groups, the most important
Maurist works, along with such information as may be useful to
students. All works are folio when not otherwise noted:—


	I.—The Editions of the Fathers

	Epistle of Barnabas (editio princeps)
 	Ménard
 	1645 	1 in 4to

	Lanfranc
 	d’Achery
 	1648 	1

	Guibert of Nogent
 	d’Achery
 	1651 	1

	Robert Pulleyn and Peter of Poitiers
 	Mathou
 	1655 	1

	Bernard
 	Mabillon
 	1667 	2

	Anselm
 	Gerberon
 	1675 	1

	Cassiodorus
 	Garet
 	1679 	1

	Augustine (see Kukula, Die Mauriner-Ausgabe des Augustinus, 1898)
 	Delfau, Blampin, Coustant, Guesnie
 	1681-1700 	11

	Ambrose
 	du Frische
 	1686-1690 	2

	Acta martyrum sincera
 	Ruinart
 	1689 	1

	Hilary
 	Coustant
 	1693 	1

	Jerome
 	Martianay
 	1693-1706 	5

	Athanasius
 	Loppin and Montfaucon
 	1698 	3

	Gregory of Tours
 	Ruinart
 	1699 	1

	Gregory the Great
 	Sainte-Marthe
 	1705 	4

	Hildebert of Tours
 	Beaugendre
 	1708 	1

	Irenaeus
 	Massuet
 	1710 	1

	Chrysostom
 	Montfaucon
 	1718-1738 	13

	Cyril of Jerusalem
 	Touttée and Maran
 	1720 	1

	Epistolae romanorum pontificum2
 	Coustant
 	1721 	1

	Basil
 	Garnier and Maran
 	1721-1730 	3

	Cyprian
 	(Baluze, not a Maurist) finished by Maran
 	1726 	1

	Origen
 	Ch. de la Rue (1, 2, 3) V. de la Rue (4)
 	1733-1759 	4

	Justin and the Apologists
 	Maran
 	1742 	1

	Gregory Nazianzen3
 	Maran and Clémencet
 	1778 	1

	II.—Biblical Works

	St Jerome’s Latin Bible
 	Martianay
 	1693 	1

	Origen’s Hexapla
 	Montfaucon
 	1713 	2

	Old Latin versions
 	Sabbathier
 	1743-1749 	3

	III.—Great Collections of Documents

	Spicilegium
 	d’Achery
 	1655-1677 	13 in 4to

	Veterae analecta
 	Mabillon
 	1675-1685 	4 in 8vo

	Musaeum italicum
 	Mabillon
 	1687-1689 	2 in 4to

	Collectio nova patrum graecorum
 	Montfaucon
 	1706 	2

	Thesaurus novus anecdotorum
 	Martène and Durand
 	1717 	5

	Veterum scriptorum collectio
 	Martène and Durand
 	1724-1733 	9

	De antiquis ecclesiaeritibus
 	Martène
 	1690-1706 	 

	 
 	(Final form)
 	1736-1738 	4

	IV.—Monastic History

	Acta of the Benedictine Saints
 	d’Achery, Mabillon and Ruinart
 	1668-1701 	9

	Benedictine Annals (to 1157)
 	Mabillon (1-4), Massuet (5), Martène (6)
 	1703-1739 	6

	V.—Ecclesiastical History and Antiquities of France

	A.—General.

	Gallia Christiana (3 other vols. were published 1856-1865)
 	Sainte-Marthe (1, 2, 3)
 	1715-1785 	13

	Monuments de la monarchie française
 	Montfaucon
 	1729-1733 	5

	Histoire littéraire de la France (16 other vols. were published 1814-1881)
 	Rivet, Clémencet, Clément
 	1733-1763 	12 in 4to

	Recueil des historiens de la France (4 other vols. were published 1840-1876)
 	Bouquet (1-8), Brial (12-19)
 	1738-1833 	19

	Concilia Galliae (the printing of vol. ii. was interrupted by the Revolution; there were to have been 8 vols.)
 	Labbat
 	1789 	1

	B.—Histories of the Provinces.

	Bretagne
 	Lobineau
 	1707 	2

	Paris
 	Félibien and Lobineau
 	1725 	5

	Languedoc
 	Vaissette and de Vic
 	1730-1745 	5

	Bourgogne
 	Plancher (1-3), Merle (4)
 	1739-1748, 1781 	4

	Bretagne
 	Morice
 	1742-1756 	5

	VI.—Miscellaneous Works of Technical Erudition

	De re diplomatica
 	Mabillon
 	1681 	1

	  Ditto Supplement
 	Mabillon
 	1704 	1

	Nouveau traité de diplomatique
 	Toustain and Tassin
 	1750-1765 	6 in 4to

	Paleographia graeca
 	Montfaucon
 	1708 	1

	Bibliotheca coisliniana
 	Montfaucon
 	1715 	1

	Bibliotheca bibliothecarum manuscriptorum nova
 	Montfaucon
 	1739 	2

	L’Antiquité expliqué
 	Montfaucon
 	1719-1724 	15

	New ed. of Du Cange’s glossarium
 	Dantine and Carpentier
 	1733-1736 	6

	  Ditto Supplement
 	Carpentier
 	1766 	4

	Apparatus ad bibliothecam maximam patrum
 	le Nourry
 	1703 	2

	L’Art de vérifier les dates
 	Dantine, Durand, Clémencet
 	1750 	1 in 4to

	  Ed. 2
 	Clément
 	1770 	1

	  Ed. 3
 	Clément
 	1783-1787 	3



The 58 works in the above list comprise 199 great folio volumes
and 39 in 4to or 8vo. The full Maurist bibliography contains the names
of some 220 writers and more than 700 works. The lesser works
in large measure cover the same fields as those in the list, but the
number of works of purely religious character, of piety, devotion
and edification, is very striking. Perhaps the most wonderful phenomenon
of Maurist work is that what was produced was only a portion
of what was contemplated and prepared for. The French Revolution
cut short many gigantic undertakings, the collected materials for which
fill hundreds of manuscript volumes in the Bibliothèque nationale of
Paris and other libraries of France. There are at Paris 31 volumes
of Berthereau’s materials for the Historians of the Crusades, not only
in Latin and Greek, but in the oriental tongues; from them have
been taken in great measure the Recueil des historiens des croisades,
whereof 15 folio volumes have been published by the Académie
des Inscriptions. There exist also the preparations for an edition
of Rufinus and one of Eusebius, and for the continuation of the Papal
Letters and of the Concilia Galliae. Dom Caffiaux and Dom Villevielle
left 236 volumes of materials for a Trésor généalogique. There
are Benedictine Antiquities (37 vols.), a Monasticon Gallicanum and
a Monasticon Benedictinum (54 vols.). Of the Histories of the
Provinces of France barely half a dozen were printed, but all were
in hand, and the collections for the others fill 800 volumes of MSS.
The materials for a geography of Gaul and France in 50 volumes
perished in a fire during the Revolution.

When these figures were considered, and when one contemplates
the vastness of the works in progress during any decade of the century
1680-1780; and still more, when not only the quantity but the
quality of the work, and the abiding value of most of it is realized,
it will be recognized that the output was prodigious and unique
in the history of letters, as coming from a single society. The qualities
that have made Maurist work proverbial for sound learning are
its fine critical tact and its thoroughness.

The chief source of information on the Maurists and their work
is Dom Tassin’s Histoire littéraire de la congregation de Saint-Maur
(1770); it has been reduced to a bare bibliography and completed
by de Lama, Bibliothèque des écrivains de la congr. de S.-M. (1882).
The two works of de Broglie, Mabillon (2 vols., 1888) and Montfaucon
(2 vols., 1891), give a charming picture of the inner life of the great
Maurists of the earlier generation in the midst of their work and their
friends. Sketches of the lives of a few of the chief Maurists will be
found in McCarthy’s Principal Writers of the Congr. of S. M. (1868).
Useful information about their literary undertakings will be found
in De Lisle’s Cabinet des MSS. de la Bibl. Nat. Fonds St Germain-des-Prés.
General information will be found in the standard authorities:
Helyot, Hist. des ordres religieux (1718), vi. c. 37; Heimbucher,
Orden und Kongregationen (1907) i. § 36; Wetzer und Welte, Kirchenlexicon
(ed. 2) and Herzog-Hauck’s Realencyklopädie (ed. 3), the
latter an interesting appreciation by the Protestant historian Otto
Zöckler of the spirit and the merits of the work of the Maurists.



(E. C. B.)


 
1 His festival is kept on the 15th of January. He founded the
monastery of Glanfeuil or St Maur-sur-Loire.

2 14 vols. of materials collected for the continuation are at Paris.

3 The printing of vol. ii. was impeded by the Revolution.





MAURITIUS, an island and British colony in the Indian Ocean
(known whilst a French possession as the Île de France). It
lies between 57° 18′ and 57° 49′ E., and 19° 58′ and 20° 32′ S.,
550 m. E. of Madagascar, 2300 m. from the Cape of Good Hope,
and 9500 m. from England via Suez. The island is irregularly
elliptical—somewhat triangular—in shape, and is 36 m. long
from N.N.E. to S.S.W., and about 23 m. broad. It is 130 m.
in circumference, and its total area is about 710 sq. m. (For
map see Madagascar.) The island is surrounded by coral
reefs, so that the ports are difficult of access.

From its mountainous character Mauritius is a most picturesque
island, and its scenery is very varied and beautiful.
It has been admirably described by Bernardin de St Pierre, who
lived in the island towards the close of the 18th century, in
Paul et Virginie. The most level portions of the coast districts
are the north and north-east, all the rest being broken by hills,
which vary from 500 to 2700 ft. in height. The principal
mountain masses are the north-western or Pouce range, in the
district of Port Louis; the south-western, in the districts of
Rivière Noire and Savanne; and the south-eastern range, in the
Grand Port district. In the first of these, which consists of one
principal ridge with several lateral spurs, overlooking Port
Louis, are the singular peak of the Pouce (2650 ft.), so called
from its supposed resemblance to the human thumb; and the
still loftier Pieter Botte (2685 ft.), a tall obelisk of bare rock,
crowned with a globular mass of stone. The highest summit in
the island is in the south-western mass of hills, the Piton de la
Rivière Noire, which is 2711 ft. above the sea. The south-eastern
group of hills consists of the Montagne du Bambou, with
several spurs running down to the sea. In the interior are
extensive fertile plains, some 1200 ft. in height, forming the
districts of Moka, Vacois, and Plaines Wilhelms; and from nearly
the centre of the island an abrupt peak, the Piton du Milieu de
l’Île rises to a height of 1932 ft. Other prominent summits are
the Trois Mamelles, the Montagne du Corps de Garde, the Signal
Mountain, near Port Louis, and the Morne Brabant, at the south-west
corner of the island.

The rivers are small, and none is navigable beyond a few
hundred yards from the sea. In the dry season little more
than brooks, they become raging torrents in the wet season.
The principal stream is the Grande Rivière, with a course of
about 10 m. There is a remarkable and very deep lake, called

Grand Bassin, in the south of the island, it is probably the
extinct crater of an ancient volcano; similar lakes are the Mare
aux Vacois and the Mare aux Joncs, and there are other deep
hollows which have a like origin.


Geology.—The island is of volcanic origin, but has ceased to show
signs of volcanic activity. All the rocks are of basalt and greyish-tinted
lavas, excepting some beds of upraised coral. Columnar
basalt is seen in several places. The remains of ancient craters can
be distinguished, but their outlines have been greatly destroyed by
denudation. There are many caverns and steep ravines, and from
the character of the rocks the ascents are rugged and precipitous.
The island has few minerals, although iron, lead and copper in very
small quantities have in former times been obtained. The greater
part of the surface is composed of a volcanic breccia, with here and
there lava-streams exposed in ravines, and sometimes on the surface.
The commonest lavas are dolerites. In at least two places sedimentary
rocks are found at considerable elevations. In the Black River
Mountains, at a height of about 1200 ft., there is a clay-slate; and
near Midlands, in the Grand Port group of mountains, a chloritic
schist occurs about 1700 ft. above the sea, forming the hill of La
Selle. This schist is much contorted, but seems to have a general
dip to the south or south-east. Evidence of recent elevation of the
island is furnished by masses of coral reef and beach coral rock
standing at heights of 40 ft. above sea-level in the south, 12 ft. in
the north and 7 ft. on the islands situated on the bank extending
to the north-east.1

Climate.—The climate is pleasant during the cool season of the
year, but oppressively hot in summer (December to April), except
in the elevated plains of the interior, where the thermometer ranges
from 70° to 80° F., while in Port Louis and on the coast generally
it ranges from 90° to 96°. The mean temperature for the year at
Port Louis is 78.6°. There are two seasons, the cool and comparatively
dry season, from April to November, and the hotter season,
during the rest of the year. The climate is now less healthy than it
was, severe epidemics of malarial fever having frequently occurred,
so that malaria now appears to be endemic among the non-European
population. The rainfall varies greatly in different parts of the
island. Cluny in the Grand Port (south-eastern) district has a mean
annual rainfall of 145 in.; Albion on the west coast is the driest
station, with a mean annual rainfall of 31 in. The mean monthly
rainfall for the whole island varies from 12 in. in March to 2.6 in.
in September and October. The Royal Alfred Observatory is situated
at Pamplemousses, on the north-west or dry side of the island.
From January to the middle of April, Mauritius, in common with
the neighbouring islands and the surrounding ocean from 8° to 30° of
southern latitude is subject to severe cyclones, accompanied by
torrents of rain, which often cause great destruction to houses and
plantations. These hurricanes generally last about eight hours, but
they appear to be less frequent and violent than in former times,
owing, it is thought, to the destruction of the ancient forests and the
consequent drier condition of the atmosphere.

Fauna and Flora.—Mauritius being an oceanic island of small
size, its present fauna is very limited in extent. When first seen by
Europeans it contained no mammals except a large fruit-eating bat
(Pteropus vulgaris), which is plentiful in the woods; but several mammals
have been introduced, and are now numerous in the uncultivated
region. Among these are two monkeys of the genera Macacus and
Cercopithecus, a stag (Cervus hippelaphus), a small hare, a shrew-mouse,
and the ubiquitous rat. A lemur and one of the curious
hedgehog-like Insectivora of Madagascar (Centetes ecaudatus) have
probably both been brought from the larger island. The avifauna
resembles that of Madagascar; there are species of a peculiar genus
of caterpillar shrikes (Campephagidae), as well as of the genera
Pratincola, Hypsipetes, Phedina, Tchitrea, Zosterops, Foudia, Collocalia
and Coracopsis, and peculiar forms of doves and parakeets.
The living reptiles are small and few in number. The surrounding
seas contain great numbers of fish; the coral reefs abound with a great
variety of molluscs; and there are numerous land-shells. The extinct
fauna of Mauritius has considerable interest. In common with
the other Mascarene islands, it was the home of the dodo (Didus
ineptus); there were also Aphanapteryx, a species of rail, and a short-winged
heron (Ardea megacephala), which probably seldom flew.
The defenceless condition of these birds led to their extinction after
the island was colonized. Considerable quantities of the bones of the
dodo and other extinct birds—a rail (Aphanapteryx), and a short-winged
heron—have been discovered in the beds of some of the
ancient lakes (see Dodo). Several species of large fossil tortoises
have also been discovered; they are quite different from the living
ones of Aldabra, in the same zoological region.

Owing to the destruction of the primeval forests for the formation
of sugar plantations, the indigenous flora is only seen in parts of the
interior plains, in the river valleys and on the hills; and it is not
now easy to distinguish between what is native and what has come
from abroad. The principal timber tree is the ebony (Diospyros
ebeneum), which grows to a considerable size. Besides this there
are bois de cannelle, olive-tree, benzoin (Croton Benzoe), colophane
(Colophonia), and iron-wood, all of which arc useful in carpentry;
the coco-nut palm, an importation, but a tree which has been so
extensively planted during the last hundred years that it is extremely
plentiful; the palmiste (Palma dactylifera latifolia), the latanier
(Corypha umbraculifera) and the date-palm. The vacoa or vacois,
(Pandanus utilis) is largely grown, the long tough leaves being
manufactured into bags for the export of sugar, and the roots being
also made of use; and in the few remnants of the original forests
the traveller’s tree (Urania speciosa), grows abundantly. A species
of bamboo is very plentiful in the river valleys and in marshy situations.
A large variety of fruit is produced, including the tamarind,
mango, banana, pine-apple, guava, shaddock, fig, avocado-pear,
litchi, custard-apple and the mabolo (Diospyros discolor), a fruit
of exquisite flavour, but very disagreeable odour. Many of the
roots and vegetables of Europe have been introduced, as well as
some of those peculiar to the tropics, including maize, millet, yams,
manioc, dhol, gram, &c. Small quantities of tea, rice and sago,
have been grown, as well as many of the spices (cloves, nutmeg,
ginger, pepper and allspice), and also cotton, indigo, betel, camphor,
turmeric and vanilla. The Royal Botanical Gardens at Pamplemousses,
which date from the French occupation of the island,
contain a rich collection of tropical and extra-tropical species.



Inhabitants.—The inhabitants consist of two great divisions,
those of European blood, chiefly French and British, together
with numerous half-caste people, and those of Asiatic or African
blood. The population of European blood, which calls itself
Creole, is greater than that of any other tropical colony; many
of the inhabitants trace their descent from ancient French
families, and the higher and middle classes are distinguished for
their intellectual culture. French is more commonly spoken
than English. The Creole class is, however, diminishing, though
slowly, and the most numerous section of the population is of
Indian blood.


The introduction of Indian coolies to work the sugar plantations
dates from the period of the emancipation of the slaves in 1834-1839.
At that time the negroes who showed great unwillingness
to work on their late masters’ estates, numbered about 66,000.
Immigration from India began in 1834, and at a census taken in
1846, when the total population was 158,462, there were already
56,245 Indians in the island. In 1851 the total population had
increased to 180,823, while in 1861 it was 310,050. This great
increase was almost entirely due to Indian immigration, the Indian
population, 77,996 in 1851, being 192,634 in 1861. From that year
the increase in the Indian population has been more gradual but
steady, while the non-Indian population has decreased. From 102,827
in 1851 it rose to 117,416 in 1861 to sink to 99,784 in 1871. The
figures for the three following census years were:—


	  	1881. 	1891. 	1901.

	Indians 	248,993 	255,920 	259,086

	Others 	110,881 	114,668 	111,937

	  	——— 	——— 	———

	  Total 	359,874 	370,588 	371,023

	  	——— 	——— 	———



Including the military and crews of ships in harbour, the total
population in 1901 was 373,336.2 This total included 198,958
Indo-Mauritians, i.e. persons of Indian descent born in Mauritius, and
62,022 other Indians. There were 3,509 Chinese, while the remaining
108,847 included persons of European, African or mixed descent,
Malagasy, Malays and Sinhalese. The Indian female population
increased from 51,019 in 1861 to 115,986 in 1901. In the same period
the non-Indian female population but slightly varied, being 56,070
in 1861 and 55,485 in 1901. The Indo-Mauritians are now dominant
in commercial, agricultural and domestic callings, and much town
and agricultural land has been transferred from the Creole planters
to Indians and Chinese. The tendency to an Indian peasant
proprietorship is marked. Since 1864 real property to the value of
over £1,250,000 has been acquired by Asiatics. Between 1881 and
1901 the number of sugar estates decreased from 171 to 115, those sold
being held in small parcels by Indians. The average death-rate for the
period 1873-1901 was 32.6 per 1000. The average birth-rate in
the Indian community is 37 per 1000; in the non-Indian community
34 per 1000. Many Mauritian Creoles have emigrated to South
Africa. The great increase in the population since 1851 has made
Mauritius one of the most densely peopled regions of the world,
having over 520 persons per square mile.

Chief Towns.—The capital and seat of government, the city of
Port Louis, is on the north-western side of the island, in 20° 10′ S.,
57° 30′ E. at the head of an excellent harbour, a deep inlet about a
mile long, available for ships of the deepest draught. This is
protected by Fort William and Fort George, as well as by the citadel
(Fort Adelaide), and it has three graving-docks connected with the
inner harbour, the depths alongside quays and berths being from
12 to 28 ft. The trade of the island passes almost entirely through the
port. Government House is a three-storeyed structure with broad

verandas, of no particular style of architecture, while the Protestant
cathedral was formerly a powder magazine, to which a tower and
spire have been added. The Roman Catholic cathedral is more
pretentious in style, but is tawdry in its interior. There are, besides
the town-hall, Royal College, public offices and theatre, large barracks
and military stores. Port Louis, which is governed by an elective
municipal council, is surrounded by lofty hills and its unhealthy
situation is aggravated by the difficulty of effective drainage owing
to the small amount of tide in the harbour. Though much has
been done to make the town sanitary, including the provision of a
good water-supply, the death-rate is generally over 44 per 1000.
Consequently all those who can make their homes in the cooler uplands
of the interior. As a result the population of the city decreased
from about 70,000 in 1891 to 53,000 in 1901. The favourite residential
town is Curepipe, where the climate resembles that of the
south of France. It is built on the central plateau about 20 m.
distant from Port Louis by rail and 1800 ft. above the sea. Curepipe
was incorporated in 1888 and had a population (1901) of 13,000.
On the railway between Port Louis and Curepipe are other residential
towns—Beau Bassin, Rose Hill and Quatre Bornes. Mahébourg,
pop. (1901), 4810, is a town on the shores of Grand Port on the
south-east side of the island, Souillac a small town on the south
coast.

Industries.—The Sugar Plantations: The soil of the island is of
considerable fertility; it is a ferruginous red clay, but so largely
mingled with stones of all sizes that no plough can be used, and the
hoe has to be employed to prepare the ground for cultivation. The
greater portion of the plains is now a vast sugar plantation. The
bright green of the sugar fields is a striking feature in a view of
Mauritius from the sea, and gives a peculiar beauty and freshness to
the prospect. The soil is suitable for the cultivation of almost all
kinds of tropical produce, and it is to be regretted that the prosperity
of the colony depends almost entirely on one article of production,
for the consequences are serious when there is a failure, more or less,
of the sugar crop. Guano is extensively imported as a manure, and
by its use the natural fertility of the soil has been increased to a
wonderful extent. Since the beginning of the 20th century some
attention has been paid to the cultivation of tea and cotton, with
encouraging results. Of the exports, sugar amounts on an average
to about 95% of the total. The quantity of sugar exported rose
from 102,000 tons in 1854 to 189,164 tons in 1877. The competition
of beet-sugar and the effect of bounties granted by various countries
then began to tell on the production in Mauritius, the average crop
for the seven years ending 1900-1901 being only 150,449 tons. The
Brussels Sugar Convention of 1902 led to an increase in production,
the average annual weight of sugar exported for the three years
1904-1906 being 182,000 tons. The value of the crop was likewise
seriously affected by the causes mentioned, and by various diseases
which attacked the canes. Thus in 1878 the value of the sugar
exported was £3,408,000; in 1888 it had sunk to £1,911,000, and in
1898 to £1,632,000. In 1900 the value was £1,922,000, and in 1905
it had risen to £2,172,000. India and the South African colonies
between them take some two-thirds of the total produce. The
remainder is taken chiefly by Great Britain, Canada and Hong-Kong.
Next to sugar, aloe-fibre is the most important export, the average
annual export for the five years ending 1906 being 1840 tons. In
addition, a considerable quantity of molasses and smaller quantities
of rum, vanilla and coco-nut oil are exported. The imports are
mainly rice, wheat, cotton goods, wine, coal, hardware and haberdashery,
and guano. The rice comes principally from India and
Madagascar; cattle are imported from Madagascar, sheep from South
Africa and Australia, and frozen meat from Australia. The average
annual value of the exports for the ten years 1896-1905 was
£2,153,159; the average annual value of the imports for the same
period £1,453,089. These figures when compared with those in
years before the beet and bounty-fed sugar had entered into severe
competition with cane sugar, show how greatly the island had
thereby suffered. In 1864 the exports were valued at £2,249,000; in
1868 at £2,339,000; in 1877 at £4,201,000 and in 1880 at £3,634,000.
And in each of the years named the imports exceeded £2,000,000 in
value. Nearly all the aloe-fibre exported is taken by Great Britain,
and France, while the molasses goes to India. Among the minor
exports is that of bambara or sea-slugs, which are sent to Hong-Kong
and Singapore. This industry is chiefly in Chinese hands. The
great majority of the imports are from Great Britain or British
possessions.

The currency of Mauritius is rupees and cents of a rupee, the Indian
rupee (= 16d.) being the standard unit. The metric system of
weights and measures has been in force since 1878.

Communications.—There is a regular fortnightly steamship service
between Marseilles and Port Louis by the Messageries Maritimes,
a four-weekly service with Southampton via Cape Town by the
Union Castle, and a four-weekly service with Colombo direct by the
British India Co.’s boats. There is also frequent communication
with Madagascar, Réunion and Natal. The average annual tonnage
of ships entering Port Louis is about 750,000 of which five-sevenths
is British. Cable communication with Europe, via the Seychelles,
Zanzibar and Aden, was established in 1893, and the Mauritius
section of the Cape-Australian cable, via Rodriguez, was completed
in 1902.

Railways connect all the principal places and sugar estates on the
island, that known as the Midland line, 36 miles long, beginning at
Port Louis crosses the island to Mahébourg, passing through
Curepipe, where it is 1822 ft. above the sea. There are in all over
120 miles of railway, all owned and worked by the government.
The first railway was opened in 1864. The roads are well kept and
there is an extensive system of tramways for bringing produce
from the sugar estates to the railway lines. Traction engines are
also largely used. There is a complete telegraphic and telephonic
service.



Government and Revenue.—Mauritius is a crown colony. The
governor is assisted by an executive council of five official and
two elected members, and a legislative council of 27 members,
8 sitting ex officio, 9 being nominated by the governor and 10
elected on a moderate franchise. Two of the elected members
represent St Louis, the 8 rural districts into which the island is
divided electing each one member. At least one-third of the
nominated members must be persons not holding any public
office. The number of registered electors in 1908 was 6186.
The legislative session usually lasts from April to December.
Members may speak either in French or English. The average
annual revenue of the colony for the ten years 1896-1905, was
£608,245, the average annual expenditure during the same
period £663,606. Up to 1854 there was a surplus in hand, but
since that time expenditure has on many occasions exceeded
income, and the public debt in 1908 was £1,305,000, mainly
incurred however on reproductive works.

The island has largely retained the old French laws, the codes
civil, de procédure, du commerce, and d’instruction criminelle
being still in force, except so far as altered by colonial ordinances.
A supreme court of civil and criminal justice was established in
1831 under a chief judge and three puisne judges.


Religion and Education.—The majority of the European inhabitants
belong to the Roman Catholic faith. They numbered at the
1901 census 117,102, and the Protestants 6644. Anglicans, Roman
Catholics and the Church of Scotland are helped by state grants.
At the head of the Anglican community is the bishop of Mauritius;
the chief Romanist dignitary is styled bishop of Port Louis. The
Mahommedans number over 30,000, but the majority of the Indian
coolies are Hindus.

The educational system, as brought into force in 1900, is under
a director of public instruction assisted by an advisory committee,
and consists of two branches (1) superior or secondary instruction,
(2) primary instruction. For primary instruction there are government
schools and schools maintained by the Roman Catholics, Protestants
and other faiths, to which the government gives grants in
aid. In 1908 there were 67 government schools with 8400 scholars
and 90 grant schools with 10,200 scholars, besides Hindu schools
receiving no grant. The Roman Catholic scholars number 67.72%;
the Protestants 3.80%; Mahommedans 8.37%; and Hindus and
others 20.11%. Secondary and higher education is given in the
Royal College and associated schools at Port Louis and Curepipe.

Defence.—Mauritius occupies an important strategic position
on the route between South Africa and India and in relation to
Madagascar and East Africa, while in Port Louis it possesses one of
the finest harbours in the Indian Ocean. A permanent garrison
of some 3000 men is maintained in the island at a cost of about
£180,000 per annum. To the cost of the troops Mauritius contributes
51⁄2% of its annual revenue—about £30,000.



History.—Mauritius appears to have been unknown to European
nations, if not to all other peoples, until the year 1505, when
it was discovered by Mascarenhas, a Portuguese navigator. It
had then no inhabitants, and there seem to be no traces of a previous
occupation by any people. The island was retained for most
of the 16th century by its discoverers, but they made no settlements
in it. In 1598 the Dutch took possession, and named the
island “Mauritius,” in honour of their stadtholder, Count
Maurice of Nassau. It had been previously called by the Portuguese
“Ilha do Cerné,” from the belief that it was the island
so named by Pliny. But though the Dutch built a fort at
Grand Port and introduced a number of slaves and convicts,
they made no permanent settlement in Mauritius, finally abandoning
the island in 1710. From 1715 to 1767 (when the French
government assumed direct control) the island was held by agents
of the French East India Company, by whom its name was again
changed to “Île de France.” The Company was fortunate in
having several able men as governors of its colony, especially
the celebrated Mahé de Labourdonnais (q.v.), who made sugar

planting the main industry of the inhabitants.3 Under his
direction roads were made, forts built, and considerable portions
of the forest were cleared, and the present capital, Port Louis,
was founded. Labourdonnais also promoted the planting of
cotton and indigo, and is remembered as the most enlightened
and best of all the French governors. He also put down the
maroons or runaway slaves who had long been the pest of the
island. The colony continued to rise in value during the time
it was held by the French crown, and to one of the intendants,4
Pierre Poivre, was due the introduction of the clove, nutmeg
and other spices. Another governor was D’Entrecasteaux,
whose name is kept in remembrance by a group of islands
east of New Guinea.

During the long war between France and England, at the
commencement of the 19th century, Mauritius was a continual
source of much mischief to English Indiamen and other merchant
vessels; and at length the British government determined upon
an expedition for its capture. This was effected in 1810; and
upon the restoration of peace in 1814 the possession of the
island was confirmed to Britain by the Treaty of Paris. By
the eighth article of capitulation it was agreed that the inhabitants
should retain their own laws, customs, and religion; and
thus the island is still largely French in language, habits, and
predilections; but its name has again been changed to that given
by the Dutch. One of the most distinguished of the British
governors was Sir Robert Farquhar (1810-1823), who did much
to abolish the Malagasy slave trade and to establish friendly
relations with the rising power of the Hova sovereign of Madagascar.
Later governors of note were Sir Henry Barkly (1863-1871),
and Sir J. Pope Hennessy (1883-1886 and 1888).

The history of the colony since its acquisition by Great Britain
has been one of social and political evolution. At first all
power was concentrated in the hands of the governor, but in
1832 a legislative council was constituted on which non-official
nominated members served. In 1884-1885 this council was
transformed into a partly elected body. Of more importance
than the constitutional changes were the economic results which
followed the freeing of the slaves (1834-1839)—for the loss
of whose labour the planters received over £2,000,000 compensation.
Coolies were introduced to supply the place of the
negroes, immigration being definitely sanctioned by the government
of India in 1842. Though under government control the
system of coolie labour led to many abuses. A royal commission
investigated the matter in 1871 and since that time the
evils which were attendant on the system have been gradually
remedied. One result of the introduction of free labour has
been to reduce the descendants of the slave population to a
small and unimportant class—Mauritius in this respect offering
a striking contrast to the British colonies in the West Indies.
The last half of the 19th century was, however, chiefly notable
in Mauritius for the number of calamities which overtook the
island. In 1854 cholera caused the death of 17,000 persons;
in 1867 over 30,000 people died of malarial fever; in 1892 a
hurricane of terrific violence caused immense destruction of
property and serious loss of life; in 1893 a great part of Port Louis
was destroyed by fire. There were in addition several epidemics
of small-pox and plague, and from about 1880 onward the
continual decline in the price of sugar seriously affected the
islanders, especially the Creole population. During 1902-1905
an outbreak of surra, which caused great mortality among
draught animals, further tried the sugar planters and necessitated
government help. Notwithstanding all these calamities
the Mauritians, especially the Indo-Mauritians, have succeeded
in maintaining the position of the colony as an important sugar-producing
country.


Dependencies.—Dependent upon Mauritius and forming part of
the colony are a number of small islands scattered over a large
extent of the Indian Ocean. Of these the chief is Rodriguez (q.v.),
375 m. east of Mauritius. Considerably north-east of Rodriguez
lie the Oil Islands or Chagos archipelago, of which the chief is
Diego Garcia (see Chagos). The Cargados, Carayos or St Brandon
islets, deeps and shoals, lie at the south end of the Nazareth Bank
about 250 m. N.N.E. of Mauritius. Until 1903 the Seychelles,
Amirantes, Aldabra and other islands lying north of Madagascar
were also part of the colony of Mauritius. In the year named
they were formed into a separate colony (see Seychelles). Two
islands, Farquhar and Coetivy, though geographically within the
Seychelles area, remained dependent on Mauritius, being owned by
residents in that island. In 1908, however, Coetivy was transferred
to the Seychelles administration. Amsterdam and St Paul, uninhabited
islands in the South Indian Ocean, included in an official
list of the dependencies of Mauritius drawn up in 1880, were in
1893 annexed by France. The total population of the dependencies
of Mauritius was estimated in 1905 at 5400.

Authorities.—F. Leguat, Voyages et aventures en deux isles désertes
des Indes orientales (Eng. trans., A New Voyage to the East Indies;
London, 1708); Prudham, “England’s Colonial Empire,” vol. i.,
The Mauritius and its Dependencies (1846); C. P. Lucas, A Historical
Geography of the British Colonies, vol. i. (Oxford, 1888); Ch. Grant,
History of Mauritius, or the Isle of France and Neighbouring Islands
(1801); J. Milbert, Voyage pittoresque à l’Île-de-France, &c., 4 vols.
(1812); Aug. Billiard, Voyage aux colonies orientales (1822); P.
Beaton, Creoles and Coolies, or Five Years in Mauritius (1859);
Paul Chasteau, Histoire et description de l’île Maurice (1860);
F. P. Flemyng, Mauritius, or the Isle of France (1862); Ch. J. Boyle,
Far Away, or Sketches of Scenery and Society in Mauritius (1867);
L. Simonin, Les Pays lointains, notes de voyage (Maurice, &c.)
(1867); N. Pike, Sub-Tropical Rambles in the Land of the Aphanapteryx
(1873); A. R. Wallace. “The Mascarene Islands,” in ch. xi.
vol. i. of The Geographical Distribution of Animals (1876); K. Möbius,
F. Richter and E. von Martens, Beiträge zur Meeresfauna der Insel
Mauritius und der Seychellen (Berlin, 1880); G. Clark, A Brief
Notice of the Fauna of Mauritius (1881); A. d’Épinay, Renseignements
pour servir à l’histoire de l’Île de France jusqu’à 1810 (Mauritius,
1890); N. Decotter, Geography of Mauritius and its Dependencies
(Mauritius, 1892); H. de Haga Haig, “The Physical Features and
Geology of Mauritius” in vol. li., Q. J. Geol. Soc. (1895); the Annual
Reports on Mauritius issued by the Colonial Office, London; The
Mauritius Almanack published yearly at Port Louis. A map
of the island in six sheets on the scale of one inch to a mile was
issued by the War Office in 1905.



(J. Si.*)


 
1 See Geog. Journ. (June 1895), p. 597.

2 The total population of the colony (including dependencies)
on the 1st of January 1907 was estimated at 383,206.

3 Labourdonnais is credited by several writers with the introduction
of the sugar cane into the island. Leguat, however, mentions
it as being cultivated during the Dutch occupation.

4 The régime introduced in 1767 divided the administration
between a governor, primarily charged with military matters, and
an intendant.





MAURY, JEAN SIFFREIN (1746-1817), French cardinal and
archbishop of Paris, the son of a poor cobbler, was born on the
26th of June 1746 at Valréas in the Comtat-Venaissin, the district
in France which belonged to the pope. His acuteness was
observed by the priests of the seminary at Avignon, where he
was educated and took orders. He tried his fortune by writing
éloges of famous persons, then a favourite practice; and in 1771
his éloge on Fénelon was pronounced next best to Laharpe’s by the
Academy. The real foundation of his fortunes was the success
of a panegyric on St Louis delivered before the Academy in 1772,
which caused him to be recommended for an abbacy. In 1777
he published under the title of Discours choisis his panegyrics
on Saint Louis, Saint Augustine and Fénelon, his remarks on
Bossuet and his Essai sur l’éloquence de la chaire, a volume which
contains much good criticism, and remains a French classic.
The book was often reprinted as Principes de l’éloquence. He
became a favourite preacher in Paris, and was Lent preacher at
court in 1781, when King Louis XVI. said of his sermon: “If the
abbé had only said a few words on religion he would have discussed
every possible subject.” In 1781 he obtained the rich
priory of Lyons, near Péronne, and in 1785 he was elected to
the Academy, as successor of Lefranc de Pompignan. His
morals were as loose as those of his great rival Mirabeau, but
he was famed in Paris for his wit and gaiety. In 1789 he was
elected a member of the states-general by the clergy of the
bailliage of Péronne, and from the first proved to be the most able
and persevering defender of the ancien régime, although he had
drawn up the greater part of the cahier of the clergy of Péronne,
which contained a considerable programme of reform. It is
said that he attempted to emigrate both in July and in October
1789; but after that time he held firmly to his place, when almost
universally deserted by his friends. In the Constituent Assembly
he took an active part in every important debate, combating
with especial vigour the alienation of the property of the clergy.
His life was often in danger, but his ready wit always saved it,
and it was said that one bon mot would preserve him for a month.

When he did emigrate in 1792 he found himself regarded as a
martyr to the church and the king, and was at once named
archbishop in partibus, and extra nuncio to the diet at Frankfort,
and in 1794 cardinal. He was finally made bishop of Montefiascone,
and settled down in that little Italian town—but not
for long, for in 1798 the French drove him from his retreat,
and he sought refuge in Venice and St Petersburg. Next year
he returned to Rome as ambassador of the exiled Louis XVIII.
at the papal court. In 1804 he began to prepare his return to
France by a well-turned letter to Napoleon, congratulating him
on restoring religion to France once more. In 1806 he did return;
in 1807 he was again received into the Academy; and in 1810, on
the refusal of Cardinal Fesch, was made archbishop of Paris.
He was presently ordered by the pope to surrender his functions
as archbishop of Paris. This he refused to do. On the restoration
of the Bourbons he was summarily expelled from the Academy
and from the archiepiscopal palace. He retired to Rome,
where he was imprisoned in the castle of St Angelo for six months
for his disobedience to the papal orders, and died in 1817, a year
or two after his release, of disease contracted in prison and of
chagrin. As a critic he was a very able writer, and Sainte-Beuve
gives him the credit of discovering Father Jacques Bridayne,
and of giving Bossuet his rightful place as a preacher
above Massillon; as a politician, his wit and eloquence make him
a worthy rival of Mirabeau. He sacrificed too much to personal
ambition, yet it would have been a graceful act if Louis XVIII.
had remembered the courageous supporter of Louis XVI., and
the pope the one intrepid defender of the Church in the
states-general.


The Œuvres choisies du Cardinal Maury (5 vols., 1827) contain
what is worth preserving. Mgr Ricard has published Maury’s
Correspondance diplomatique (2 vols., Lille, 1891). For his life and
character see Vie du Cardinal Maury, by Louis Siffrein Maury, his
nephew (1828); J. J. F. Poujoulat, Cardinal Maury, sa vie et ses
œuvres (1855); Sainte-Beuve, Causeries du lundi (vol. iv.); Mgr
Ricard, L’Abbé Maury (1746-1791), L’Abbé Maury avant 1789,
L’Abbé Maury et Mirabeau (1887); G. Bonet-Maury, Le Cardinal
Maury d’après ses mémoires et sa correspondance inédits (Paris,
1892); A. Aulard, Les Orateurs de la constituante (Paris, 1882).
Of the many libels written against him during the Revolution the
most noteworthy are the Petit carême de l’abbé Maury, with a supplement
called the Seconde année (1790), and the Vie privée de l’abbé
Maury (1790), claimed by J. R. Hébert, but attributed by some
writers to Restif de la Bretonne. For further bibliographical details
see J. M. Quérard, La France littéraire, vol. v. (1833).





MAURY, LOUIS FERDINAND ALFRED (1817-1892), French
scholar, was born at Meaux on the 23rd of March 1817. In
1836, having completed his education, he entered the Bibliothèque
Nationale, and afterwards the Bibliothèque de l’Institut
(1844), where he devoted himself to the study of archaeology,
ancient and modern languages, medicine and law. Gifted with
a great capacity for work, a remarkable memory and an unbiassed
and critical mind, he produced without great effort a number of
learned pamphlets and books on the most varied subjects. He
rendered great service to the Académie des Inscriptions et Belles
Lettres, of which he had been elected a member in 1857. Napoleon
III. employed him in research work connected with the
Histoire de César, and he was rewarded, proportionately to his
active, if modest, part in this work, with the positions of librarian
of the Tuileries (1860), professor at the College of France (1862)
and director-general of the Archives (1868). It was not, however,
to the imperial favour that he owed these high positions. He
used his influence for the advancement of science and higher
education, and with Victor Duruy was one of the founders of the
École des Hautes Études. He died at Paris four years after
his retirement from the last post, on the 11th of February 1892.


Bibliography.—His works are numerous: Les Fées au moyen âge
and Histoire des légendes pieuses au moyen âge; two books filled with
ingenious ideas, which were published in 1843, and reprinted after
the death of the author, with numerous additions under the title
Croyances et légendes du moyen âge (1896); Histoire des grandes
forêts de la Gaule et de l’ancienne France (1850, a 3rd ed. revised
appeared in 1867 under the title Les Forêts de la Gaule et de l’ancienne
France); La Terre et l’homme, a general historical sketch of geology,
geography and ethnology, being the introduction to the Histoire
universelle, by Victor Duruy (1854); Histoire des religions de la
Grèce antique, (3 vols., 1857-1859); La Magie et l’astrologie dans
l’antiquité et dans le moyen âge (1863); Histoire de l’ancienne académie
des sciences (1864); Histoire de l’Académie des Inscriptions et Belles
Lettres (1865); a learned paper on the reports of French archaeology,
written on the occasion of the universal exhibition (1867); a number
of articles in the Encyclopédie moderne (1846-1851), in Michaud’s
Biographie universelle (1858 and seq.), in the Journal des savants
in the Revue des deux mondes (1873, 1877, 1879-1880, &c.). A
detailed bibliography of his works has been placed by Auguste
Longnon at the beginning of the volume Les Croyances et légendes
du moyen âge.





MAURY, MATTHEW FONTAINE (1806-1873), American
naval officer and hydrographer, was born near Fredericksburg
in Spottsylvania county, Virginia, on the 24th of January 1806.
He was educated at Harpeth academy, and in 1825 entered the
navy as midshipman, circumnavigating the globe in the
“Vincennes,” during a cruise of four years (1826-1830). In 1831
he was appointed master of the sloop “Falmouth” on the Pacific
station, and subsequently served in other vessels before returning
home in 1834, when he married his cousin, Ann Herndon. In
1835-1836 he was actively engaged in producing for publication
a treatise on navigation, a remarkable achievement at so early
a stage in his career; he was at this time made lieutenant, and
gazetted astronomer to a South Sea exploring expedition, but
resigned this position and was appointed to the survey of southern
harbours. In 1839 he met with an accident which resulted
in permanent lameness, and unfitted him for active service. In
the same year, however, he began to write a series of articles on
naval reform and other subjects, under the title of Scraps from
the Lucky-Bag, which attracted much attention; and in 1841 he
was placed in charge of the Dépôt of Charts and Instruments,
out of which grew the United States Naval Observatory and the
Hydrographie Office. He laboured assiduously to obtain observations
as to the winds and currents by distributing to captains
of vessels specially prepared log-books; and in the course of nine
years he had collected a sufficient number of logs to make two
hundred manuscript volumes, each with about two thousand
five hundred days’ observations. One result was to show the
necessity for combined action on the part of maritime nations
in regard to ocean meteorology. This led to an international
conference at Brussels in 1853, which produced the greatest
benefit to navigation as well as indirectly to meteorology.
Maury attempted to organize co-operative meteorological work
on land, but the government did not at this time take any steps
in this direction. His oceanographical work, however, received
recognition in all parts of the civilized world, and in 1855 it was
proposed in the senate to remunerate him, but in the same year
the Naval Retiring Board, erected under an act to promote the
efficiency of the navy, placed him on the retired list. This
action aroused wide opposition, and in 1858 he was reinstated
with the rank of commander as from 1855. In 1853 Maury had
published his Letters on the Amazon and Atlantic Slopes of South
America, and the most widely popular of his works, the Physical
Geography of the Sea, was published in London in 1855, and in
New York in 1856; it was translated into several European
languages. On the outbreak of the American Civil War in 1861,
Maury threw in his lot with the South, and became head of coast,
harbour and river defences. He invented an electric torpedo for
harbour defence, and in 1862 was ordered to England to purchase
torpedo material, &c. Here he took active part in organizing
a petition for peace to the American people, which was unsuccessful.
Afterwards he became imperial commissioner of emigration
to the emperor Maximilian of Mexico, and attempted to
form a Virginian colony in that country. Incidentally he
introduced there the cultivation of cinchona. The scheme of
colonization was abandoned by the emperor (1866), and Maury,
who had lost nearly his all during the war, settled for a while in
England, where he was presented with a testimonial raised by
public subscription, and among other honours received the degree
of LL.D. of Cambridge University (1868). In the same year, a
general amnesty admitting of his return to America, he accepted
the professorship of meteorology in the Virginia Military Institute,
and settled at Lexington, Virginia, where he died on the 1st
of February 1873.




Among works published by Maury, in addition to those mentioned,
are the papers contributed by him to the Astronomical Observations
of the United States Observatory, Letter concerning Lanes for
Steamers crossing the Atlantic (1855); Physical Geography (1864)
and Manual of Geography (1871). In 1859 he began the publication
of a series of Nautical Monographs.

See Diana Fontaine Maury Corbin (his daughter), Life of Matthew
Fontaine Maury (London, 1888).





MAUSOLEUM, the term given to a monument erected to
receive the remains of a deceased person, which may sometimes
take the form of a sepulchral chapel. The term cenotaph (κενός,
empty, τάφος, tomb) is employed for a similar monument
where the body is not buried in the structure. The term
“mausoleum” originated with the magnificent monument
erected by Queen Artemisia in 353 B.C. in memory of her husband
King Mausolus, of which the remains were brought to England
in 1859 by Sir Charles Newton and placed in the British Museum.
The tombs of Augustus and of Hadrian in Rome are perhaps
the largest monuments of the kind ever erected.



MAUSOLUS (more correctly Maussollus), satrap and practically
ruler of Caria (377-353 B.C.). The part he took in the
revolt against Artaxerxes Mnemon, his conquest of a great part
of Lycia, Ionia and of several of the Greek islands, his co-operation
with the Rhodians and their allies in the war against Athens,
and the removal of his capital from Mylasa, the ancient seat of
the Carian kings, to Halicarnassus are the leading facts of his
history. He is best known from the tomb erected for him by his
widow Artemisia. The architects Satyrus and Pythis, and the
sculptors Scopas, Leochares, Bryaxis and Timotheus, finished
the work after her death. (See Halicarnassus.) An inscription
discovered at Mylasa (Böckh, Inscr. gr. ii. 2691 c.) details the
punishment of certain conspirators who had made an attempt
upon his life at a festival in a temple at Labranda in 353.


See Diod. Sic. xv. 90, 3, xvi. 7, 4, 36, 2; Demosthenes, De Rhodiorum
libertate; J. B. Bury, Hist. of Greece (1902), ii. 271; W. Judeich,
Kleinasiatische Studien (Marburg, 1892), pp. 226-256, and authorities
under Halicarnassus.





MAUVE, ANTON (1838-1888), Dutch landscape painter, was
born at Zaandam, the son of a Baptist minister. Much against
the wish of his parents he took up the study of art and entered
the studio of Van Os, whose dry academic manner had, however,
but little attraction for him. He benefited far more by his
intimacy with his friends Jozef Israels and W. Maris. Encouraged
by their example he abandoned his early tight and highly
finished manner for a freer, looser method of painting, and the
brilliant palette of his youthful work for a tender lyric harmony
which is generally restricted to delicate greys, greens, and light
blue. He excelled in rendering the soft hazy atmosphere that
lingers over the green meadows of Holland, and devoted himself
almost exclusively to depicting the peaceful rural life of the
fields and country lanes of Holland—especially of the districts
near Oosterbeck and Wolfhezen, the sand dunes of the coast
at Scheveningen, and the country near Laren, where he spent
the last years of his life. A little sad and melancholy, his pastoral
scenes are nevertheless conceived in a peaceful soothing
lyrical mood, which is in marked contrast to the epic power and
almost tragic intensity of J. F. Millet. There are fourteen of
Mauve’s pictures at the Mesdag Museum at the Hague, and two
(“Milking Time” and “A Fishing Boat putting to Sea”) at
the Ryks Museum in Amsterdam. The Glasgow Corporation
Gallery owns his painting of “A Flock of Sheep.” The finest
and most representative private collection of pictures by Mauve
was made by Mr J. C. J. Drucker, London.



MAVROCORDATO, Mavrocordat or Mavrogordato, the
name of a family of Phanariot Greeks, distinguished in the
history of Turkey, Rumania and modern Greece. The family
was founded by a merchant of Chios, whose son Alexander
Mavrocordato (c. 1636-1709), a doctor of philosophy and medicine
of Bologna, became dragoman to the sultan in 1673, and
was much employed in negotiations with Austria. It was he
who drew up the treaty of Karlowitz (1699). He became a
secretary of state, and was created a count of the Holy Roman
Empire. His authority, with that of Hussein Kupruli and Rami
Pasha, was supreme at the court of Mustapha II., and he did
much to ameliorate the condition of the Christians in Turkey.
He was disgraced in 1703, but was recalled to court by Sultan
Ahmed III. He left some historical, grammatical, &c. treatises
of little value.

His son Nicholas Mavrocordato (1670-1730) was grand
dragoman to the Divan (1697), and in 1708 was appointed
hospodar (prince) of Moldavia. Deposed, owing to the sultan’s
suspicions, in favour of Demetrius Cantacuzene, he was restored
in 1711, and soon afterwards became hospodar of Walachia. In
1716 he was deposed by the Austrians, but was restored after
the peace of Passarowitz. He was the first Greek set to rule
the Danubian principalities, and was responsible for establishing
the system which for a hundred years was to make the name of
Greek hateful to the Rumanians. He introduced Greek manners,
the Greek language and Greek costume, and set up a splendid
court on the Byzantine model. For the rest he was a man of
enlightenment, founded libraries and was himself the author of a
curious work entitled Περὶ καθήκοντων (Bucharest, 1719). He was
succeeded as grand dragoman (1709) by his son John (Ioannes),
who was for a short while hospodar of Moldavia, and died in 1720.

Nicholas Mavrocordato was succeeded as prince of Walachia
in 1730 by his son Constantine. He was deprived in the same
year, but again ruled the principality from 1735 to 1741 and from
1744 to 1748; he was prince of Moldavia from 1741 to 1744 and
from 1748 to 1749. His rule was distinguished by numerous
tentative reforms in the fiscal and administrative systems. He
was wounded and taken prisoner in the affair of Galati during
the Russo-Turkish War, on the 5th of November 1769, and died
in captivity.

Prince Alexander Mavrocordato (1791-1865), Greek
statesman, a descendant of the hospodars, was born at Constantinople
on the 11th of February 1791. In 1812 he went to the
court of his uncle Ioannes Caradja, hospodar of Walachia, with
whom he passed into exile in Russia and Italy (1817). He was
a member of the Hetairia Philike and was among the Phanariot
Greeks who hastened to the Morea on the outbreak of the War
of Independence in 1821. He was active in endeavouring to
establish a regular government, and in January 1822 presided
over the first Greek national assembly at Epidaurus. He commanded
the advance of the Greeks into western Hellas the same
year, and suffered a defeat at Peta on the 16th of July, but
retrieved this disaster somewhat by his successful resistance to
the first siege of Missolonghi (Nov. 1822 to Jan. 1823). His
English sympathies brought him, in the subsequent strife of
factions, into opposition to the “Russian” party headed by
Demetrius Ypsilanti and Kolokotrones; and though he held the
portfolio of foreign affairs for a short while under the presidency
of Petrobey (Petros Mavromichales), he was compelled to withdraw
from affairs until February 1825, when he again became a
secretary of state. The landing of Ibrahim Pasha followed, and
Mavrocordato again joined the army, only escaping capture in
the disaster at Sphagia (Spakteria), on the 9th of May 1815, by
swimming to Navarino. After the fall of Missolonghi (April 22,
1826) he went into retirement, until President Capo d’Istria
made him a member of the committee for the administration of
war material, a position he resigned in 1828. After Capo d’Istria’s
murder (Oct. 9, 1831) and the resignation of his brother
and successor, Agostino Capo d’Istria (April 13, 1832), Mavrocordato
became minister of finance. He was vice-president of
the National Assembly at Argos (July, 1832), and was appointed
by King Otto minister of finance, and in 1833 premier. From
1834 onwards he was Greek envoy at Munich, Berlin, London
and—after a short interlude as premier in Greece in 1841—Constantinople.
In 1843, after the revolution of September, he
returned to Athens as minister without portfolio in the Metaxas
cabinet, and from April to August 1844 was head of the government
formed after the fall of the “Russian” party. Going into
opposition, he distinguished himself by his violent attacks on
the Kolettis government. In 1854-1855 he was again head of
the government for a few months. He died in Aegina on the
18th of August 1865.


See E. Legrand, Genealogie des Mavrocordato (Paris, 1886).







MAWKMAI (Burmese Maukmè), one of the largest states in
the eastern division of the southern Shan States of Burma. It
lies approximately between 19° 30′ and 20° 30′ N. and 97° 30′
and 98° 15′ E., and has an area of 2,787 sq. m. The central
portion of the state consists of a wide plain well watered and
under rice cultivation. The rest is chiefly hills in ranges running
north and south. There is a good deal of teak in the state, but
it has been ruinously worked. The sawbwa now works as contractor
for government, which takes one-third of the net profits.
Rice is the chief crop, but much tobacco of good quality is grown
in the Langkö district on the Têng river. There is also a great
deal of cattle-breeding. The population in 1901 was 29,454,
over two-thirds of whom were Shans and the remainder
Taungthu, Burmese, Yangsek and Red Karens. The capital,
Mawkmai, stands in a fine rice plain in 20° 9′ N. and 97° 25′ E.
It had about 150 houses when it first submitted in 1887, but
was burnt out by the Red Karens in the following year. It has
since recovered. There are very fine orange groves a few miles
south of the town at Kantu-awn, called Kadugate by the
Burmese.



MAXENTIUS, MARCUS AURELIUS VALERIUS, Roman
emperor from A.D. 306 to 312, was the son of Maximianus
Herculius, and the son-in-law of Galerius. Owing to his vices
and incapacity he was left out of account in the division of the
empire which took place in 305. A variety of causes, however,
had produced strong dissatisfaction at Rome with many of the
arrangements established by Diocletian, and on the 28th of
October 306, the public discontent found expression in the
massacre of those magistrates who remained loyal to Flavius
Valerius Severus and in the election of Maxentius to the imperial
dignity. With the help of his father, Maxentius was enabled
to put Severus to death and to repel the invasion of Galerius;
his next steps were first to banish Maximianus, and then, after
achieving a military success in Africa against the rebellious
governor, L. Domitius Alexander, to declare war against
Constantine as having brought about the death of his father
Maximianus. His intention of carrying the war into Gaul was
anticipated by Constantine, who marched into Italy. Maxentius
was defeated at Saxa Rubra near Rome and drowned in the
Tiber while attempting to make his way across the Milvian
bridge into Rome. He was a man of brutal and worthless
character; but although Gibbon’s statement that he was “just,
humane and even partial towards the afflicted Christians”
may be exaggerated, it is probable that he never exhibited
any special hostility towards them.


See De Broglie, L’Église et l’empire Romain au quatrième siècle
(1856-1866), and on the attitude of the Romans towards Christianity
generally, app. 8 in vol. ii. of J. B. Bury’s edition of Gibbon
(Zosimus ii. 9-18; Zonaras xii. 33, xiii. 1; Aurelius Victor, Epit.
40; Eutropius, x. 2).





MAXIM, SIR HIRAM STEVENS (1840-  ), Anglo-American
engineer and inventor, was born at Sangerville, Maine, U.S.A.,
on the 5th of February 1840. After serving an apprenticeship
with a coachbuilder, he entered the machine works of his uncle,
Levi Stevens, at Fitchburg, Massachusetts, in 1864, and four
years later he became a draughtsman in the Novelty Iron Works
and Shipbuilding Company in New York City. About this period
he produced several inventions connected with illumination by
gas; and from 1877 he was one of the numerous inventors who
were trying to solve the problem of making an efficient and
durable incandescent electric lamp, in this connexion introducing
the widely-used process of treating the carbon filaments by heating
them in an atmosphere of hydrocarbon vapour. In 1880 he
came to Europe, and soon began to devote himself to the construction
of a machine-gun which should be automatically loaded
and fired by the energy of the recoil (see Machine-Gun). In
order to realize the full usefulness of the weapon, which was first
exhibited in an underground range at Hatton Garden, London,
in 1884, he felt the necessity of employing a smokeless powder,
and accordingly he devised maximite, a mixture of trinitrocellulose,
nitroglycerine and castor oil, which was patented in
1889. He also undertook to make a flying machine, and after
numerous preliminary experiments constructed an apparatus
which was tried at Bexley Heath, Kent, in 1894. (See Flight.)
Having been naturalized as a British subject, he was knighted
in 1901. His younger brother, Hudson Maxim (b. 1853), took
out numerous patents in connexion with explosives.



MAXIMA AND MINIMA, in mathematics. By the maximum
or minimum value of an expression or quantity is meant primarily
the “greatest” or “least” value that it can receive. In general,
however, there are points at which its value ceases to increase and
begins to decrease; its value at such a point is called a maximum.
So there are points at which its value ceases to decrease and
begins to increase; such a value is called a minimum. There
may be several maxima or minima, and a minimum is not
necessarily less than a maximum. For instance, the expression
(x2 + x + 2)/(x − 1) can take all values from −∞ to −1 and
from +7 to +∞, but has, so long as x is real, no value between
-1 and +7. Here −1 is a maximum value, and +7 is a
minimum value of the expression, though it can be made
greater or less than any assignable quantity.

The first general method of investigating maxima and minima
seems to have been published in A.D. 1629 by Pierre Fermat.
Particular cases had been discussed. Thus Euclid in book III.
of the Elements finds the greatest and least straight lines that can
be drawn from a point to the circumference of a circle, and in
book VI. (in a proposition generally omitted from editions of his
works) finds the parallelogram of greatest area with a given
perimeter. Apollonius investigated the greatest and least
distances of a point from the perimeter of a conic section, and
discovered them to be the normals, and that their feet were the
intersections of the conic with a rectangular hyperbola. Some
remarkable theorems on maximum areas are attributed to
Zenodorus, and preserved by Pappus and Theon of Alexandria.
The most noteworthy of them are the following:—


1. Of polygons of n sides with a given perimeter the regular
polygon encloses the greatest area.

2. Of two regular polygons of the same perimeter, that with the
greater number of sides encloses the greater area.

3. The circle encloses a greater area than any polygon of the
same perimeter.

4. The sum of the areas of two isosceles triangles on given bases,
the sum of whose perimeters is given, is greatest when the triangles
are similar.

5. Of segments of a circle of given perimeter, the semicircle
encloses the greatest area.

6. The sphere is the surface of given area which encloses the
greatest volume.



Serenus of Antissa investigated the somewhat trifling problem
of finding the triangle of greatest area whose sides are formed by
the intersections with the base and curved surface of a right
circular cone of a plane drawn through its vertex.

The next problem on maxima and minima of which there
appears to be any record occurs in a letter from Regiomontanus
to Roder (July 4, 1471), and is a particular numerical example
of the problem of finding the point on a given straight line at
which two given points subtend a maximum angle. N. Tartaglia
in his General trattato de numeri et mesuri (c. 1556) gives, without
proof, a rule for dividing a number into two parts such that
the continued product of the numbers and their difference is a
maximum.

Fermat investigated maxima and minima by means of the
principle that in the neighbourhood of a maximum or minimum
the differences of the values of a function are insensible, a method
virtually the same as that of the differential calculus, and of
great use in dealing with geometrical maxima and minima. His
method was developed by Huygens, Leibnitz, Newton and others,
and in particular by John Hudde, who investigated maxima and
minima of functions of more than one independent variable, and
made some attempt to discriminate between maxima and minima,
a question first definitely settled, so far as one variable is concerned,
by Colin Maclaurin in his Treatise on Fluxions (1742).
The method of the differential calculus was perfected by Euler
and Lagrange.

John Bernoulli’s famous problem of the “brachistochrone,”
or curve of quickest descent from one point to another under

the action of gravity, proposed in 1696, gave rise to a new kind
of maximum and minimum problem in which we have to find
a curve and not points on a given curve. From these problems
arose the “Calculus of Variations.” (See Variations, Calculus
of.)

The only general methods of attacking problems on maxima
and minima are those of the differential calculus or, in geometrical
problems, what is practically Fermat’s method. Some
problems may be solved by algebra; thus if y = ƒ(x) ÷ φ(x),
where ƒ(x) and φ(x) are polynomials in x, the limits to the
values of yφ may be found from the consideration that the
equation yφ(x) − ƒ(x) = 0 must have real roots. This is a
useful method in the case in which φ(x) and ƒ(x) are quadratics,
but scarcely ever in any other case. The problem of
finding the maximum product of n positive quantities whose
sum is given may also be found, algebraically, thus. If a and b
are any two real unequal quantities whatever {1⁄2(a + b)}2 > ab,
so that we can increase the product leaving the sum unaltered
by replacing any two terms by half their sum, and
so long as any two of the quantities are unequal we can increase
the product. Now, the quantities being all positive, the product
cannot be increased without limit and must somewhere attain a
maximum, and no other form of the product than that in which
they are all equal can be the maximum, so that the product is
a maximum when they are all equal. Its minimum value
is obviously zero. If the restriction that all the quantities
shall be positive is removed, the product can be made equal
to any quantity, positive or negative. So other theorems
of algebra, which are stated as theorems on inequalities, may
be regarded as algebraic solutions of problems on maxima and
minima.

For purely geometrical questions the only general method
available is practically that employed by Fermat. If a quantity
depends on the position of some point P on a curve, and if its
value is equal at two neighbouring points P and P′, then at some
position between P and P′ it attains a maximum or minimum, and
this position may be found by making P and P′ approach each
other indefinitely. Take for instance the problem of Regiomontanus
“to find a point on a given straight line which subtends
a maximum angle at two given points A and B.” Let P and P′
be two near points on the given straight line such that the angles
APB and AP′B are equal. Then ABPP′ lie on a circle. By
making P and P′ approach each other we see that for a maximum
or minimum value of the angle APB, P is a point in which a circle
drawn through AB touches the given straight line. There are
two such points, and unless the given straight line is at right
angles to AB the two angles obtained are not the same. It is
easily seen that both angles are maxima, one for points on the
given straight line on one side of its intersection with AB, the
other for points on the other side. For further examples of this
method together with most other geometrical problems on
maxima and minima of any interest or importance the reader may
consult such a book as J. W. Russell’s A Sequel lo Elementary
Geometry (Oxford, 1907).


The method of the differential calculus is theoretically very
simple. Let u be a function of several variables x1, x2, x3 ... xn,
supposed for the present independent; if u is a maximum or
minimum for the set of values x1, x2, x3, ... xn, and u becomes
u + δu, when x1, x2, x3 ... xn receive small increments δx1,
δx2, ... δxn; then δu must have the same sign for all possible
values of δx1, δ2 ... δxn.

Now


	δu = Σ 	δu
	δx1 + 1⁄2 { Σ 	δ2u
	δx12 + 2Σ 	δ2u
	δx1δx2 ... } + ....

	δx1 	δx12
	δx1δx2


The sign of this expression in general is that of Σ(δu/δx1)δx1,
which cannot be one-signed when x1, x2, ... xn can take all
possible values, for a set of increments δx1, δx2 ... δxn, will give an
opposite sign to the set −δx1, −δx2, ... −δxn. Hence Σ(δu/δx1)δx1
must vanish for all sets of increments δx1, ... δxn, and since
these are independent, we must have δu/δx1 = 0, δu/δx2 = 0, ...
δu/δxn = 0. A value of u given by a set of solutions of these equations
is called a “critical value” of u. The value of δu now becomes


	1⁄2 { Σ 	δ2u
	δx12 + 2 Σ 	δ2u
	δx1δx2 + ... };

	δx12 	δx1δx2


for u to be a maximum or minimum this must have always the same
sign. For the case of a single variable x, corresponding to a value
of x given by the equation du/dx = 0, u is a maximum or minimum
as d2u/dx2 is negative or positive. If d2u/dx2 vanishes, then there
is no maximum or minimum unless d2u/dx2 vanishes, and there is
a maximum or minimum according as d4u/dx4 is negative or positive.
Generally, if the first differential coefficient which does not vanish
is even, there is a maximum or minimum according as this is negative
or positive. If it is odd, there is no maximum or minimum.

In the case of several variables, the quadratic


	Σ 	δ2u
	δx12 + 2 Σ 	δ2u
	δx1δx2 + ...

	δx12 	δx1δx2


must be one-signed. The condition for this is that the series of
discriminants


	a11  ,  	a11   a12 	  ,    	a11   a12   a13 	  , ...

	  	a21   a22 	  	a21   a22   a23 	 

	  	  	  	a31   a32   a33 	 



where apq denotes δ2u/δapδaq should be all positive, if the quadratic
is always positive, and alternately negative and positive, if the
quadratic is always negative. If the first condition is satisfied the
critical value is a minimum, if the second it is a maximum. For
the case of two variables the conditions are


	δ2u
	· 	δ2u
	> ( 	δ2u
	)2

	δx12 	δx22
	δx1δx2


for a maximum or minimum at all and δ2u/δx12 and δ2u/δx22 both
negative for a maximum, and both positive for a minimum. It is
important to notice that by the quadratic being one-signed is meant
that it cannot be made to vanish except when δx1, δx2, ... δxn all
vanish. If, in the case of two variables,


	δ2u
	· 	δ2u
	= ( 	δ2u
	)2

	δx12 	δx22
	δx1δx2


then the quadratic is one-signed unless it vanishes, but the value
of u is not necessarily a maximum or minimum, and the terms of
the third and possibly fourth order must be taken account of.

Take for instance the function u = x2 − xy2 + y2. Here the values
x = 0, y = 0 satisfy the equations δu/δx = 0, δu/δy = 0, so that zero
is a critical value of u, but it is neither a maximum nor a minimum
although the terms of the second order are (δx)2, and are never
negative. Here δu = δx2 − δxδy2 + δy2, and by putting δx = 0 or an
infinitesimal of the same order as δy2, we can make the sign of δu
depend on that of δy2, and so be positive or negative as we please.
On the other hand, if we take the function u = x2 − xy2 + y4, x = 0, y = 0
make zero a critical value of u, and here δu = δx2 − δxδy2 + δy4, which
is always positive, because we can write it as the sum of two squares,
viz. (δx − 1⁄2δy2)2 + 3⁄4δy4; so that in this case zero is a minimum value
of u.

A critical value usually gives a maximum or minimum in the
case of a function of one variable, and often in the case of several
independent variables, but all maxima and minima, particularly
absolutely greatest and least values, are not necessarily critical
values. If, for example, x is restricted to lie between the values
a and b and φ′(x) = 0 has no roots in this interval, it follows that
φ′(x) is one-signed as x increases from a to b, so that φ(x) is increasing
or diminishing all the time, and the greatest and least values of
φ(x) are φ(a) and φ(b), though neither of them is a critical value.
Consider the following example: A person in a boat a miles from
the nearest point of the beach wishes to reach as quickly as possible
a point b miles from that point along the shore. The ratio of his
rate of walking to his rate of rowing is cosec α. Where should
he land?

Here let AB be the direction of the beach, A the nearest point
to the boat O, and B the point he wishes to reach. Clearly he
must land, if at all, between A and B. Suppose he lands at P.
Let the angle AOP be θ, so that OP = a secθ, and PB = b − a tan θ.
If his rate of rowing is V miles an hour his time will be a sec θ/V +
(b − a tan θ) sin α/V hours. Call this T. Then to the first power
of δθ, δT = (a/V) sec2θ (sin θ − sin α)δθ, so that if AOB > α, δT and δθ
have opposite signs from θ = 0 to θ = α, and the same signs from
θ = α to θ = AOB. So that when AOB is > α, T decreases from θ = 0
to θ = α, and then increases, so that he should land at a point distant
a tan α from A, unless a tan α > b. When this is the case, δT and δθ
have opposite signs throughout the whole range of θ, so that T
decreases as θ increases, and he should row direct to B. In the
first case the minimum value of T is also a critical value; in the second
case it is not.

The greatest and least values of the bending moments of loaded
rods are often at the extremities of the divisions of the rods and
not at points given by critical values.

In the case of a function of several variables, X1, x2, ... xn,
not independent but connected by m functional relations u1 = 0,
u2 = 0, ..., um = 0, we might proceed to eliminate m of the
variables; but Lagrange’s “Method of undetermined Multipliers”
is more elegant and generally more useful.

We have δu1 = 0, δu2 = 0, ..., δum = 0. Consider instead of
δu, what is the same thing, viz., δu + λ1δu1 + λ2δu2 + ... + λmδum,
where λ1, λ2, ... λm, are arbitrary multipliers. The terms of the
first order in this expression are




	Σ 	δu
	δx1 + λ1 Σ 	δu1
	δx1 + ... + λm Σ 	δum
	δx1.

	δx1 	δx1
	δx1


We can choose λ1, ... λm, to make the coefficients of δx1, δx2,
... δxm, vanish, and the remaining δxm+1 to δxn may be regarded
as independent, so that, when u has a critical value, their coefficients
must also vanish. So that we put


	δu
	+ 	δu1
	+ ... + λm 	δum
	= 0

	δxr 	δxr
	δxr


for all values of r. These equations with the equations u1 = 0, ...,
um = 0 are exactly enough to determine λ1, ..., λm, x1 x2, ..., xn,
so that we find critical values of u, and examine the terms of the
second order to decide whether we obtain a maximum or minimum.

To take a very simple illustration; consider the problem of determining
the maximum and minimum radii vectors of the ellipsoid
x2/a2 + y2/b2 + z2/c2 = 1, where a2 > b2 > c2. Here we require the maximum
and minimum values of x2 + y2 + z2 where x2/a2 + y2/b2 + z2/c2 = 1.

We have


	δu = 2xδx ( 1 + 	λ
	) + 2yδy ( 	λ
	) + 2zδz ( 	λ
	)

	a2 	b2
	c2



	+ δx2 ( 1 + 	λ
	) + δy2 ( 	λ
	) + δz2 ( 	λ
	).

	a2 	b2
	c2


To make the terms of the first order disappear, we have the three
equations:—

x (1 + λ/a2) = 0,   y (1 + λ/b2) = 0,   z (1 + λ/c2) = 0.

These have three sets of solutions consistent with the conditions
x2/a2 + y2/b2 + z2/c2 = 1, a2 > b2 > c2, viz.:—


	(1) y = 0, z = 0, λ = −a2;   (2) z = 0, x = 0, λ = −b2;

	(3) x = 0, y = 0, λ = −c2.



In the case of (1) δu = δy2 (1 − a2/b2) + δz2 (1 − a2/c2), which is
always negative, so that u = a2 gives a maximum.

In the case of (3) δu = δx2 (1 − c2/a2) + δy2 (1 − c2/b2), which is
always positive, so that u = c2 gives a minimum.

In the case of (2) δu = δx2 (1 − b2/a2) − δz2(b2/c2 − 1), which can be
made either positive or negative, or even zero if we move in the
planes x2 (1 − b2/a2) = z2 (b2/c2 − 1), which are well known to be the
central planes of circular section. So that u = b2, though a critical
value, is neither a maximum nor minimum, and the central planes
of circular section divide the ellipsoid into four portions in two of
which a2 > r2 > b2, and in the other two b2 > r2 > c2.



(A. E. J.)



MAXIMIANUS, a Latin elegiac poet who flourished during
the 6th century A.D. He was an Etruscan by birth, and spent
his youth at Rome, where he enjoyed a great reputation as an
orator. At an advanced age he was sent on an important
mission to the East, perhaps by Theodoric, if he is the Maximianus
to whom that monarch addressed a letter preserved in
Cassiodorus (Variarum, i. 21). The six elegies extant under
his name, written in old age, in which he laments the loss of his
youth, contain descriptions of various amours. They show the
author’s familiarity with the best writers of the Augustan age.


Editions by J. C. Wernsdorf, Poetae latini minores, vi.; E. Bährens,
Poetae latini minores, v.; M. Petschenig (1890), in C. F. Ascherson’s
Berliner Studien, xi.; R. Webster (Princeton, 1901; see Classical
Review, Oct. 1901), with introduction and commentary; see also
Robinson Ellis in American Journal of Philology, v. (1884) and
Teuffel-Schwabe, Hist. of Roman Literature (Eng. trans.), § 490. There
is an English version (as from Cornelius Gallus), by Hovenden Walker
(1689), under the title of The Impotent Lover.





MAXIMIANUS, MARCUS AURELIUS VALERIUS, surnamed
Herculius, Roman emperor from A.D. 286 to 305, was born of
humble parents at Sirmium in Pannonia. He achieved distinction
during long service in the army, and having been made
Caesar by Diocletian in 285, received the title of Augustus in the
following year (April 1, 286). In 287 he suppressed the rising of
the peasants (Bagaudae) in Gaul, but in 289, after a three years’
struggle, his colleague and he were compelled to acquiesce in
the assumption by his lieutenant Carausius (who had crossed
over to Britain) of the title of Augustus. After 293 Maximianus
left the care of the Rhine frontier to Constantius Chlorus, who
had been designated Caesar in that year, but in 297 his arms
achieved a rapid and decisive victory over the barbarians of
Mauretania, and in 302 he shared at Rome the triumph of
Diocletian, the last pageant of the kind ever witnessed by that
city. On the 1st of May 305, the day of Diocletian’s abdication,
he also, but without his colleague’s sincerity, divested himself
of the imperial dignity at Mediolanum (Milan), which had been
his capital, and retired to a villa in Lucania; in the following
year, however, he was induced by his son Maxentius to reassume
the purple. In 307 he brought the emperor Flavius Valerius
Severus a captive to Rome, and also compelled Galerius to retreat,
but in 308 he was himself driven by Maxentius from Italy into
Illyricum, whence again he was compelled to seek refuge at
Arelate (Arles), the court of his son-in-law, Constantine. Here
a false report was received, or invented, of the death of Constantine,
at that time absent on the Rhine. Maximianus at once
grasped at the succession, but was soon driven to Massilia
(Marseilles), where, having been delivered up to his pursuers, he
strangled himself.


See Zosimus ii. 7-11; Zonaras xii. 31-33; Eutropius ix. 20,
x. 2, 3; Aurelius Victor p. 39. For the emperor Galerius Valerius
Maximianus see Galerius.





MAXIMILIAN I. (1573-1651), called “the Great,” elector
and duke of Bavaria, eldest son of William V. of Bavaria, was
born at Munich on the 17th of April 1573. He was educated by
the Jesuits at the university of Ingolstadt, and began to take
part in the government in 1591. He married in 1595 his cousin,
Elizabeth, daughter of Charles II., duke of Lorraine, and became
duke of Bavaria upon his father’s abdication in 1597. He
refrained from any interference in German politics until 1607,
when he was entrusted with the duty of executing the imperial
ban against the free city of Donauwörth, a Protestant stronghold.
In December 1607 his troops occupied the city, and vigorous
steps were taken to restore the supremacy of the older faith.
Some Protestant princes, alarmed at this action, formed a union
to defend their interests, which was answered in 1609 by the
establishment of a league, in the formation of which Maximilian
took an important part. Under his leadership an army was set
on foot, but his policy was strictly defensive and he refused to
allow the league to become a tool in the hands of the house of
Habsburg. Dissensions among his colleagues led the duke to
resign his office in 1616, but the approach of trouble brought
about his return to the league about two years later.

Having refused to become a candidate for the imperial throne
in 1619, Maximilian was faced with the complications arising
from the outbreak of war in Bohemia. After some delay he
made a treaty with the emperor Ferdinand II. in October 1619,
and in return for large concessions placed the forces of the league
at the emperor’s service. Anxious to curtail the area of the
struggle, he made a treaty of neutrality with the Protestant
Union, and occupied Upper Austria as security for the expenses
of the campaign. On the 8th of November 1620 his troops under
Count Tilly defeated the forces of Frederick, king of Bohemia
and count palatine of the Rhine, at the White Hill near Prague.
In spite of the arrangement with the union Tilly then devastated
the Rhenish Palatinate, and in February 1623 Maximilian was
formally invested with the electoral dignity and the attendant
office of imperial steward, which had been enjoyed since 1356
by the counts palatine of the Rhine. After receiving the
Upper Palatinate and restoring Upper Austria to Ferdinand,
Maximilian became leader of the party which sought to bring
about Wallenstein’s dismissal from the imperial service. At
the diet of Regensburg in 1630 Ferdinand was compelled to
assent to this demand, but the sequel was disastrous both for
Bavaria and its ruler. Early in 1632 the Swedes marched into
the duchy and occupied Munich, and Maximilian could only
obtain the assistance of the imperialists by placing himself under
the orders of Wallenstein, now restored to the command of the
emperor’s forces. The ravages of the Swedes and their French
allies induced the elector to enter into negotiations for peace
with Gustavus Adolphus and Cardinal Richelieu. He also proposed
to disarm the Protestants by modifying the Restitution
edict of 1629; but these efforts were abortive. In March 1647
he concluded an armistice with France and Sweden at Ulm, but
the entreaties of the emperor Ferdinand III. led him to disregard
his undertaking. Bavaria was again ravaged, and the elector’s
forces defeated in May 1648 at Zusmarshausen. But the peace
of Westphalia soon put an end to the struggle. By this treaty
it was agreed that Maximilian should retain the electoral dignity,
which was made hereditary in his family; and the Upper Palatinate
was incorporated with Bavaria. The elector died at
Ingolstadt on the 27th of September 1651. By his second wife,

Maria Anne, daughter of the emperor Ferdinand II., he left two
sons, Ferdinand Maria, who succeeded him, and Maximilian
Philip. In 1839 a statue was erected to his memory at Munich
by Louis I., king of Bavaria. Weak in health and feeble in
frame, Maximilian had high ambitions both for himself and his
duchy, and was tenacious and resourceful in prosecuting his
designs. As the ablest prince of his age he sought to prevent
Germany from becoming the battleground of Europe, and
although a rigid adherent of the Catholic faith, was not always
subservient to the priest.


See P. P. Wolf, Geschichte Kurfürst Maximilians I. und seiner
Zeit (Munich, 1807-1809); C. M. Freiherr von Aretin, Geschichte
des bayerschen Herzogs und Kurfürsten Maximilian des Ersten
(Passau, 1842); M. Lossen, Die Reichstadt Donauwörth und Herzog
Maximilian (Munich, 1866); F. Stieve, Kurfürst Maximilian I. von
Bayern (Munich, 1882); F. A. W. Schreiber, Maximilian I. der
Katholische Kurfürst von Bayern, und der dreissigjährige Krieg
(Munich, 1868); M. Högl, Die Bekehrung der Oberpfalz durch Kurfürst
Maximilian I. (Regensburg, 1903).





MAXIMILIAN I. (Maximilian Joseph) (1756-1825), king of
Bavaria, was the son of the count palatine Frederick of Zweibrücken-Birkenfeld,
and was born on the 27th of May 1756.
He was carefully educated under the supervision of his uncle,
Duke Christian IV. of Zweibrücken, took service in 1777 as a
colonel in the French army, and rose rapidly to the rank of
major-general. From 1782 to 1789 he was stationed at Strassburg,
but at the outbreak of the revolution he exchanged the
French for the Austrian service, taking part in the opening
campaigns of the revolutionary wars. On the 1st of April 1795
he succeeded his brother, Charles II., as duke of Zweibrücken,
and on the 16th of February 1799 became elector of Bavaria
on the extinction of the Sulzbach line with the death of the
elector Charles Theodore.

The sympathy with France and with French ideas of enlightenment
which characterized his reign was at once manifested.
In the newly organized ministry Count Max Josef von Montgelas
(q.v.), who, after falling into disfavour with Charles Theodore,
had acted for a time as Maximilian Joseph’s private secretary,
was the most potent influence, an influence wholly “enlightened”
and French. Agriculture and commerce were fostered, the laws
were ameliorated, a new criminal code drawn up, taxes and
imposts equalized without regard to traditional privileges, while
a number of religious houses were suppressed and their revenues
used for educational and other useful purposes. In foreign
politics Maximilian Joseph’s attitude was from the German point
of view less commendable. With the growing sentiment of
German nationality he had from first to last no sympathy, and
his attitude throughout was dictated by wholly dynastic, or at
least Bavarian, considerations. Until 1813 he was the most
faithful of Napoleon’s German allies, the relation being cemented
by the marriage of his daughter to Eugène Beauharnais. His
reward came with the treaty of Pressburg (Dec. 26, 1805),
by the terms of which he was to receive the royal title and
important territorial acquisitions in Swabia and Franconia to
round off his kingdom. The style of king he actually assumed
on the 1st of January 1806.

The new king of Bavaria was the most important of the princes
belonging to the Confederation of the Rhine, and remained
Napoleon’s ally until the eve of the battle of Leipzig, when by
the convention of Ried (Oct. 8, 1813) he made the guarantee
of the integrity of his kingdom the price of his joining the Allies.
By the first treaty of Paris (June 3, 1814), however, he ceded
Tirol to Austria in exchange for the former duchy of Würzburg.
At the congress of Vienna, too, which he attended in person,
Maximilian had to make further concessions to Austria, ceding
the quarters of the Inn and Hausruck in return for a part of
the old Palatinate. The king fought hard to maintain the
contiguity of the Bavarian territories as guaranteed at Ried;
but the most he could obtain was an assurance from Metternich
in the matter of the Baden succession, in which he was also
doomed to be disappointed (see Baden: History, iii. 506).

At Vienna and afterwards Maximilian sturdily opposed any
reconstitution of Germany which should endanger the independence
of Bavaria, and it was his insistence on the principle
of full sovereignty being left to the German reigning princes that
largely contributed to the loose and weak organization of the new
German Confederation. The Federal Act of the Vienna congress
was proclaimed in Bavaria, not as a law but as an international
treaty. It was partly to secure popular support in his resistance
to any interference of the federal diet in the internal affairs of
Bavaria, partly to give unity to his somewhat heterogeneous
territories, that Maximilian on the 26th of May 1818 granted a
liberal constitution to his people. Montgelas, who had opposed
this concession, had fallen in the previous year, and Maximilian
had also reversed his ecclesiastical policy, signing on the 24th of
October 1817 a concordat with Rome by which the powers of
the clergy, largely curtailed under Montgelas’s administration,
were restored. The new parliament proved so intractable that
in 1819 Maximilian was driven to appeal to the powers against
his own creation; but his Bavarian “particularism” and his
genuine popular sympathies prevented him from allowing the
Carlsbad decrees to be strictly enforced within his dominions.
The suspects arrested by order of the Mainz Commission he was
accustomed to examine himself, with the result that in many
cases the whole proceedings were quashed, and in not a few the
accused dismissed with a present of money. Maximilian died
on the 13th of October 1825 and was succeeded by his son
Louis I.

In private life Maximilian was kindly and simple. He loved
to play the part of Landesvater, walking about the streets of his
capital en bourgeois and entering into conversation with all ranks
of his subjects, by whom he was regarded with great affection.
He was twice married: (1) in 1785 to Princess Wilhelmine Auguste
of Hesse-Darmstadt, (2) in 1797 to Princess Caroline Friederike of
Baden.


See G. Freiherr von Lerchenfeld, Gesch. Bayerns unter König
Maximilian Joseph I. (Berlin, 1854); J. M. Söltl, Max Joseph,
König von Bayern (Stuttgart, 1837); L. von Kobell, Unter den vier
ersten Königen Bayerns. Nach Briefen und eigenen Erinnerungen
(Munich, 1894).





MAXIMILIAN II. (1811-1864), king of Bavaria, son of king
Louis I. and of his consort Theresa of Saxe-Hildburghausen, was
born on the 28th of November 1811. After studying at Göttingen
and Berlin and travelling in Germany, Italy and Greece, he
was introduced by his father into the council of state (1836).
From the first he showed a studious disposition, declaring on one
occasion that had he not been born in a royal cradle his choice
would have been to become a professor. As crown prince, in
the château of Hohenschwangau near Füssen, which he had
rebuilt with excellent taste, he gathered about him an intimate
society of artists and men of learning, and devoted his time to
scientific and historical study. When the abdication of Louis I.
(March 28, 1848) called him suddenly to the throne, his choice
of ministers promised a liberal régime. The progress of the
revolution, however, gave him pause. He strenuously opposed
the unionist plans of the Frankfort parliament, refused to recognize
the imperial constitution devised by it, and assisted Austria
in restoring the federal diet and in carrying out the federal execution
in Hesse and Holstein. Although, however, from 1850
onwards his government tended in the direction of absolutism,
he refused to become the tool of the clerical reaction, and even
incurred the bitter criticism of the Ultramontanes by inviting
a number of celebrated men of learning and science (e.g. Liebig
and Sybel) to Munich, regardless of their religious views. Finally,
in 1859, he dismissed the reactionary ministry of von der Pfordten,
and met the wishes of his people for a moderate constitutional
government. In his German policy he was guided by the
desire to maintain the union of the princes, and hoped to attain
this as against the perilous rivalry of Austria and Prussia by
the creation of a league of the “middle” and small states—the
so-called Trias. In 1863, however, seeing what he thought to
be a better way, he supported the project of reform proposed by
Austria at the Fürstentag of Frankfort. The failure of this
proposal, and the attitude of Austria towards the Confederation
and in the Schleswig-Holstein question, undeceived him; but

before he could deal with the new situation created by the
outbreak of the war with Denmark he died suddenly at Munich,
on the 10th of March 1864.

Maximilian was a man of amiable qualities and of intellectual
attainments far above the average, but as a king he was hampered
by constant ill-health, which compelled him to be often abroad,
and when at home to live much in the country. By his wife,
Maria Hedwig, daughter of Prince William of Prussia, whom he
married in 1842, he had two sons, Louis II., king of Bavaria, and
Otto, king of Bavaria, both of whom lost their reason.


See J. M. Söltl, Max der Zweite, König von Bayern (Munich,
1865); biography by G. K. Heigel in Allgem. Deutsche Biographie,
vol. xxi. (Leipzig, 1885). Maximilian’s correspondence with
Schlegel was published at Stuttgart in 1890.





MAXIMILIAN I. (1459-1519), Roman emperor, son of the
emperor Frederick III. and Leonora, daughter of Edward, king
of Portugal, was born at Vienna Neustadt on the 22nd of March
1459. On the 18th of August 1477, by his marriage at Ghent
to Mary, who had just inherited Burgundy and the Netherlands
from her father Charles the Bold, duke of Burgundy, he effected
a union of great importance in the history of the house of Habsburg.
He at once undertook the defence of his wife’s dominions
from an attack by Louis XI., king of France, and defeated the
French forces at Guinegatte, the modern Enguinegatte, on the
7th of August 1479. But Maximilian was regarded with
suspicion by the states of Netherlands, and after suppressing
a rising in Gelderland his position was further weakened by the
death of his wife on the 27th of March 1482. He claimed to be
recognized as guardian of his young son Philip and as regent of
the Netherlands, but some of the states refused to agree to his
demands and disorder was general. Maximilian was compelled
to assent to the treaty of Arras in 1482 between the states of
the Netherlands and Louis XI. This treaty provided that
Maximilian’s daughter Margaret should marry Charles, the
dauphin of France, and have for her dowry Artois and Franche-Comté,
two of the provinces in dispute, while the claim of Louis
on the duchy of Burgundy was tacitly admitted. Maximilian did
not, however, abandon the struggle in the Netherlands. Having
crushed a rebellion at Utrecht, he compelled the burghers of
Ghent to restore Philip to him in 1485, and returning to Germany
was chosen king of the Romans, or German king, at Frankfort
on the 16th of February 1486, and crowned at Aix-la-Chapelle
on the 9th of the following April. Again in the Netherlands, he
made a treaty with Francis II., duke of Brittany, whose independence
was threatened by the French regent, Anne of Beaujeu,
and the struggle with France was soon renewed. This war was
very unpopular with the trading cities of the Netherlands, and
early in 1488 Maximilian, having entered Bruges, was detained
there as a prisoner for nearly three months, and only set at
liberty on the approach of his father with a large force. On
his release he had promised he would maintain the treaty of
Arras and withdraw from the Netherlands; but he delayed his
departure for nearly a year and took part in a punitive campaign
against his captors and their allies. On his return to Germany
he made peace with France at Frankfort in July 1489, and in
October several of the states of the Netherlands recognized him
as their ruler and as guardian of his son. In March 1490
the county of Tirol was added to his possessions through the
abdication of his kinsman, Count Sigismund, and this district
soon became his favourite residence.

Meanwhile the king had formed an alliance with Henry VII.
king of England, and Ferdinand II., king of Aragon, to defend
the possessions of the duchess Anne, daughter and successor
of Francis, duke of Brittany. Early in 1490 he took a further
step and was betrothed to the duchess, and later in the same
year the marriage was celebrated by proxy; but Brittany was
still occupied by French troops, and Maximilian was unable to
go to the assistance of his bride. The sequel was startling. In
December 1491 Anne was married to Charles VIII., king of
France, and Maximilian’s daughter Margaret, who had resided
in France since her betrothal, was sent back to her father.
The inaction of Maximilian at this time is explained by the
condition of affairs in Hungary, where the death of king Matthias
Corvinus had brought about a struggle for this throne. The
Roman king, who was an unsuccessful candidate, took up arms,
drove the Hungarians from Austria, and regained Vienna, which
had been in the possession of Matthias since 1485; but he was
compelled by want of money to retreat, and on the 7th of November
1491 signed the treaty of Pressburg with Ladislaus, king of
Bohemia, who had obtained the Hungarian throne. By this
treaty it was agreed that Maximilian should succeed to the crown
in case Ladislaus left no legitimate male issue. Having defeated
the invading Turks at Villach in 1492, the king was eager to take
revenge upon the king of France; but the states of the Netherlands
would afford him no assistance. The German diet was
indifferent, and in May 1493 he agreed to the peace of Senlis
and regained Artois and Franche-Comté.

In August 1493 the death of the emperor left Maximilian sole
ruler of Germany and head of the house of Habsburg; and on
the 16th of March 1494 he married at Innsbruck Bianca Maria
Sforza, daughter of Galeazzo Sforza, duke of Milan (d. 1476).
At this time Bianca’s uncle, Ludovico Sforza, was invested
with the duchy of Milan in return for the substantial dowry
which his niece brought to the king. Maximilian harboured the
idea of driving the Turks from Europe; but his appeal to all
Christian sovereigns was ineffectual. In 1494 he was again in
the Netherlands, where he led an expedition against the rebels
of Gelderland, assisted Perkin Warbeck to make a descent upon
England, and formally handed over the government of the Low
Countries to Philip. His attention was next turned to Italy,
and, alarmed at the progress of Charles VIII. in the peninsula,
he signed the league of Venice in March 1495, and about
the same time arranged a marriage between his son Philip and
Joanna, daughter of Ferdinand and Isabella, king and queen of
Castile and Aragon. The need for help to prosecute the war in
Italy caused the king to call the diet to Worms in March 1495,
when he urged the necessity of checking the progress of Charles.
As during his father’s lifetime Maximilian had favoured the
reforming party among the princes, proposals for the better
government of the empire were brought forward at Worms as a
necessary preliminary to financial and military support. Some
reforms were adopted, the public peace was proclaimed without
any limitation of time and a general tax was levied. The three
succeeding years were mainly occupied with quarrels with the
diet, with two invasions of France, and a war in Gelderland
against Charles, count of Egmont, who claimed that duchy, and
was supported by French troops. The reforms of 1495 were
rendered abortive by the refusal of Maximilian to attend the diets
or to take any part in the working of the new constitution, and
in 1497 he strengthened his own authority by establishing an
Aulic Council (Reichshofrath), which he declared was competent
to deal with all business of the empire, and about the same time
set up a court to centralize the financial administration of
Germany.

In February 1499 the king became involved in a war with the
Swiss, who had refused to pay the imperial taxes or to furnish
a contribution for the Italian expedition. Aided by France
they defeated the German troops, and the peace of Basel in
September 1499 recognized them as virtually independent of
the empire. About this time Maximilian’s ally, Ludovico of
Milan, was taken prisoner by Louis XII., king of France, and
Maximilian was again compelled to ask the diet for help. An
elaborate scheme for raising an army was agreed to, and in
return a council of regency (Reichsregiment) was established,
which amounted, in the words of a Venetian envoy, to a deposition
of the king. The relations were now very strained
between the reforming princes and Maximilian, who, unable to
raise an army, refused to attend the meetings of the council at
Nuremberg, while both parties treated for peace with France.
The hostility of the king rendered the council impotent. He
was successful in winning the support of many of the younger
princes, and in establishing a new court of justice, the members
of which were named by himself. The negotiations with France
ended in the treaty of Blois, signed in September 1504, when

Maximilian’s grandson Charles was betrothed to Claude, daughter
of Louis XII., and Louis, invested with the duchy of Milan,
agreed to aid the king of the Romans to secure the imperial
crown. A succession difficulty in Bavaria-Landshut was only
decided after Maximilian had taken up arms and narrowly
escaped with his life at Regensburg. In the settlement of this
question, made in 1505, he secured a considerable increase of
territory, and when the king met the diet at Cologne in 1505 he
was at the height of his power. His enemies at home were
crushed, and their leader, Berthold, elector of Mainz, was dead;
while the outlook abroad was more favourable than it had been
since his accession.

It is at this period that Ranke believes Maximilian to have
entertained the idea of a universal monarchy; but whatever
hopes he may have had were shattered by the death of his son
Philip and the rupture of the treaty of Blois. The diet of
Cologne discussed the question of reform in a halting fashion,
but afforded the king supplies for an expedition into Hungary,
to aid his ally Ladislaus, and to uphold his own influence in the
East. Having established his daughter Margaret as regent for
Charles in the Netherlands, Maximilian met the diet at Constance
in 1507, when the imperial chamber (Reichskammergericht) was
revised and took a more permanent form, and help was granted
for an expedition to Italy. The king set out for Rome to secure
his coronation, but Venice refused to let him pass through her
territories; and at Trant, on the 4th of February 1508, he took the
important step of assuming the title of Roman Emperor Elect,
to which he soon received the assent of pope Julius II. He
attacked the Venetians, but finding the war unpopular with the
trading cities of southern Germany, made a truce with the
republic for three years. The treaty of Blois had contained a
secret article providing for an attack on Venice, and this ripened
into the league of Cambray, which was joined by the emperor in
December 1509. He soon took the field, but after his failure
to capture Padua the league broke up; and his sole ally, the
French king, joined him in calling a general council at Pisa to
discuss the question of Church reform. A breach with pope
Julius followed, and at this time Maximilian appears to have
entertained, perhaps quite seriously, the idea of seating himself
in the chair of St Peter. After a period of vacillation he deserted
Louis and joined the Holy League, which had been formed to
expel the French from Italy; but unable to raise troops, he served
with the English forces as a volunteer and shared in the victory
gained over the French at the battle of the Spurs near Thérouanne
on the 16th of August 1513. In 1500 the diet had divided
Germany into six circles, for the maintenance of peace, to which
the emperor at the diet of Cologne in 1512 added four others.
Having made an alliance with Christian II., king of Denmark, and
interfered to protect the Teutonic Order against Sigismund I.,
king of Poland, Maximilian was again in Italy early in 1516
fighting the French who had overrun Milan. His want of success
compelled him on the 4th of December 1516 to sign the treaty of
Brussels, which left Milan in the hands of the French king,
while Verona was soon afterwards transferred to Venice. He
attempted in vain to secure the election of his grandson Charles
as king of the Romans, and in spite of increasing infirmity was
eager to lead the imperial troops against the Turks. At the diet
of Augsburg in 1518 the emperor heard warnings of the Reformation
in the shape of complaints against papal exactions, and
a repetition of the complaints preferred at the diet of Mainz
in 1517 about the administration of Germany. Leaving the diet,
he travelled to Wels in Upper Austria, where he died on the 12th
of January 1519. He was buried in the church of St George
in Vienna Neustadt, and a superb monument, which may still
be seen, was raised to his memory at Innsbruck.


Maximilian had many excellent personal qualities. He was not
handsome, but of a robust and well-proportioned frame. Simple
in his habits, conciliatory in his bearing, and catholic in his tastes,
he enjoyed great popularity and rarely made a personal enemy.
He was a skilled knight and a daring huntsman, and although not
a great general, was intrepid on the field of battle. His mental
interests were extensive. He knew something of six languages,
and could discuss art, music, literature or theology. He reorganized
the university of Vienna and encouraged the development of the
universities of Ingolstadt and Freiburg. He was the friend and
patron of scholars, caused manuscripts to be copied and medieval
poems to be collected. He was the author of military reforms,
which included the establishment of standing troops, called Landsknechte,
the improvement of artillery by making cannon portable,
and some changes in the equipment of the cavalry. He was
continually devising plans for the better government of Austria,
and although they ended in failure, he established the unity of the
Austrian dominions. Maximilian has been called the second
founder of the house of Habsburg, and certainly by bringing about
marriages between Charles and Joanna and between his grandson
Ferdinand and Anna, daughter of Ladislaus, king of Hungary and
Bohemia, he paved the way for the vast empire of Charles V. and
for the influence of the Habsburgs in eastern Europe. But he
had many qualities less desirable. He was reckless and unstable,
resorting often to lying and deceit, and never pausing to count
the cost of an enterprise or troubling to adapt means to ends.
For absurd and impracticable schemes in Italy and elsewhere he
neglected Germany, and sought to involve its princes in wars undertaken
solely for private aggrandizement or personal jealousy.
Ignoring his responsibilities as ruler of Germany, he only considered
the question of its government when in need of money and support
from the princes. As the “last of the knights” he could not see
that the old order of society was passing away and a new order
arising, while he was fascinated by the glitter of the medieval
empire and spent the better part of his life in vague schemes for
its revival. As “a gifted amateur in politics” he increased the
disorder of Germany and Italy and exposed himself and the empire
to the jeers of Europe.

Maximilian was also a writer of books, and his writings display his
inordinate vanity. His Geheimes Jagdbuch, containing about 2500
words, is a treatise purporting to teach his grandsons the art of
hunting. He inspired the production of The Dangers and Adventures
of the Famous Hero and Knight Sir Teuerdank, an allegorical
poem describing his adventures on his journey to marry Mary of
Burgundy. The emperor’s share in the work is not clear, but it
seems certain that the general scheme and many of the incidents
are due to him. It was first published at Nuremberg by Melchior
Pfintzing in 1517, and was adorned with woodcuts by Hans Leonhard
Schäufelein. The Weisskunig was long regarded as the work of
the emperor’s secretary, Marx Treitzsaurwein, but it is now believed
that the greater part of the book at least is the work of the emperor
himself. It is an unfinished autobiography containing an account
of the achievements of Maximilian, who is called “the young white
king.” It was first published at Vienna in 1775. He also is responsible
for Freydal, an allegorical account of the tournaments in
which he took part during his wooing of Mary of Burgundy;
Ehrenpforten, Triumphwagen and Der weisen könige Stammbaum,
books concerning his own history and that of the house of Habsburg,
and works on various subjects, as Das Stahlbuch, Die Baumeisterei
and Die Gärtnerei. These works are all profusely illustrated,
some by Albrecht Dürer, and in the preparation of the woodcuts
Maximilian himself took the liveliest interest. A facsimile of the
original editions of Maximilian’s autobiographical and semi-autobiographical
works has been published in nine volumes in the
Jahrbücher der kunsthistorischen Sammlungen des Kaiserhauses
(Vienna, 1880-1888). For this edition S. Laschitzer wrote an
introduction to Sir Teuerdank, Q. von Leitner to Freydal, and N. A.
von Schultz to Der Weisskunig. The Holbein society issued a
facsimile of Sir Teuerdank (London, 1884) and Triumphwagen
(London, 1883).
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I. sur les affaires des Pays Bas (Brussels, 1851-1852); L. von
Ranke, Geschichte der romanischen und germanischen Völker, 1494-1514
(Leipzig, 1874); R. W. S. Watson, Maximilian I. (London,
1902); A. Jäger, Über Kaiser Maximilians I. Verhältnis zum Papstthum
(Vienna, 1854); H. Ulmann, Kaiser Maximilians I. Absichten
auf das Papstthum (Stuttgart, 1888), and A. Schulte, Kaiser Maximilian
I. als Kandidat für den päpstlichen Stuhl (Leipzig, 1906).



(A. W. H.*)



MAXIMILIAN II. (1527-1576), Roman emperor, was the
eldest son of the emperor Ferdinand I. by his wife Anne, daughter
of Ladislaus, king of Hungary and Bohemia, and was born in
Vienna on the 31st of July 1527. Educated principally in Spain,
he gained some experience of warfare during the campaign
of Charles V. against France in 1544, and also during the war
of the league of Schmalkalden, and soon began to take part in
imperial business. Having in September 1548 married his

cousin Maria, daughter of Charles V., he acted as the emperor’s
representative in Spain from 1548 to 1550, returning to Germany
in December 1550 in order to take part in the discussion over
the imperial succession. Charles V. wished his son Philip
(afterwards king of Spain) to succeed him as emperor, but
his brother Ferdinand, who had already been designated as
the next occupant of the imperial throne, and Maximilian
objected to this proposal. At length a compromise was reached.
Philip was to succeed Ferdinand, but during the former’s reign
Maximilian, as king of the Romans, was to govern Germany.
This arrangement was not carried out, and is only important
because the insistence of the emperor seriously disturbed the
harmonious relations which had hitherto existed between the
two branches of the Habsburg family; and the estrangement
went so far that an illness which befell Maximilian in 1552 was
attributed to poison given to him in the interests of his cousin
and brother-in-law, Philip of Spain. About this time he took
up his residence in Vienna, and was engaged mainly in the
government of the Austrian dominions and in defending them
against the Turks. The religious views of the king of Bohemia,
as Maximilian had been called since his recognition as the
future ruler of that country in 1549, had always been somewhat
uncertain, and he had probably learned something of Lutheranism
in his youth; but his amicable relations with several
Protestant princes, which began about the time of the discussion
over the succession, were probably due more to political than
to religious considerations. However, in Vienna he became
very intimate with Sebastian Pfauser (1520-1569), a court
preacher with strong leanings towards Lutheranism, and his
religious attitude caused some uneasiness to his father. Fears
were freely expressed that he would definitely leave the Catholic
Church, and when Ferdinand became emperor in 1558 he was
prepared to assure Pope Paul IV. that his son should not succeed
him if he took this step. Eventually Maximilian remained
nominally an adherent of the older faith, although his views
were tinged with Lutheranism until the end of his life. After
several refusals he consented in 1560 to the banishment of
Pfauser, and began again to attend the services of the Catholic
Church. This uneasiness having been dispelled, in November
1562 Maximilian was chosen king of the Romans, or German
king, at Frankfort, where he was crowned a few days later,
after assuring the Catholic electors of his fidelity to their faith,
and promising the Protestant electors that he would publicly
accept the confession of Augsburg when he became emperor.
He also took the usual oath to protect the Church, and his
election was afterwards confirmed by the papacy. In September
1563 he was crowned king of Hungary, and on his father’s death,
in July 1564, succeeded to the empire and to the kingdoms
of Hungary and Bohemia.

The new emperor had already shown that he believed in the
necessity for a thorough reform of the Church. He was unable,
however, to obtain the consent of Pope Pius IV. to the marriage
of the clergy, and in 1568 the concession of communion in both
kinds to the laity was withdrawn. On his part Maximilian
granted religious liberty to the Lutheran nobles and knights
in Austria, and refused to allow the publication of the decrees
of the council of Trent. Amid general expectations on the
part of the Protestants he met his first Diet at Augsburg in
March 1566. He refused to accede to the demands of the
Lutheran princes; on the other hand, although the increase
of sectarianism was discussed, no decisive steps were taken to
suppress it, and the only result of the meeting was a grant of
assistance for the Turkish War, which had just been renewed.
Collecting a large and splendid army Maximilian marched to
defend his territories; but no decisive engagement had taken
place when a truce was made in 1568, and the emperor continued
to pay tribute to the sultan for Hungary. Meanwhile the relations
between Maximilian and Philip of Spain had improved;
and the emperor’s increasingly cautious and moderate attitude
in religious matters was doubtless due to the fact that the
death of Philip’s son, Don Carlos, had opened the way for the
succession of Maximilian, or of one of his sons, to the Spanish
throne. Evidence of this friendly feeling was given in 1570,
when the emperor’s daughter, Anne, became the fourth wife
of Philip; but Maximilian was unable to moderate the harsh
proceedings of the Spanish king against the revolting inhabitants
of the Netherlands. In 1570 the emperor met the diet at
Spires and asked for aid to place his eastern borders in a state
of defence, and also for power to repress the disorder caused
by troops in the service of foreign powers passing through
Germany. He proposed that his consent should be necessary
before any soldiers for foreign service were recruited in the
empire; but the estates were unwilling to strengthen the imperial
authority, the Protestant princes regarded the suggestion
as an attempt to prevent them from assisting their coreligionists
in France and the Netherlands, and nothing was done in this
direction, although some assistance was voted for the defence
of Austria. The religious demands of the Protestants were
still unsatisfied, while the policy of toleration had failed to give
peace to Austria. Maximilian’s power was very limited; it
was inability rather than unwillingness that prevented him from
yielding to the entreaties of Pope Pius V. to join in an attack
on the Turks both before and after the victory of Lepanto in
1571; and he remained inert while the authority of the empire in
north-eastern Europe was threatened. His last important act
was to make a bid for the throne of Poland, either for himself
or for his son Ernest. In December 1575 he was elected by a
powerful faction, but the diet which met at Regensburg was
loath to assist; and on the 12th of October 1576 the emperor
died, refusing on his deathbed to receive the last sacraments
of the Church.

By his wife Maria he had a family of nine sons and six daughters.
He was succeeded by his eldest surviving son, Rudolph,
who had been chosen king of the Romans in October 1575.
Another of his sons, Matthias, also became emperor; three
others, Ernest, Albert and Maximilian, took some part in the
government of the Habsburg territories or of the Netherlands,
and a daughter, Elizabeth, married Charles IX. king of France.


The religious attitude of Maximilian has given rise to much
discussion, and on this subject the writings of W. Maurenbrecher,
W. Goetz and E. Reimann in the Historische Zeitschrift, Bände VII.,
XV., XXXII. and LXXVII. (Munich, 1870 fol.) should be consulted,
and also O. H. Hopfen, Maximilian II. und der Kompromisskatholizismus
(Munich, 1895); C. Haupt, Melanchthons und seiner
Lehrer Einfluss auf Maximilian II. (Wittenberg, 1897); F. Walter,
Die Wahl Maximilians II. (Heidelberg, 1892); W. Goetz, Maximilians
II. Wahl zum römischen Könige (Würzburg, 1891), and
T. J. Scherg, Über die religiöse Entwickelung Kaiser Maximilians II.
bis zu seiner Wahl zum römischen Könige (Würzburg, 1903). For
a more general account of his life and work see Briefe und Akten zur
Geschichte Maximilians II., edited by W. E. Schwarz (Paderborn,
1889-1891); M. Koch, Quellen zur Geschichte des Kaisers Maximilian
II. in Archiven gesammelt (Leipzig, 1857-1861); R. Holtzmann,
Kaiser Maximilian II. bis zu seiner Thronbesteigung (Berlin,
1903); E. Wertheimer, Zur Geschichte der Türkenkriege Maximilians
II. (Vienna, 1875); L. von Ranke, Über die Zeiten Ferdinands
I. und Maximilians II. in Band VII. of his Sämmtliche
Werke (Leipzig, 1874), and J. Janssen, Geschichte des deutschen
Volkes seit dem Ausgang des Mittelalters, Bände IV. to VIII. (Freiburg,
1885-1894), English translation by M. A. Mitchell and A. M. Christie
(London, 1896 fol.).





MAXIMILIAN (1832-1867), emperor of Mexico, second son
of the archduke Francis Charles of Austria, was born in the
palace of Schönbrunn, on the 6th of July 1832. He was a
particularly clever boy, showed considerable taste for the arts,
and early displayed an interest in science, especially botany.
He was trained for the navy, and threw himself into this career
with so much zeal that he quickly rose to high command,
and was mainly instrumental in creating the naval port of
Trieste and the fleet with which Tegethoff won his victories
in the Italian War. He had some reputation as a Liberal, and
this led, in February 1857, to his appointment as viceroy of
the Lombardo-Venetian kingdom; in the same year he married
the Princess Charlotte, daughter of Leopold I., king of the
Belgians. On the outbreak of the war of 1859 he retired into
private life, chiefly at Trieste, near which he built the beautiful
chateau of Miramar. In this same year he was first approached
by Mexican exiles with the proposal to become the candidate

for the throne of Mexico. He did not at first accept, but sought
to satisfy his restless desire for adventure by a botanical expedition
to the tropical forests of Brazil. In 1863, however, under
pressure from Napoleon III., and after General Forey’s capture
of the city of Mexico and the plebiscite which confirmed his
proclamation of the empire, he consented to accept the crown.
This decision was contrary to the advice of his brother, the
emperor Francis Joseph, and involved the loss of all his rights
in Austria. Maximilian landed at Vera Cruz on the 28th of
May 1864; but from the very outset he found himself involved
in difficulties of the most serious kind, which in 1866 made
apparent to almost every one outside of Mexico the necessity
for his abdicating. Though urged to this course by Napoleon
himself, whose withdrawal from Mexico was the final blow to
his cause, Maximilian refused to desert his followers. Withdrawing,
in February 1867, to Querétaro, he there sustained
a siege for several weeks, but on the 15th of May resolved to
attempt an escape through the enemy’s lines. He was, however,
arrested before he could carry out this resolution, and after
trial by court-martial was condemned to death. The sentence
was carried out on the 19th of June 1867. His remains were
conveyed to Vienna, where they were buried in the imperial
vault early in the following year. (See Mexico.)


Maximilian’s papers were published at Leipzig in 1867, in seven
volumes, under the title Aus meinem Leben, Reiseskizzen, Aphorismen,
Gedichte. See Pierre de la Gorce, Hist. du Second Empire,
IV., liv. xxv. ii. (Paris, 1904); article by von Hoffinger in Allgemeine
Deutsche Biographie, xxi. 70, where authorities are cited.





MAXIMINUS, GAIUS JULIUS VERUS, Roman emperor
from A.D. 235 to 238, was born in a village on the confines
of Thrace. He was of barbarian parentage and was brought
up as a shepherd. His immense stature and enormous feats
of strength attracted the attention of the emperor Septimius
Severus. He entered the army, and under Caracalla rose to
the rank of centurion. He carefully absented himself from
court during the reign of Heliogabalus, but under his successor
Alexander Severus, was appointed supreme commander of the
Roman armies. After the murder of Alexander in Gaul,
hastened, it is said, by his instigation, Maximinus was proclaimed
emperor by the soldiers on the 19th of March 235.
The three years of his reign, which were spent wholly in the
camp, were marked by great cruelty and oppression; the widespread
discontent thus produced culminated in a revolt in
Africa and the assumption of the purple by Gordian (q.v.).
Maximinus, who was in Pannonia at the time, marched against
Rome, and passing over the Julian Alps descended on Aquileia;
while detained before that city he and his son were murdered
in their tent by a body of praetorians. Their heads were cut
off and despatched to Rome, where they were burnt on the
Campus Martius by the exultant crowd.


Capitolinus, Maximini duo; Herodian vi. 8, vii., viii. 1-5;
Zosimus i. 13-15.





MAXIMINUS [Maximin], GALERIUS VALERIUS, Roman
emperor from A.D. 308 to 314, was originally an Illyrian shepherd
named Daia. He rose to high distinction after he had joined
the army, and in 305 he was raised by his uncle, Galerius, to
the rank of Caesar, with the government of Syria and Egypt.
In 308, after the elevation of Licinius, he insisted on receiving the
title of Augustus; on the death of Galerius, in 311, he succeeded
to the supreme command of the provinces of Asia, and when
Licinius and Constantine began to make common cause with
one another Maximinus entered into a secret alliance with
Maxentius. He came to an open rupture with Licinius in 313,
sustained a crushing defeat in the neighbourhood of Heraclea
Pontica on the 30th of April, and fled, first to Nicomedia and
afterwards to Tarsus, where he died in August following. His
death was variously ascribed “to despair, to poison, and to
the divine justice.” Maximinus has a bad name in Christian
annals, as having renewed persecution after the publication
of the toleration edict of Galerius, but it is probable that he
has been judged too harshly.


See Maxentius; Zosimus ii. 8; Aurelius Victor, Epit. 40.





MAXIMS, LEGAL. A maxim is an established principle
or proposition. The Latin term maxima is not to be found
in Roman law with any meaning exactly analogous to that
of a legal maxim in the modern sense of the word, but the
treatises of many of the Roman jurists on Regulae definitiones,
and Sententiae juris are, in some measure, collections of maxims
(see an article on “Latin Maxims in English Law” in Law Mag.
and Rev. xx. 285); Fortescue (De laudibus, c. 8) and Du Cange
treat maxima and regula as identical. The attitude of early
English commentators towards the maxims of the law was one
of unmingled adulation. In Doctor and Student (p. 26) they
are described as “of the same strength and effect in the law as
statutes be.” Coke (Co. Litt. 11 A) says that a maxim is so
called “Quia maxima est ejus dignitas et certissima auctoritas,
atque quod maxime omnibus probetur.” “Not only,” observes
Bacon in the Preface to his Collection of Maxims, “will the
use of maxims be in deciding doubt and helping soundness
of judgment, but, further, in gracing argument, in correcting
unprofitable subtlety, and reducing the same to a more sound
and substantial sense of law, in reclaiming vulgar errors, and,
generally, in the amendment in some measure of the very
nature and complexion of the whole law.” A similar note
was sounded in Scotland; and it has been well observed that
“a glance at the pages of Morrison’s Dictionary or at other
early reports will show how frequently in the older Scots law
questions respecting the rights, remedies and liabilities of
individuals were determined by an immediate reference to
legal maxims” (J. M. Irving, Encyclo. Scots Law, s.v.
“Maxims”). In later times less value has been attached
to the maxims of the law, as the development of civilization
and the increasing complexity of business relations have shown
the necessity of qualifying the propositions which they enunciate
(see Stephen, Hist. Crim. Law, ii. 94 n: Yarmouth v.
France, 1887, 19 Q.B.D., per Lord Esher, at p. 653, and American
authorities collected in Bouvier’s Law Dict. s.v. “Maxim”).
But both historically and practically they must always possess
interest and value.


A brief reference need only be made here, with examples by way
of illustration, to the field which the maxims of the law cover.

Commencing with rules founded on public policy, we may note
the famous principle—Salus populi suprema lex (xii. Tables: Bacon,
Maxims, reg. 12)—“the public welfare is the highest law.” It is
on this maxim that the coercive action of the State towards individual
liberty in a hundred matters is based. To the same category belong
the maxims—Summa ratio est quae pro religione facit (Co. Litt.
341 a)—“the best rule is that which advances religion”—a maxim
which finds its application when the enforcement of foreign laws or
judgments supposed to violate our own laws or the principles of
natural justice is in question; and Dies dominicus non est juridicus,
which exempts Sunday from the lawful days for juridical acts.
Among the maxims relating to the crown, the most important are
Rex non potest peccare (2 Rolle R. 304)—“The King can do no
wrong”—which enshrines the principle of ministerial responsibility,
and Nullum tempus occurrit regi (2 Co. Inst. 273)—“lapse of time
does not bar the crown,” a maxim qualified by various enactments
in modern times. Passing to the judicial office and the administration
of justice, we may refer to the rules—Audi alteram partem—a
proposition too familiar to need either translation or comment;
Nemo debet esse judex in propriâ suâ causâ (12 Co. Rep. 114)—“no man
ought to be judge in his own cause”—a maxim which French law,
and the legal systems based upon or allied to it, have embodied in
an elaborate network of rules for judicial challenge; and the maxim
which defines the relative functions of judge and jury, Ad quaestionem
facti non respondent judices, ad quaestionem legis non respondent
juratores (8 Co. Rep. 155). The maxim Boni judicis est ampliare
jurisdictionem (Ch. Prec. 329) is certainly erroneous as it stands, as
a judge has no right to “extend his jurisdiction.” If justitiam is
substituted for jurisdictionem, as Lord Mansfield said it should be
(1 Burr. 304), the maxim is near the truth. A group of maxims
supposed to embody certain fundamental principles of legal right
and obligations may next be referred to: (a) Ubi jus ibi remedium
(see Co. Litt. 197 b)—a maxim to which the evolution of the flexible
“action on the case,” by which wrongs unknown to the “original
writs” were dealt with, was historically due, but which must be
taken with the gloss Damnum absque injuria—“there are forms of
actual damage which do not constitute legal injury” for which the
law supplies no remedy; (b) Actus Dei nemini facit injuriam (2
Blackstone, 122)—and its allied maxim, Lex non cogit ad impossibilia
(Co. Litt. 231 b)—on which the whole doctrine of vis major (force
majeure) and impossible conditions in the law of contract has been

built up. In this category may also be classed Volenti non fit injuria
(Wingate, Maxims), out of which sprang the theory—now profoundly
modified by statute—of “common employment” in the
law of employers’ liability; see Smith v. Baker, 1891, A.C. 325. Other
maxims deal with rights of property—Qui prior est tempore, potior
est jure (Co. Litt. 14 a), which consecrates the position of the beati
possidentes alike in municipal and in international law; Sic utere
tuo ut alienum non laedas (9 Co. Rep. 59), which has played its part
in the determination of the rights of adjacent owners; and Domus
sua cuique est tutissimum refugium (5 Co. Rep. 92)—“a man’s house
is his castle,” a doctrine which has imposed limitations on the rights
of execution creditors (see Execution). In the laws of family
relations there are the maxims Consensus non concubitus facit
matrimonium (Co. Litt. 33 a)—the canon law of Europe prior to the
council of Trent, and still law in Scotland, though modified by
legislation in England; and Pater is est quem nuptiae demonstrant
(see Co. Litt. 7 b), on which, in most civilized countries, the presumption
of legitimacy depends. In the interpretation of written
instruments, the maxim Noscitur a sociis (3 Term Reports, 87),
which proclaims the importance of the context, still applies. So
do the rules Expressio unius est exclusio alterius (Co. Litt. 210 a), and
Contemporanea expositio est optima et fortissima in lege (2 Co. Inst. 11),
which lets in evidence of contemporaneous user as an aid to the interpretation
of statutes or documents; see Van Diemen’s Land Co. v.
Table Cape Marine Board, 1906, A.C. 92, 98. We may conclude this
sketch with a miscellaneous summary: Caveat emptor (Hob.
99)—“let the purchaser beware”; Qui facit per alium facile per se,
which affirms the principal’s liability for the acts of his agent;
Ignorantia juris neminem excusat, on which rests the ordinary citizen’s
obligation to know the law; and Vigilantibus non dormientibus jura
subveniunt (2 Co. Inst. 690), one of the maxims in accordance with
which courts of equity administer relief. Among other “maxims of
equity” come the rules that “he that seeks equity must do equity,”
i.e. must act fairly, and that “equity looks upon that as done which
ought to be done”—a principle from which the “conversion” into
money of land directed to be sold, and of money directed to be
invested in the purchase of land, is derived.

The principal collections of legal maxims are: English Law:
Bacon, Collection of Some Principal Rules and Maxims of the Common
Law (1630); Noy, Treatise of the principal Grounds and Maxims of
the Law of England (1641, 8th ed., 1824); Wingate, Maxims of Reason
(1728); Francis, Grounds and Rudiments of Law and Equity (2nd ed.
1751); Lofft (annexed to his Reports, 1776); Broom, Legal Maxims
(7th ed. London, 1900). Scots Law: Lord Trayner, Latin Maxims
and Phrases (2nd ed., 1876); Stair, Institutions of the Law of Scotland,
with Index by More (Edinburgh, 1832). American Treatises:
A. I. Morgan, English Version of Legal Maxims (Cincinnati, 1878);
S. S. Peloubet, Legal Maxims in Law and Equity (New York,
1880).



(A. W. R.)



MAXIMUS, the name of four Roman emperors.

I. M. Clodius Pupienus Maximus, joint emperor with
D. Caelius Calvinus Balbinus during a few months of the
year A.D. 238. Pupienus was a distinguished soldier, who had
been proconsul of Bithynia, Achaea, and Gallia Narbonensis.
At the advanced age of seventy-four, he was chosen by the
senate with Balbinus to resist the barbarian Maximinus. Their
complete equality is shown by the fact that each assumed
the titles of pontifex maximus and princeps senatus. It was
arranged that Pupienus should take the field against Maximinus,
while Balbinus remained at Rome to maintain order, a task in
which he signally failed. A revolt of the praetorians was not
repressed till much blood had been shed and a considerable
part of the city reduced to ashes. On his march, Pupienus,
having received the news that Maximinus had been assassinated
by his own troops, returned in triumph to Rome. Shortly
afterwards, when both emperors were on the point of leaving
the city on an expedition—Pupienus against the Persians
and Balbinus against the Goths—the praetorians, who had
always resented the appointment of the senatorial emperors
and cherished the memory of the soldier-emperor Maximinus,
seized the opportunity of revenge. When most of the people
were at the Capitoline games, they forced their way into the
palace, dragged Balbinus and Pupienus through the streets,
and put them to death.


See Capitolinus, Life of Maximus and Balbinus; Herodian vii. 10,
viii. 6; Zonaras xii. 16; Orosius vii. 19; Eutropius ix. 2; Zosimus
i. 14; Aurelius Victor, Caesares, 26, epit. 26; H. Schiller, Geschichte
der römischen Kaiserzeit, i. 2; Gibbon, Decline and Fall, ch. 7 and
(for the chronology) appendix 12 (Bury’s edition).



II. Magnus Maximus, a native of Spain, who had accompanied
Theodosius on several expeditions and from 368 held
high military rank in Britain. The disaffected troops having
proclaimed Maximus emperor, he crossed over to Gaul, attacked
Gratian (q.v.), and drove him from Paris to Lyons, where he
was murdered by a partisan of Maximus. Theodosius being
unable to avenge the death of his colleague, an agreement
was made (384 or 385) by which Maximus was recognized as
Augustus and sole emperor in Gaul, Spain and Britain, while
Valentinian II. was to remain unmolested in Italy and Illyricum,
Theodosius retaining his sovereignty in the East. In 387
Maximus crossed the Alps, Valentinian was speedily put to
flight, while the invader established himself in Milan and for the
time became master of Italy. Theodosius now took vigorous
measures. Advancing with a powerful army, he twice defeated
the troops of Maximus—at Siscia on the Save, and at Poetovio
on the Danube. He then hurried on to Aquileia, where Maximus
had shut himself up, and had him beheaded. Under the name
of Maxen Wledig, Maximus appears in the list of Welsh royal
heroes (see R. Williams, Biog. Dict. of Eminent Welshmen, 1852;
“The Dream of Maxen Wledig,” in the Mabinogion).


Full account with classical references in H. Richter, Das weströmische
Reich, besonders unter den Kaisern Gratian, Valentinian II.
und Maximus (1865); see also H. Schiller, Geschichte der römischen
Kaiserzeit, ii. (1887); Gibbon, Decline and Fall, ch. 27; Tillemont,
Hist. des empereurs, v.



III. Maximus Tyrannus, made emperor in Spain by the
Roman general, Gerontius, who had rebelled against the usurper
Constantine in 408. After the defeat of Gerontius at Arelate
(Arles) and his death in 411 Maximus renounced the imperial
title and was permitted by Constantine to retire into private
life. About 418 he rebelled again, but, failing in his attempt,
was seized, carried into Italy, and put to death at Ravenna
in 422.


See Orosius vii. 42; Zosimus vi. 5; Sozomen ix. 3; E. A. Freeman,
“The Tyrants of Britain, Gaul and Spain, A.D. 406-411,” in English
Historical Review, i. (1886).



IV. Petronius Maximus, a member of the higher Roman
nobility, had held several court and public offices, including
those of praefectus Romae (420) and Italiae (439-441 and 445),
and consul (433, 443). He was one of the intimate associates
of Valentinian III., whom he assisted in the palace intrigues
which led to the death of Aëtius in 454; but an outrage
committed on the wife of Maximus by the emperor turned
his friendship into hatred. Maximus was proclaimed emperor
immediately after Valentinian’s murder (March 16, 455), but
after reigning less than three months, he was murdered by
some Burgundian mercenaries as he was fleeing before the
troops of Genseric, who, invited by Eudoxia, the widow of
Valentinian, had landed at the mouth of the Tiber (May or
June 455).


See Procopius, Vand. i. 4; Sidonius Apollinaris, Panegyr. Aviti,
ep. ii. 13; the various Chronicles; Gibbon, Decline and Fall,
chs. 35, 36; Tillemont, Hist. des empereurs, vi.





MAXIMUS, ST (c. 580-662), abbot of Chrysopolis, known as
“the Confessor” from his orthodox zeal in the Monothelite
(q.v.) controversy, or as “the monk,” was born of noble parentage
at Constantinople about the year 580. Educated with
great care, he early became distinguished by his talents and
acquirements, and some time after the accession of the emperor
Heraclius in 610 was made his private secretary. In 630 he
abandoned the secular life and entered the monastery of Chrysopolis
(Scutari), actuated, it was believed, less by any longing
for the life of a recluse than by the dissatisfaction he felt
with the Monothelite leanings of his master. The date of his
promotion to the abbacy is uncertain. In 633 he was one of
the party of Sophronius of Jerusalem (the chief original opponent
of the Monothelites) at the council of Alexandria; and in 645
he was again in Africa, when he held in presence of the governor
and a number of bishops the disputation with Pyrrhus, the
deposed and banished patriarch of Constantinople, which
resulted in the (temporary) conversion of his interlocutor to
the Dyothelite view. In the following year several African
synods, held under the influence of Maximus, declared for
orthodoxy. In 649, after the accession of Martin I., he went
to Rome, and did much to fan the zeal of the new pope, who in

October of that year held the (first) Lateran synod, by which
not only the Monothelite doctrine but also the moderating
ecthesis of Heraclius and typus of Constans II. were anathematized.
About 653 Maximus, for the part he had taken against
the latter document especially, was apprehended (together
with the pope) by order of Constans and carried a prisoner
to Constantinople. In 655, after repeated examinations,
in which he maintained his theological opinions with memorable
constancy, he was banished to Byzia in Thrace, and afterwards
to Perberis. In 662 he was again brought to Constantinople
and was condemned by a synod to be scourged, to have his
tongue cut out by the root, and to have his right hand chopped
off. After this sentence had been carried out he was again
banished to Lazica, where he died on the 13th of August 662.
He is venerated as a saint both in the Greek and in the Latin
Churches. Maximus was not only a leader in the Monothelite
struggle but a mystic who zealously followed and advocated
the system of Pseudo-Dionysius, while adding to it an ethical
element in the conception of the freedom of the will. His
works had considerable influence in shaping the system of
John Scotus Erigena.


The most important of the works of Maximus will be found in
Migne, Patrologia graeca, xc. xci., together with an anonymous life;
an exhaustive list in Wagenmann’s article in vol. xii. (1903) of Hauck-Herzog’s
Realencyklopädie where the following classification is
adopted: (a) exegetical, (b) scholia on the Fathers, (c) dogmatic
and controversial, (d) ethical and ascetic, (e) miscellaneous. The
details of the disputation with Pyrrhus and of the martyrdom are
given very fully and clearly in Hefele’s Conciliengeschichte, iii. For
further literature see H. Gelzer in C. Krumbacher’s Geschichte der
byzantinischen Litteratur (1897).





MAXIMUS OF SMYRNA, a Greek philosopher of the Neo-platonist
school, who lived towards the end of the 4th century A.D.
He was perhaps the most important of the followers of Iamblichus.
He is said to have been of a rich and noble family, and
exercised great influence over the emperor Julian, who was
commended to him by Aedesius. He pandered to the emperor’s
love of magic and theurgy, and by judicious administration
of the omens won a high position at court. His overbearing
manner made him numerous enemies, and, after being imprisoned
on the death of Julian, he was put to death by Valens. He
is a representative of the least attractive side of Neoplatonism.
Attaching no value to logical proof and argument, he enlarged
on the wonders and mysteries of nature, and maintained his
position by the working of miracles. In logic he is reported
to have agreed with Eusebius, Iamblichus and Porphyry in
asserting the validity of the second and third figures of the
syllogism.



MAXIMUS OF TYRE (Cassius Maximus Tyrius), a Greek
rhetorician and philosopher who flourished in the time of the
Antonines and Commodus (2nd century A.D.). After the manner
of the sophists of his age, he travelled extensively, delivering
lectures on the way. His writings contain many allusions
to the history of Greece, while there is little reference to Rome;
hence it is inferred that he lived longer in Greece, perhaps
as a professor at Athens. Although nominally a Platonist, he
is really an Eclectic and one of the precursors of Neoplatonism.
There are still extant by him forty-one essays or discourses
(διαλέξεις) on theological, ethical, and other philosophical
commonplaces. With him God is the supreme being, one and
indivisible though called by many names, accessible to reason
alone; but as animals form the intermediate stage between
plants and human beings, so there exist intermediaries between
God and man, viz. daemons, who dwell on the confines of heaven
and earth. The soul in many ways bears a great resemblance
to the divinity; it is partly mortal, partly immortal, and, when
freed from the fetters of the body, becomes a daemon. Life
is the sleep of the soul, from which it awakes at death. The
style of Maximus is superior to that of the ordinary sophistical
rhetorician, but scholars differ widely as to the merits of the
essays themselves.

Maximus of Tyre must be distinguished from the Stoic
Maximus, tutor of Marcus Aurelius.


Editions by J. Davies, revised with valuable notes by J. Markland
(1740); J. J. Reiske (1774); F. Dübner (1840, with Theophrastus,
&c., in the Didot series). Monographs by R. Rohdich (Beuthen,
1879); H. Hobein, De Maximo Tyrio quaestiones philol. (Jena, 1895).
There is an English translation (1804) by Thomas Taylor, the
Platonist.





MAX MÜLLER, FRIEDRICH (1823-1900), Anglo-German
orientalist and comparative philologist, was born at Dessau
on the 6th of December 1823, being the son of Wilhelm Müller
(1794-1827), the German poet, celebrated for his phil-Hellenic
lyrics, who was ducal librarian at Dessau. The elder Müller
had endeared himself to the most intellectual circles in Germany
by his amiable character and his genuine poetic gift; his songs
had been utilized by musical composers, notably Schubert;
and it was his son’s good fortune to meet in his youth with a
succession of eminent friends, who, already interested in him
for his father’s sake, and charmed by the qualities which they
discovered in the young man himself, powerfully aided him
by advice and patronage. Mendelssohn, who was his godfather,
dissuaded him from indulging his natural bent to the study
of music; Professor Brockhaus of the University of Leipzig,
where Max Müller matriculated in 1841, induced him to take
up Sanskrit; Bopp, at the University of Berlin (1844), made
the Sanskrit student a scientific comparative philologist;
Schelling at the same university, inspired him with a love for
metaphysical speculation, though failing to attract him to his
own philosophy; Burnouf, at Paris in the following year, by
teaching him Zend, started him on the track of inquiry into
the science of comparative religion, and impelled him to edit
the Rig Veda; and when, in 1846, Max Müller came to England
upon this errand, Bunsen, in conjunction with Professor H. H.
Wilson, prevailed upon the East India Company to undertake
the expense of publication. Up to this time Max Müller had
lived the life of a poor student, supporting himself partly by
copying manuscripts, but Bunsen’s introductions to Queen
Victoria and the prince consort, and to Oxford University,
laid the foundation for him of fame and fortune. In 1848
the printing of his Rig Veda at the University Press obliged
him to settle in Oxford, a step which decided his future career.
He arrived at a favourable conjuncture: the Tractarian strife,
which had so long thrust learning into the background, was
just over, and Oxford was becoming accessible to modern ideas.
The young German excited curiosity and interest, and it was
soon discovered that, although a genuine scholar, he was no
mere bookworm. Part of his social success was due to his
readiness to exert his musical talents at private parties. Max
Müller was speedily subjugated by the genius loci. He was
appointed deputy Taylorian professor of modern languages
in 1850, and the German government failed to tempt him back
to Strassburg. In the following year he was made M.A. and
honorary fellow of Christ Church, and in 1858 he was elected
a fellow of All Souls. In 1854 the Crimean War gave him the
opportunity of utilizing his oriental learning in vocabularies
and schemes of transliteration. In 1857 he successfully essayed
another kind of literature in his beautiful story Deutsche Liebe,
written both in German and English. He had by this time
become an extensive contributor to English periodical literature,
and had written several of the essays subsequently collected
as Chips from a German Workshop. The most important of
them was the fascinating essay on “Comparative Mythology”
in the Oxford Essays for 1856. His valuable History of Ancient
Sanskrit Literature, so far as it illustrates the primitive religion
of the Brahmans (and hence the Vedic period only), was
published in 1850.

Though Max Müller’s reputation was that of a comparative
philologist and orientalist, his professional duties at Oxford
were long confined to lecturing on modern languages, or at
least their medieval forms. In 1860 the death of Horace
Hayman Wilson, professor of Sanskrit, seemed to open a more
congenial sphere to him. His claims to the succession seemed
incontestable, for his opponent, Monier Williams, though well
qualified as a Sanskritist, lacked Max Müller’s brilliant versatility,
and although educated at Oxford, had held no University

office. But Max Müller was a Liberal, and the friend of Liberals
in university matters, in politics, and in theology, and this
consideration united with his foreign birth to bring the country
clergy in such hosts to the poll that the voice of resident Oxford
was overborne, and Monier Williams was elected by a large
majority. It was the one great disappointment of Max Müller’s
life, and made a lasting impression upon him. It was, nevertheless,
serviceable to his influence and reputation by permitting
him to enter upon a wider field of subjects than would have been
possible otherwise. Directly, Sanskrit philology received little
more from him, except in connexion with his later undertaking
of The Sacred Books of the East; but indirectly he exalted
it more than any predecessor by proclaiming its commanding
position in the history of the human intellect by his Science
of Language, two courses of lectures delivered at the Royal
Institution in 1861 and 1863. Max Müller ought not to be
described as “the introducer of comparative philology into
England.” Prichard had proved the Aryan affinities of the
Celtic languages by the methods of comparative philology
so long before as 1831; Winning’s Manual of Comparative
Philology had been published in 1838; the discoveries of Bopp
and Pott and Pictet had been recognized in brilliant articles
in the Quarterly Review, and had guided the researches of Rawlinson.
But Max Müller undoubtedly did far more to popularize
the subject than had been done, or could have been done,
by any predecessor. He was on less sure ground in another
department of the study of language—the problem of its origin.
He wrote upon it as a disciple of Kant, whose Critique of Pure
Reason he translated. His essays on mythology are among the
most delightful of his writings, but their value is somewhat
impaired by a too uncompromising adherence to the seductive
generalization of the solar myth.

Max Müller’s studies in mythology led him to another field
of activity in which his influence was more durable and extensive,
that of the comparative science of religions. Here, so far as
Great Britain is concerned, he does deserve the fame of an
originator, and his Introduction to the Science of Religion (1873:
the same year in which he lectured on the subject, at Dean
Stanley’s invitation, in Westminster Abbey, this being the
only occasion on which a layman had given an address there)
marks an epoch. It was followed by other works of importance,
especially the four volumes of Gifford lectures, delivered between
1888 and 1892; but the most tangible result of the impulse
he had given was the publication under his editorship, from
1875 onwards, of The Sacred Books of the East, in fifty-one
volumes, including indexes, all but three of which appeared
under his superintendence during his lifetime. These comprise
translations by the most competent scholars of all the really
important non-Christian scriptures of Oriental nations, which
can now be appreciated without a knowledge of the original
languages. Max Müller also wrote on Indian philosophy in
his latter years, and his exertions to stimulate search for Oriental
manuscripts and inscriptions were rewarded with important
discoveries of early Buddhist scriptures, in their Indian form,
made in Japan. He was on particularly friendly terms with
native Japanese scholars, and after his death his library was
purchased by the university of Tôkyô.

In 1868 Max Müller had been indemnified for his disappointment
over the Sanskrit professorship by the establishment
of a chair of Comparative Philology to be filled by him. He
retired, however, from the actual duties of the post in 1875,
when entering upon the editorship of The Sacred Books of the
East. The most remarkable external events of his latter years
were his delivery of lectures at the restored university of
Strassburg in 1872, when he devoted his honorarium to the
endowment of a Sanskrit lectureship, and his presidency over
the International Congress of Orientalists in 1892. But his
days, if uneventful, were busy. He participated in every
movement at Oxford of which he could approve, and was
intimate with nearly all its men of light and leading; he was a
curator of the Bodleian Library, and a delegate of the University
Press. He was acquainted with most of the crowned heads

of Europe, and was an especial favourite with the English
royal family. His hospitality was ample, especially to visitors
from India, where he was far better known than any other
European Orientalist. His distinctions, conferred by foreign
governments and learned societies, were innumerable, and,
having been naturalized shortly after his arrival in England,
he received the high honour of being made a privy councillor.
In 1898 and 1899 he published autobiographical reminiscences
under the title of Auld Lang Syne. He was writing a more
detailed autobiography when overtaken by death on the 28th
of October 1900. Max Müller married in 1859 Georgiana
Adelaide Grenfell, sister of the wives of Charles Kingsley and
J. A. Froude. One of his daughters, Mrs Conybeare, distinguished
herself by a translation of Scherer’s History of German
Literature.

Though undoubtedly a great scholar, Max Müller did not
so much represent scholarship pure and simple as her hybrid
types—the scholar-author and the scholar-courtier. In the
former capacity, though manifesting little of the originality of
genius, he rendered vast service by popularizing high truths
among high minds. In his public and social character he
represented Oriental studies with a brilliancy, and conferred
upon them a distinction, which they had not previously enjoyed
in Great Britain. There were drawbacks in both respects:
the author was too prone to build upon insecure foundations,
and the man of the world incurred censure for failings which
may perhaps be best indicated by the remark that he seemed
too much of a diplomatist. But the sum of foibles seems
insignificant in comparison with the life of intense labour dedicated
to the service of culture and humanity.


Max Müller’s Collected Works were published in 1903.



(R. G.)



MAXWELL, the name of a Scottish family, members of which
have held the titles of earl of Morton, earl of Nithsdale, Lord
Maxwell, and Lord Herries. The name is taken probably
from Maccuswell, or Maxwell, near Kelso, whither the family
migrated from England about 1100. Sir Herbert Maxwell
won great fame by defending his castle of Carlaverock against
Edward I. in 1300; another Sir Herbert was made a lord of the
Scottish parliament before 1445; and his great-grandson John,
3rd Lord Maxwell, was killed at Flodden in 1513. John’s son
Robert, the 4th lord (d. 1546), was a member of the royal
council under James V.; he was also an extraordinary lord of
session, high admiral, and warden of the west marches, and was
taken prisoner by the English at the rout of Solway Moss in
1542. Robert’s grandson John, 7th Lord Maxwell (1553-1593),
was the second son of Robert, the 5th lord (d. 1552), and his
wife Beatrix, daughter of James Douglas, 3rd earl of Morton.
After the execution of the regent Morton, the 4th earl, in 1581
this earldom was bestowed upon Maxwell, but in 1586 the
attainder of the late earl was reversed and he was deprived
of his new title. He had helped in 1585 to drive the royal
favourite James Stewart, earl of Arran, from power, and he
made active preparations to assist the invading Spaniards in
1588. His son John, the 8th lord (c. 1586-1613), was at feud
with the Johnstones, who had killed his father in a skirmish,
and with the Douglases over the earldom of Morton, which he
regarded as his inheritance. After a life of exceptional and
continuous lawlessness he escaped from Scotland and in his
absence was sentenced to death; having returned to his native
country he was seized and was beheaded in Edinburgh. In
1618 John’s brother and heir Robert (d. 1646) was restored
to the lordship of Maxwell, and in 1620 was created earl of
Nithsdale, surrendering at this time his claim to the earldom
of Morton. He and his son Robert, afterwards the 2nd earl,
fought under Montrose for Charles I. during the Civil War.
Robert died without sons in October 1667, when a cousin John
Maxwell, 7th Lord Herries (d. 1677), became third earl.

William, 5th earl of Nithsdale (1676-1744), a grandson of
the third earl, was like his ancestor a Roman Catholic and was
attached to the cause of the exiled house of Stuart. In 1715
he joined the Jacobite insurgents, being taken prisoner at the
battle of Preston and sentenced to death. He escaped, however,

from the Tower of London through the courage and devotion
of his wife Winifred (d. 1749), daughter of William Herbert,
1st marquess of Powis. He was attainted in 1716 and his titles
became extinct, but his estates passed to his son William
(d. 1776), whose descendant, William Constable-Maxwell, regained
the title of Lord Herries in 1858. The countess of Nithsdale
wrote an account of her husband’s escape, which is published
in vol. i. of the Transactions of the Society of Antiquaries of
Scotland.


A few words may be added about other prominent members of
the Maxwell family. John Maxwell (c. 1590-1647), archbishop
of Tuam, was a Scottish ecclesiastic who took a leading part in
helping Archbishop Laud in his futile attempt to restore the liturgy
in Scotland. He was bishop of Ross from 1633 until 1638, when he
was deposed by the General Assembly; then crossing over to Ireland
he was bishop of Killala and Achonry from 1640 to 1645, and archbishop
of Tuam from 1645 until his death. James Maxwell of
Kirkconnell (c. 1708-1762), the Jacobite, wrote the Narrative of
Charles Prince of Wales’s Expedition to Scotland in 1745, which was
printed for the Maitland Club in 1841. Robert Maxwell (1695-1765)
was the author of Select Transactions of the Society of Improvers
and was a great benefactor to Scottish agriculture. Sir Murray
Maxwell (1775-1831), a naval officer, gained much fame by his
conduct when his ship the “Alceste” was wrecked in Gaspar Strait
in 1817. William Hamilton Maxwell (1792-1850), the Irish novelist,
wrote, in addition to several novels, a Life of the Duke of Wellington
(1839-1841 and again 1883), and a History of the Irish Rebellion in
1798 (1845 and 1891). Sir Herbert Maxwell, 7th bart. (b. 1845),
member of parliament for Wigtownshire from 1880 to 1906, and
president of the Society of Antiquaries of Scotland, became well
known as a writer, his works including Life and Times of the Right
Hon. W. H. Smith (1893); Life of the Duke of Wellington (1899);
The House of Douglas (1902); Robert the Bruce (1897) and A Duke of
Britain (1895).





MAXWELL, JAMES CLERK (1831-1879), British physicist,
was the last representative of a younger branch of the well-known
Scottish family of Clerk of Penicuik, and was born at
Edinburgh on the 13th of November 1831. He was educated
at the Edinburgh Academy (1840-1847) and the university of
Edinburgh (1847-1850). Entering at Cambridge in 1850, he spent
a term or two at Peterhouse, but afterwards migrated to Trinity.
In 1854 he took his degree as second wrangler, and was declared
equal with the senior wrangler of his year (E. J. Routh, q.v.)
in the higher ordeal of the Smith’s prize examination. He held
the chair of Natural Philosophy in Marischal College, Aberdeen,
from 1856 till the fusion of the two colleges there in 1860. For
eight years subsequently he held the chair of Physics and
Astronomy in King’s College, London, but resigned in 1868 and
retired to his estate of Glenlair in Kirkcudbrightshire. He was
summoned from his seclusion in 1871 to become the first holder
of the newly founded professorship of Experimental Physics
in Cambridge; and it was under his direction that the plans
of the Cavendish Laboratory were prepared. He superintended
every step of the progress of the building and of the purchase
of the very valuable collection of apparatus with which it was
equipped at the expense of its munificent founder the seventh
duke of Devonshire (chancellor of the university, and one of
its most distinguished alumni). He died at Cambridge on the
5th of November 1879.

For more than half of his brief life he held a prominent
position in the very foremost rank of natural philosophers. His
contributions to scientific societies began in his fifteenth year,
when Professor J. D. Forbes communicated to the Royal Society
of Edinburgh a short paper of his on a mechanical method of
tracing Cartesian ovals. In his eighteenth year, while still
a student in Edinburgh, he contributed two valuable papers
to the Transactions of the same society—one of which, “On
the Equilibrium of Elastic Solids,” is remarkable, not only
on account of its intrinsic power and the youth of its author,
but also because in it he laid the foundation of one of the most
singular discoveries of his later life, the temporary double
refraction produced in viscous liquids by shearing stress. Immediately
after taking his degree, he read to the Cambridge
Philosophical Society a very novel memoir, “On the Transformation
of Surfaces by Bending.” This is one of the few
purely mathematical papers he published, and it exhibited at
once to experts the full genius of its author. About the same
time appeared his elaborate memoir, “On Faraday’s Lines of
Force,” in which he gave the first indication of some of those
extraordinary electrical investigations which culminated in
the greatest work of his life. He obtained in 1859 the Adams
prize in Cambridge for a very original and powerful essay, “On
the Stability of Saturn’s Rings.” From 1855 to 1872 he published
at intervals a series of valuable investigations connected
with the “Perception of Colour” and “Colour-Blindness,”
for the earlier of which he received the Rumford medal from
the Royal Society in 1860. The instruments which he devised
for these investigations were simple and convenient, but could
not have been thought of for the purpose except by a man
whose knowledge was co-extensive with his ingenuity. One
of his greatest investigations bore on the “Kinetic Theory of
Gases.” Originating with D. Bernoulli, this theory was
advanced by the successive labours of John Herapath, J. P.
Joule, and particularly R. Clausius, to such an extent as to put
its general accuracy beyond a doubt; but it received enormous
developments from Maxwell, who in this field appeared as an
experimenter (on the laws of gaseous friction) as well as a
mathematician. He wrote an admirable textbook of the
Theory of Heat (1871), and a very excellent elementary treatise
on Matter and Motion (1876).

But the great work of his life was devoted to electricity.
He began by reading, with the most profound admiration and
attention, the whole of Faraday’s extraordinary self-revelations,
and proceeded to translate the ideas of that master into
the succinct and expressive notation of the mathematicians.
A considerable part of this translation was accomplished during
his career as an undergraduate in Cambridge. The writer had
the opportunity of perusing the MS. of “On Faraday’s Lines
of Force,” in a form little different from the final one, a year
before Maxwell took his degree. His great object, as it was
also the great object of Faraday, was to overturn the idea of
action at a distance. The splendid researches of S. D. Poisson
and K. F. Gauss had shown how to reduce all the phenomena
of statical electricity to mere attractions and repulsions exerted
at a distance by particles of an imponderable on one another.
Lord Kelvin (Sir W. Thomson) had, in 1846, shown that a totally
different assumption, based upon other analogies, led (by its own
special mathematical methods) to precisely the same results.
He treated the resultant electric force at any point as analogous
to the flux of heat from sources distributed in the same
manner as the supposed electric particles. This paper of
Thomson’s, whose ideas Maxwell afterwards developed in an
extraordinary manner, seems to have given the first hint that
there are at least two perfectly distinct methods of arriving
at the known formulae of statical electricity. The step to
magnetic phenomena was comparatively simple; but it was
otherwise as regards electro-magnetic phenomena, where current
electricity is essentially involved. An exceedingly ingenious,
but highly artificial, theory had been devised by W. E. Weber,
which was found capable of explaining all the phenomena investigated
by Ampère as well as the induction currents of Faraday.
But this was based upon the assumption of a distance-action
between electric particles, the intensity of which depended
on their relative motion as well as on their position. This
was, of course, even more repugnant to Maxwell’s mind than
the statical distance-action developed by Poisson. The first
paper of Maxwell’s in which an attempt at an admissible physical
theory of electromagnetism was made was communicated to
the Royal Society in 1867. But the theory, in a fully developed
form, first appeared in 1873 in his great treatise on Electricity
and Magnetism. This work was one of the most splendid
monuments ever raised by the genius of a single individual.
Availing himself of the admirable generalized co-ordinate system
of Lagrange, Maxwell showed how to reduce all electric and
magnetic phenomena to stresses and motions of a material
medium, and, as one preliminary, but excessively severe, test
of the truth of his theory, he pointed out that (if the electro-magnetic
medium be that which is required for the explanation
of the phenomena of light) the velocity of light in vacuo should

be numerically the same as the ratio of the electro-magnetic
and electrostatic units. In fact, the means of the best determinations
of each of these quantities separately agree with one
another more closely than do the various values of either.

One of Maxwell’s last great contributions to science was
the editing (with copious original notes) of the Electrical Researches
of the Hon. Henry Cavendish, from which it appeared
that Cavendish, already famous by many other researches (such
as the mean density of the earth, the composition of water,
&c.), must be looked on as, in his day, a man of Maxwell’s own
stamp as a theorist and an experimenter of the very first rank.

In private life Clerk Maxwell was one of the most lovable
of men, a sincere and unostentatious Christian. Though
perfectly free from any trace of envy or ill-will, he yet showed
on fit occasion his contempt for that pseudo-science which
seeks for the applause of the ignorant by professing to reduce
the whole system of the universe to a fortuitous sequence of
uncaused events.


His collected works, including the series of articles on the properties
of matter, such as “Atom,” “Attraction,” “Capillary Action,”
“Diffusion,” “Ether,” &c., which he contributed to the 9th edition
of this encyclopaedia, were issued in two volumes by the Cambridge
University Press in 1890; and an extended biography, by his former
schoolfellow and lifelong friend Professor Lewis Campbell, was
published in 1882.



(P. G. T.)



MAXWELLTOWN, a burgh of barony and police burgh of
Kirkcudbrightshire, Scotland. Pop. (1901), 5796. It lies on the
Nith, opposite to Dumfries, with which it is connected by
three bridges, being united with it for parliamentary purposes.
It has a station on the Glasgow & South-Western line from
Dumfries to Kirkcudbright. Its public buildings include a
court-house, the prison for the south-west of Scotland, and an
observatory and museum, housed in a disused windmill. The
chief manufactures are woollens and hosiery, besides dyeworks
and sawmills. It was a hamlet known as Bridgend up till
1810, in which year it was erected into a burgh of barony under
its present name. To the north-west lies the parish of Terregles,
said to be a corruption of Tir-eglwys (terra ecclesia, that is,
“Kirk land”). The parish contains the beautiful ruin of
Lincluden Abbey (see Dumfries), and Terregles House, once
the seat of William Maxwell, last earl of Nithsdale. In the
parish of Lochrutton, a few miles south-west of Maxwelltown,
there is a good example of a stone circle, the “Seven Grey
Sisters,” and an old peel-tower in the Mains of Hills.



MAY, PHIL (1864-1903), English caricaturist, was born
at Wortley, near Leeds, on the 22nd of April 1864, the son of
an engineer. His father died when the child was nine years
old, and at twelve he had begun to earn his living. Before
he was fifteen he had acted as time-keeper at a foundry, had
tried to become a jockey, and had been on the stage at
Scarborough and Leeds. When he was about seventeen he
went to London with a sovereign in his pocket. He suffered
extreme want, sleeping out in the parks and streets, until he
obtained employment as designer to a theatrical costumier.
He also drew posters and cartoons, and for about two years
worked for the St Stephen’s Review, until he was advised to
go to Australia for his health. During the three years he
spent there he was attached to the Sydney Bulletin, for which
many of his best drawings were made. On his return to Europe
he went to Paris by way of Rome, where he worked hard for
some time before he appeared in 1892 in London to resume
his interrupted connexion with the St Stephen’s Review. His
studies of the London “guttersnipe” and the coster-girl
rapidly made him famous. His overflowing sense of fun, his
genuine sympathy with his subjects, and his kindly wit were
on a par with his artistic ability. It was often said that the
extraordinary economy of line which was a characteristic
feature of his drawings had been forced upon him by the deficiencies
of the printing machines of the Sydney Bulletin. It
was in fact the result of a laborious process which involved
a number of preliminary sketches, and of a carefully considered
system of elimination. His later work included some excellent
political portraits. He became a regular member of the staff
of Punch in 1896, and in his later years his services were retained
exclusively for Punch and the Graphic. He died on the 5th of
August 1903.


There was an exhibition of his drawings at the Fine Arts Society
in 1895, and another at the Leicester Galleries in 1903. A selection
of his drawings contributed to the periodical press and from Phil
May’s Annual and Phil May’s Sketch Books, with a portrait and
biography of the artist, entitled The Phil May Folio, appeared in
1903.





MAY, THOMAS (1595-1650), English poet and historian,
son of Sir Thomas May of Mayfield, Sussex, was born in 1595.
He entered Sidney Sussex College, Cambridge, in 1609, and took
his B.A. degree three years later. His father having lost his
fortune and sold the family estate, Thomas May, who was
hampered by an impediment in his speech, made literature his
profession. In 1620 he produced The Heir, an ingeniously constructed
comedy, and, probably about the same time, The Old
Couple, which was not printed until 1658. His other dramatic
works are classical tragedies on the subjects of Antigone, Cleopatra,
and Agrippina. F. G. Fleay has suggested that the more
famous anonymous tragedy of Nero (printed 1624, reprints in
A. H. Bullen’s Old English Plays and the Mermaid Series)
should also be assigned to May. But his most important
work in the department of pure literature was his translation
(1627) into heroic couplets of the Pharsalia of Lucan. Its
success led May to write a continuation of Lucan’s narrative
down to the death of Caesar. Charles I. became his patron,
and commanded him to write metrical histories of Henry II.
and Edward III., which were completed in 1635. When the
earl of Pembroke, then lord chamberlain, broke his staff across
May’s shoulders at a masque, the king took him under
his protection as “my poet,” and Pembroke made him an
apology accompanied with a gift of £50. These marks of the
royal favour seem to have led May to expect the posts of poet-laureate
and city chronologer when they fell vacant on the death
of Ben Jonson in 1637, but he was disappointed, and he forsook
the court and attached himself to the party of the Parliament.
In 1646 he is styled one of the “secretaries” of the Parliament,
and in 1647 he published his best known work, The History
of the Long Parliament. In this official apology for the moderate
or Presbyterian party, he professes to give an impartial statement
of facts, unaccompanied by any expression of party or
personal opinion. If he refrained from actual invective, he
accomplished his purpose, according to Guizot, by “omission,
palliation and dissimulation.” Accusations of this kind were
foreseen by May, who says in his preface that if he gives more
information about the Parliament men than their opponents
it is that he was more conversant with them and their affairs.
In 1650 he followed this with another work written with a more
definite bias, a Breviary of the History of the Parliament of
England, in Latin and English, in which he defended the position
of the Independents. He stopped short of the catastrophe of
the king’s execution, and it seems likely that his subservience
to Cromwell was not quite voluntary. In February 1650 he
was brought to London from Weymouth under a strong guard
for having spread false reports of the Parliament and of Cromwell.
He died on the 13th of November in the same year, and was
buried in Westminster Abbey, but after the Restoration his
remains were exhumed and buried in a pit in the yard of
St Margaret’s, Westminster. May’s change of side made him
many bitter enemies, and he is the object of scathing condemnation
from many of his contemporaries.


There is a long notice of May in the Biographia Britannica. See
also W. J. Courthope, Hist. of Eng. Poetry, vol. 3; and Guizot,
Études biographiques sur la révolution d’Angleterre (pp. 403-426, ed.
1851).





MAY, or Mey(e), WILLIAM (d. 1560), English divine,
was the brother of John May, bishop of Carlisle. He was
educated at Cambridge, where he was a fellow of Trinity Hall,
and in 1537, president of Queen’s College. May heartily
supported the Reformation, signed the Ten Articles in 1536,
and helped in the production of The Institution of a Christian
Man. He had close connexion with the diocese of Ely, being

successively chancellor, vicar-general and prebendary. In 1545
he was made a prebendary of St Paul’s, and in the following
year dean. His favourable report on the Cambridge colleges
saved them from dissolution. He was dispossessed during the
reign of Mary, but restored to the deanery on Elizabeth’s accession.
He died on the day of his election to the archbishopric
of York.



MAY, the fifth month of our modern year, the third of the
old Roman calendar. The origin of the name is disputed;
the derivation from Maia, the mother of Mercury, to whom
the Romans were accustomed to sacrifice on the first day of
this month, is usually accepted. The ancient Romans used
on May Day to go in procession to the grotto of Egeria. From
the 28th of April to the 2nd of May was kept the festival in
honour of Flora, goddess of flowers. By the Romans the month
was regarded as unlucky for marriages, owing to the celebration
on the 9th, 11th and 13th of the Lemuria, the festival of the
unhappy dead. This superstition has survived to the present
day.

In medieval and Tudor England, May Day was a great public
holiday. All classes of the people, young and old alike, were
up with the dawn, and went “a-Maying” in the woods. Branches
of trees and flowers were borne back in triumph to the towns
and villages, the centre of the procession being occupied by those
who shouldered the maypole, glorious with ribbons and wreaths.
The maypole was usually of birch, and set up for the day only;
but in London and the larger towns the poles were of durable
wood and permanently erected. They were special eyesores
to the Puritans. John Stubbes in his Anatomy of Abuses (1583)
speaks of them as those “stinckyng idols,” about which the
people “leape and daunce, as the heathen did.” Maypoles were
forbidden by the parliament in 1644, but came once more into
favour at the Restoration, the last to be erected in London
being that set up in 1661. This pole, which was of cedar,
134 ft. high, was set up by twelve British sailors under the personal
supervision of James II., then duke of York and lord
high admiral, in the Strand on or about the site of the present
church of St Mary’s-in-the-Strand. Taken down in 1717, it was
conveyed to Wanstead Park in Essex, where it was fixed by
Sir Isaac Newton as part of the support of a large telescope,
presented to the Royal Society by a French astronomer.


For an account of the May Day survivals in rural England see
P. H. Ditchfield, Old English Customs extant at Present Times (1897).





MAY, ISLE OF, an island belonging to Fifeshire, Scotland,
at the entrance to the Firth of Forth, 5 m. S.E. of Crail and
Anstruther. It has a N.W. to S.E. trend, is more than 1 m.
long, and measures at its widest about 1⁄3 m. St Adrian, who
had settled here, was martyred by the Danes about the middle
of the 9th century. The ruins of the small chapel dedicated
to him, which was a favourite place of pilgrimage, still exist.
The place where the pilgrims—of whom James IV. was often
one—landed is yet known as Pilgrims’ Haven, and traces may
yet be seen of the various wells of St Andrew, St John, Our
Lady, and the Pilgrims, though their waters have become
brackish. In 1499 Sir Andrew Wood of Largo, with the “Yellow
Carvel” and “Mayflower,” captured the English seaman
Stephen Bull, and three ships, after a fierce fight which took
place between the island and the Bass Rock. In 1636 a coal
beacon was lighted on the May and maintained by Alexander
Cunningham of Barns. The oil light substituted for it in 1816
was replaced in 1888 by an electric light.



MAYA, an important tribe and stock of American Indians,
the dominant race of Yucatan and other states of Mexico and
part of Central America at the time of the Spanish conquest.
They were then divided into many nations, chief among them
being the Maya proper, the Huastecs, the Tzental, the Pokom,
the Mame and the Cakchiquel and Quiché. They were spread
over Yucatan, Vera Cruz, Tabasco, Campeche, and Chiapas
in Mexico, and over the greater part of Guatemala and Salvador.
In civilization the Mayan peoples rivalled the Aztecs. Their
traditions give as their place of origin the extreme north;
thence a migration took place, perhaps at the beginning of the
Christian era. They appear to have reached Yucatan as early
as the 5th century. From the evidence of the Quiché chronicles,
which are said to date back to about A.D. 700, Guatemala was
shortly afterwards overrun. Physically the Mayans are a
dark-skinned, round-headed, short and sturdy type. Although
they were already decadent when the Spaniards arrived they
made a fierce resistance. They still form the bulk of the
inhabitants of Yucatan. For their culture, ruined cities, &c.
see Central America and Mexico.



MAYAGUEZ, the third largest city of Porto Rico, a seaport,
and the seat of government of the department of Mayaguez,
on the west coast, at the mouth of Rio Yaguez, about 72 m. W.
by S. of San Juan. Pop. of the city (1899), 15,187, including 1381
negroes and 4711 of mixed races; (1910), 16,591; of the municipal
district, 35,700 (1899), of whom 2687 were negroes and 9933 were
of mixed races. Mayaguez is connected by the American
railroad of Porto Rico with San Juan and Ponce, and it is served
regularly by steamboats from San Juan, Ponce and New York,
although its harbour is not accessible to vessels drawing more
than 16 ft. of water. It is situated at the foot of Las Mesas
mountains and commands picturesque views. The climate is
healthy and good water is obtained from the mountain region.
From the shipping district along the water-front a thoroughfare
leads to the main portion of the city, about 1 m. distant. There
are four public squares, in one of which is a statue of Columbus.
Prominent among the public buildings are the City Hall (containing
a public library), San Antonio Hospital, Roman Catholic
churches, a Presbyterian church, the court-house and a theatre.
The United States has an agricultural experiment station here,
and the Insular Reform School is 1 m. south of the city. Coffee,
sugar-cane and tropical fruits are grown in the surrounding
country; and the business of the city consists chiefly in their
export and the import of flour. Among the manufactures
are sugar, tobacco and chocolate. Mayaguez was founded
about the middle of the 18th century on the site of a hamlet
which was first settled about 1680. It was incorporated as
a town in 1836, and became a city in 1873. In 1841 it was
nearly all destroyed by fire.



MAYAVARAM, a town of British India, in the Tanjore district
of Madras, on the Cauvery river; junction on the South Indian
railway, 174 m. S.W. of Madras. Pop. (1901), 24,276. It possesses
a speciality of fine cotton and silk cloth, known as Kornad
from the suburb in which the weavers live. During October
and November the town is the scene of a great pilgrimage to
the holy waters of the Cauvery.



MAYBOLE, a burgh of barony and police burgh of Ayrshire,
Scotland. Pop. (1901), 5892. It is situated 9 m. S. of Ayr and
501⁄4 m. S.W. of Glasgow by the Glasgow & South-Western railway.
It is an ancient place, having received a charter from Duncan II.
in 1193. In 1516 it was made a burgh of regality, but for
generations it remained under the subjection of the Kennedys,
afterwards earls of Cassillis and marquesses of Ailsa, the most
powerful family in Ayrshire. Of old Maybole was the capital
of the district of Carrick, and for long its characteristic feature
was the family mansions of the barons of Carrick. The castle
of the earls of Cassillis still remains. The public buildings include
the town-hall, the Ashgrove and the Lumsden fresh-air fortnightly
homes, and the Maybole combination poorhouse. The leading
manufactures are of boots and shoes and agricultural implements.
Two miles to the south-west are the ruins of Crossraguel (Cross
of St Regulus) Abbey, founded about 1240. Kirkoswald,
where Burns spent his seventeenth year, learning land-surveying,
lies a little farther west. In the parish churchyard lie “Tam
o’ Shanter” (Douglas Graham) and “Souter Johnnie” (John
Davidson). Four miles to the west of Maybole on the coast
is Culzean Castle, the chief seat of the marquess of Ailsa, dating
from 1777; it stands on a basaltic cliff, beneath which are the
Coves of Culzean, once the retreat of outlaws and a resort of
the fairies. Farther south are the ruins of Turnberry Castle,
where Robert Bruce is said to have been born. A few miles
to the north of Culzean are the ruins of Dunure Castle, an
ancient stronghold of the Kennedys.





MAYEN, a town of Germany, in the Prussian Rhine province,
on the northern declivity of the Eifel range, 16 m. W. from
Coblenz, on the railway Andernach-Gerolstein. Pop. (1905),
13,435. It is still partly surrounded by medieval walls, and
the ruins of a castle rise above the town. There are some
small industries, embracing textile manufactures, oil mills
and tanneries, and a trade in wine, while near the town are
extensive quarries of basalt. Having been a Roman settlement,
Mayen became a town in 1291. In 1689 it was destroyed by
the French.



MAYENNE, CHARLES OF LORRAINE, Duke of (1554-1611),
second son of Francis of Lorraine, second duke of Guise, was
born on the 26th of March 1554. He was absent from France
at the time of the massacre of Saint Bartholomew, but took
part in the siege of La Rochelle in the following year, when
he was created duke and peer of France. He went with Henry
of Valois, duke of Anjou (afterwards Henry III.), on his election
as king of Poland, but soon returned to France to become the
energetic supporter and lieutenant of his brother, the 3rd duke
of Guise. In 1577 he gained conspicuous successes over the
Huguenot forces in Poitou. As governor of Burgundy he
raised his province in the cause of the League in 1585. The
assassination of his brothers at Blois on the 23rd and 24th of
December 1588 left him at the head of the Catholic party. The
Venetian ambassador, Mocenigo, states that Mayenne had warned
Henry III. that there was a plot afoot to seize his person and to
send him by force to Paris. At the time of the murder he was at
Lyons, where he received a letter from the king saying that
he had acted on his warning, and ordering him to retire to his
government. Mayenne professed obedience, but immediately
made preparations for marching on Paris. After a vain attempt
to recover the persons of those of his relatives who had been
arrested at Blois he proceeded to recruit troops in his government
of Burgundy and in Champagne. Paris was devoted to the
house of Guise and had been roused to fury by the news of the
murder. When Mayenne entered the city in February 1589
he found it dominated by representatives of the sixteen quarters
of Paris, all fanatics of the League. He formed a council
general to direct the affairs of the city and to maintain relations
with the other towns faithful to the League. To this council
each quarter sent four representatives, and Mayenne added representatives
of the various trades and professions of Paris in order
to counterbalance this revolutionary element. He constituted
himself “lieutenant-general of the state and crown of France,”
taking his oath before the parlement of Paris. In April he
advanced on Tours. Henry III. in his extremity sought an
alliance with Henry of Navarre, and the allied forces drove
the leaguers back, and had laid siege to Paris, when the murder
of Henry III. by a Dominican fanatic changed the face of affairs
and gave new strength to the Catholic party.

Mayenne was urged to claim the crown for himself, but he
was faithful to the official programme of the League and proclaimed
Charles, cardinal of Bourbon, at that time a prisoner
in the hands of Henry IV., as Charles X. Henry IV. retired
to Dieppe, followed by Mayenne, who joined his forces with
those of his cousin Charles, duke of Aumale, and Charles de
Cossé, comte de Brissac, and engaged the royal forces in a
succession of fights in the neighbourhood of Arques (September
1589). He was defeated and out-marched by Henry IV., who
moved on Paris, but retreated before Mayenne’s forces. In
1590 Mayenne received additions to his army from the Spanish
Netherlands, and took the field again, only to suffer complete
defeat at Ivry (March 14, 1590). He then escaped to Mantes,
and in September collected a fresh army at Meaux, and with the
assistance of Alexander Farnese, prince of Parma, sent by
Philip II., raised the siege of Paris, which was about to surrender
to Henry IV. Mayenne feared with reason the
designs of Philip II., and his difficulties were increased by the
death of Charles X., the “king of the league.” The extreme
section of the party, represented by the Sixteen, urged him to
proceed to the election of a Catholic king and to accept the
help and the claims of their Spanish allies. But Mayenne,
who had not the popular gifts of his brother, the duke of Guise,
had no sympathy with the demagogues, and himself inclined
to the moderate side of his party, which began to urge reconciliation
with Henry IV. He maintained the ancient forms of the
constitution against the revolutionary policy of the Sixteen,
who during his absence from Paris took the law into their own
hands and in November 1591 executed one of the leaders of the
more moderate party, Barnabé Brisson, president of the parlement.
He returned to Paris and executed four of the chief
malcontents. The power of the Sixteen diminished from that
time, but with it the strength of the League.1

Mayenne entered into negotiations with Henry IV. while he
was still appearing to consider with Philip II. the succession to the
French crown of the Infanta Elizabeth, granddaughter, through
her mother Elizabeth of Valois, of Henry II. He demanded
that Henry IV. should accomplish his conversion to Catholicism
before he was recognized by the leaguers. He also desired
the continuation to himself of the high offices which had accumulated
in his family and the reservation of their provinces to
his relatives among the leaguers. In 1593 he summoned the
States General to Paris and placed before them the claims of
the Infanta, but they protested against foreign intervention.
Mayenne signed a truce at La Villette on the 31st of July 1593.
The internal dissensions of the league continued to increase,
and the principal chiefs submitted. Mayenne finally made
his peace only in October 1595. Henry IV. allowed him the
possession of Chalon-sur-Saône, of Seurre and Soissons for three
years, made him governor of the Isle of France and paid a large
indemnity. Mayenne died at Soissons on the 3rd of October 1611.


A Histoire de la vie et de la mort du duc de Mayenne appeared at
Lyons in 1618. See also J. B. H. Capefigue, Hist. de la Réforme, de
la ligue et du règne de Henri IV. (8 vols., 1834-1835) and the literature
dealing with the house of Guise (q.v.).




 
1 The estates of the League in 1593 were the occasion of the
famous Satire Ménippée, circulated in MS. in that year, but only
printed at Tours in 1594. It was the work of a circle of men of letters
who belonged to the politiques or party of the centre and ridiculed
the League. The authors were Pierre Le Roy, Jean Passerat,
Florent Chrestien, Nicolas Rapin and Pierre Pithou. It opened
with “La vertu du catholicon,” in which a Spanish quack (the
cardinal of Plaisance) vaunts the virtues of his drug “catholicon
composé,” manufactured in the Escurial, while a Lorrainer rival
(the cardinal of Pellevé) tries to sell a rival cure. A mock account
of the estates, with harangues delivered by Mayenne and the other
chiefs of the League, followed. Mayenne’s discourse is said to have
been written by the jurist Pithou.





MAYENNE, a department of north-western France, three-fourths
of which formerly belonged to Lower Maine and the
remainder to Anjou, bounded on the N. by Manche and Orne,
E. by Sarthe, S. by Maine-et-Loire and W. by Ille-et-Vilaine.
Area, 2012 sq. m. Pop. (1906), 305,457. Its ancient geological
formations connect it with Brittany. The surface is agreeably
undulating; forests are numerous, and the beauty of the cultivated
portions is enhanced by the hedgerows and lines of trees
by which the farms are divided. The highest point of the
department, and indeed of the whole north-west of France,
is the Mont des Avaloirs (1368 ft.). Hydrographically Mayenne
belongs to the basins of the Loire, the Vilaine and the Sélune,
the first mentioned draining by far the larger part of the entire
area. The principal stream is the Mayenne, which passes
successively from north to south through Mayenne, Laval
and Château-Gontier; by means of weirs and sluices it is navigable
below Mayenne, but traffic is inconsiderable. The chief
affluents are the Jouanne on the left, and on the right the
Colmont, the Ernée and the Oudon. A small area in the
east of the department drains by the Erve into the Sarthe;
the Vilaine rises in the west, and in the north-west two small
rivers flow into the Sélune. The climate of Mayenne is generally
healthy except in the neighbourhood of the numerous marshes.
The temperature is lower and the moisture of the atmosphere
greater than in the neighbouring departments; the rainfall
(about 32 in. annually) is above the average for France.


Agriculture and stock-raising are prosperous. A large number
of horned cattle are reared, and in no other French department are

so many horses found within the same area; the breed, that of Craon,
is famed for its strength. Craon has also given its name to the most
prized breed of pigs in western France. Mayenne produces excellent
butter and poultry and a large quantity of honey. The cultivation
of the vine is very limited, and the most common beverage is cider.
Wheat, oats, barley and buckwheat, in the order named, are the
most important crops, and a large quantity of flax and hemp is
produced. Game is abundant. The timber grown is chiefly beech,
oak, birch, elm and chestnut. The department produces antimony,
auriferous quartz and coal. Marble, slate and other stone are
quarried. There are several chalybeate springs. The industries
include flour-milling, brick and tile making, brewing, cotton and
wool spinning, and the production of various textile fabrics (especially
ticking) for which Laval and Château-Gontier are the centres,
agricultural implement making, wood and marble sawing, tanning
and dyeing. The exports include agricultural produce, live-stock,
stone and textiles; the chief imports are coal, brandy, wine, furniture
and clothing. The department is served by the Western railway.
It forms part of the circumscriptions of the IV. army corps, the
académie (educational division) of Rennes, and the court of appeal
of Angers. It comprises three arrondissements (Laval, Château-Gontier
and Mayenne), with 27 cantons and 276 communes. Laval,
the capital, is the seat of a bishopric of the province of Tours. The
other principal towns are Château-Gontier and Mayenne, which are
treated under separate headings. The following places are also of
interest: Evron, which has a church of the 12th and 13th centuries;
Jublains, with a Roman fort and other Roman remains; Lassay,
with a fine château of the 14th and 16th centuries; and Ste Suzanne,
which has remains of medieval ramparts and a fortress with a keep
of the Romanesque period.





MAYENNE, a town of north-western France, capital of an
arrondissement in the department of Mayenne, 19 m. N.N.E.
of Laval by rail. Pop., town 7003, commune 10,020. Mayenne
is an old feudal town, irregularly built on hills on both sides
of the river Mayenne. Of the old castle overlooking the river
several towers remain, one of which has retained its conical roof;
the vaulted chambers and chapel are ornamented in the style
of the 13th century; the building is now used as a prison. The
church of Notre-Dame, beside which there is a statue of Joan
of Arc, dates partly from the 12th century; the choir was
rebuilt in the 19th century. In the Place de Cheverus is a
statue, by David of Angers, to Cardinal Jean de Cheverus
(1768-1836), who was born in Mayenne. Mayenne has a
subprefecture, tribunals of first instance and of commerce,
a chamber of arts and manufactures, and a board of trade-arbitration.
There is a school of agriculture in the vicinity.
The chief industry of the place is the manufacture of tickings,
linen, handkerchiefs and calicoes.

Mayenne had its origin in the castle built here by Juhel,
baron of Mayenne, the son of Geoffrey of Maine, in the beginning
of the 11th century. It was taken by the English in 1424,
and several times suffered capture by the opposing parties in
the wars of religion and the Vendée. At the beginning of
the 16th century the territory passed to the family of Guise, and
in 1573 was made a duchy in favour of Charles of Mayenne,
leader of the League.



MAYER, JOHANN TOBIAS (1723-1762), German astronomer,
was born at Marbach, in Würtemberg, on the 17th of February
1723, and brought up at Esslingen in poor circumstances. A
self-taught mathematician, he had already published two
original geometrical works when, in 1746, he entered J. B.
Homann’s cartographic establishment at Nuremberg. Here
he introduced many improvements in map-making, and
gained a scientific reputation which led (in 1751) to his election
to the chair of economy and mathematics in the university
of Göttingen. In 1754 he became superintendent of the
observatory, where he laboured with great zeal and success
until his death, on the 20th of February 1762. His first important
astronomical work was a careful investigation of the
libration of the moon (Kosmographische Nachrichten, Nuremberg,
1750), and his chart of the full moon (published in 1775) was
unsurpassed for half a century. But his fame rests chiefly
on his lunar tables, communicated in 1752, with new solar tables,
to the Royal Society of Göttingen, and published in their
Transactions (vol. ii.). In 1755 he submitted to the English
government an amended body of MS. tables, which James
Bradley compared with the Greenwich observations, and found
to be sufficiently accurate to determine the moon’s place to
75″, and consequently the longitude at sea to about half a
degree. An improved set was afterwards published in London
(1770), as also the theory (Theoria lunae juxta systema Newtonianum,
1767) upon which the tables are based. His widow,
by whom they were sent to England, received in consideration
from the British government a grant of £3000. Appended to the
London edition of the solar and lunar tables are two short
tracts—the one on determining longitude by lunar distances,
together with a description of the repeating circle (invented
by Mayer in 1752), the other on a formula for atmospheric
refraction, which applies a remarkably accurate correction
for temperature.

Mayer left behind him a considerable quantity of manuscript,
part of which was collected by G. C. Lichtenberg and published
in one volume (Opera inedita, Göttingen, 1775). It contains
an easy and accurate method for calculating eclipses; an essay
on colour, in which three primary colours are recognized; a
catalogue of 998 zodiacal stars; and a memoir, the earliest of
any real value, on the proper motion of eighty stars, originally
communicated to the Göttingen Royal Society in 1760. The
manuscript residue includes papers on atmospheric refraction
(dated 1755), on the motion of Mars as affected by the perturbations
of Jupiter and the Earth (1756), and on terrestrial magnetism
(1760 and 1762). In these last Mayer sought to explain
the magnetic action of the earth by a modification of Euler’s
hypothesis, and made the first really definite attempt to
establish a mathematical theory of magnetic action (C. Hansteen,
Magnetismus der Erde, i. 283). E. Klinkerfuss published in
1881 photo-lithographic reproductions of Mayer’s local charts
and general map of the moon; and his star-catalogue was
re-edited by F. Baily in 1830 (Memoirs Roy. Astr. Soc. iv.
391) and by G. F. J. A. Auvers in 1894.


Authorities.—A. G. Kästner, Elogium Tobiae Mayeri (Göttingen,
1762); Connaissance des temps, 1767, p. 187 (J. Lalande); Monatliche
Correspondenz viii. 257, ix. 45, 415, 487, xi. 462; Allg. Geographische
Ephemeriden iii. 116, 1799 (portrait); Berliner Astr. Jahrbuch, Suppl.
Bd. iii. 209, 1797 (A. G. Kästner); J. B. J. Delambre, Hist. de l’Astr.
au XVIIIe siècle, p. 429; R. Grant, Hist. of Phys. Astr. pp. 46,
488, 555; A. Berry, Short Hist. of Astr. p. 282; J. S. Pütter, Geschichte
von der Universität zu Göttingen, i. 68; J. Gehler, Physik. Wörterbuch
neu bearbeitet, vi. 746, 1039; Allg. Deutsche Biographie (S. Günther).



(A. M. C.)



MAYER, JULIUS ROBERT (1814-1878), German physicist,
was born at Heilbronn on the 25th of November 1814, studied
medicine at Tübingen, Munich and Paris, and after a journey
to Java in 1840 as surgeon of a Dutch vessel obtained a medical
post in his native town. He claims recognition as an independent
a priori propounder of the “First Law of Thermodynamics,”
but more especially as having early and ably applied that law
to the explanation of many remarkable phenomena, both cosmical
and terrestrial. His first little paper on the subject,
“Bemerkungen über die Kräfte der unbelebten Natur,” appeared
in 1842 in Liebig’s Annalen, five years after the republication,
in the same journal, of an extract from K. F. Mohr’s paper on
the nature of heat, and three years later he published Die organische
Bewegung in ihren Zusammenhange mit dem Stoffwechsel.


It has been repeatedly claimed for Mayer that he calculated the
value of the dynamical equivalent of heat, indirectly, no doubt, but
in a manner altogether free from error, and with a result according
almost exactly with that obtained by J. P. Joule after years of patient
labour in direct experimenting. This claim on Mayer’s behalf was
first shown to be baseless by W. Thomson (Lord Kelvin) and P. G.
Tait in an article on “Energy,” published in Good Words in 1862,
which gave rise to a long but lively discussion. A calm and judicial
annihilation of the claim is to be found in a brief article by Sir G.
G. Stokes, Proc. Roy. Soc., 1871, p. 54. See also Maxwell’s Theory
of Heat, chap. xiii. Mayer entirely ignored the grand fundamental
principle laid down by Sadi Carnot—that nothing can be concluded
as to the relation between heat and work from an experiment in
which the working substance is left at the end of an operation in a
different physical state from that in which it was at the commencement.
Mayer has also been styled the discoverer of the fact that
heat consists in (the energy of) motion, a matter settled at the very
end of the 18th century by Count Rumford and Sir H. Davy; but in
the teeth of this statement we have Mayer’s own words, “We might
much rather assume the contrary—that in order to become heat
motion must cease to be motion.”



Mayer’s real merit consists in the fact that, having for himself
made out, on inadequate and even questionable grounds, the conservation
of energy, and having obtained (though by inaccurate
reasoning) a numerical result correct so far as his data permitted,
he applied the principle with great power and insight to the explanation
of numerous physical phenomena. His papers, which were
republished in a single volume with the title Die Mechanik der
Wärme (3rd ed., 1893), are of unequal merit. But some, especially
those on Celestial Dynamics and Organic Motion, are admirable
examples of what really valuable work may be effected by a man
of high intellectual powers, in spite of imperfect information and
defective logic.

Different, and it would appear exaggerated, estimates of Mayer
are given in John Tyndall’s papers in the Phil. Mag., 1863-1864
(whose avowed object was “to raise a noble and a suffering man to
the position which his labours entitled him to occupy”), and in
E. Dühring’s Robert Mayer, der Galilei des neunzehnten Jahrhunderts,
Chemnitz, 1880. Some of the simpler facts of the case are summarized
by Tait in the Phil. Mag., 1864, ii. 289.





MAYFLOWER, the vessel which carried from Southampton,
England, to Plymouth, Massachusetts, the Pilgrims who established
the first permanent colony in New England. It was of
about 180 tons burden, and in company with the “Speedwell”
sailed from Southampton on the 5th of August 1620, the two
having on board 120 Pilgrims. After two trials the “Speedwell”
was pronounced unseaworthy, and the “Mayflower” sailed
alone from Plymouth, England, on the 6th of September with
the 100 (or 102) passengers, some 41 of whom on the 11th of
November (O.S.) signed the famous “Mayflower Compact” in
Provincetown Harbor, and a small party of whom, including
William Bradford, sent to choose a place for settlement, landed
at what is now Plymouth, Massachusetts, on the 11th of December
(21st N.S.), an event which is celebrated, as Forefathers’
Day, on the 22nd of December. A “General Society of Mayflower
Descendants” was organized in 1894 by lineal descendants
of passengers of the “Mayflower” to “preserve their
memory, their records, their history, and all facts relating to
them, their ancestors and their posterity.” Every lineal descendant,
over eighteen years of age, of any passenger of the “Mayflower”
is eligible to membership. Branch societies have since
been organized in several of the states and in the District of
Columbia, and a triennial congress is held in Plymouth.


See Azel Ames, The May-Flower and Her Log (Boston, 1901);
Blanche McManus, The Voyage of the Mayflower (New York, 1897);
The General Society of Mayflower: Meetings, Officers and Members,
arranged in State Societies, Ancestors and their Descendants (New
York, 1901). Also the articles Plymouth, Mass.; Massachusetts,
§ History; Pilgrim; and Provincetown, Mass.





MAY-FLY. The Mayflies belong to the Ephemeridae, a
remarkable family of winged insects, included by Linnaeus in
his order Neuroptera, which derive their scientific name from
ἐφήμερος, in allusion to their very short lives. In some species
it is possible that they have scarcely more than one day’s existence,
but others are far longer lived, though the extreme limit
is probably rarely more than a week. The family has very
sharply defined characters, which separate its members at once
from all other neuropterous (or pseudo-neuropterous) groups.

These insects are universally aquatic in their preparatory
states. The eggs are dropped into the water by the female
in large masses, resembling, in some species, bunches of grapes
in miniature. Probably several months elapse before the young
larvae are excluded. The sub-aquatic condition lasts a considerable
time: in Cloeon, a genus of small and delicate species, Sir
J. Lubbock (Lord Avebury) proved it to extend over more
than six months; but in larger and more robust genera (e.g.
Palingenia) there appears reason to believe that the greater
part of three years is occupied in preparatory conditions.


The larva is elongate and campodeiform. The head is rather
large, and is furnished at first with five simple eyes of nearly equal
size; but as it increases in size the homologues of the facetted eyes
of the imago become larger, whereas those equivalent to the ocelli
remain small. The antennae are long and thread-like, composed at
first of few joints, but the number of these latter apparently increases
at each moult. The mouth parts are well developed, consisting
of an upper lip, powerful mandibles, maxillae with three-jointed
palpi, and a deeply quadrifid labium or lower lip with three-jointed
labial palpi. Distinct and conspicuous maxillulae are associated
with the tongue or hypopharynx. There are three distinct and large
thoracic segments, whereof the prothorax is narrower than the others;
the legs are much shorter and stouter than in the winged insect,
with monomerous tarsi terminated by a single claw. The abdomen
consists of ten segments, the tenth furnished with long and slender
multi-articulate tails, which appear to be only two in number at
first, but an intermediate one gradually develops itself (though this
latter is often lost in the winged insect). Respiration is effected
by means of external gills placed along both sides of the dorsum of
the abdomen and hinder segments of the thorax. These vary in
form: in some species they are entire plates, in others they are cut
up into numerous divisions, in all cases traversed by numerous
tracheal ramifications. According to the researches of Lubbock
and of E. Joly, the very young larvae have no breathing organs, and
respiration is effected through the skin. Lubbock traced at least
twenty moults in Cloeon; at about the tenth rudiments of the wing-cases
began to appear. These gradually become larger, and when
so the creature may be said to have entered its “nymph” stage;
but there is no condition analogous to the pupa-stage of insects with
complete metamorphoses.

There may be said to be three or four different modes of life in
these larvae: some are fossorial, and form tubes in the mud or clay
in which they live; others are found on or beneath stones; while
others again swim and crawl freely among water plants. It is
probable that some are carnivorous, either attacking other larvae
or subsisting on more minute forms of animal life; but others
perhaps feed more exclusively on vegetable matters of a low type,
such as diatoms.

The most aberrant type of larva is that of the genus Prosopistoma,
which was originally described as an entomostracous crustacean
on account of the presence of a large carapace overlapping the greater
part of the body. The dorsal skeletal elements of the thorax and
of the anterior six abdominal segments unite with the wing-cases
to form a large respiratory chamber, containing five pairs of tracheal
gills, with lateral slits for the inflow and a posterior orifice for the
outflow of water. Species of this genus occur in Europe, Africa and
Madagascar.



When the aquatic insect has reached its full growth it
emerges from the water or seeks its surface; the thorax splits
down the back and the winged form appears. But this is not
yet perfect, although it has all the form of a perfect insect and
is capable of flight; it is what is variously termed a “pseud-imago,”
“sub-imago” or “pro-imago.” Contrary to the habits
of all other insects, there yet remains a pellicle that has to be
shed, covering every part of the body. This final moult is
effected soon after the insect’s appearance in the winged form;
the creature seeks a temporary resting-place, the pellicle splits
down the back, and the now perfect insect comes forth, often
differing very greatly in colours and markings from the condition
in which it was only a few moments before. If the observer
takes up a suitable position near water, his coat is often seen
to be covered with the cast sub-imaginal skins of these insects,
which had chosen him as a convenient object upon which to
undergo their final change. In some few genera of very low
type it appears probable that, at any rate in the female, this final
change is never effected and that the creature dies a sub-imago.


The winged insect differs considerably in form from its sub-aquatic
condition. The head is smaller, often occupied almost entirely
above in the male by the very large eyes, which in some species are
curiously double in that sex, one portion being pillared, and forming
what is termed a “turban,” the mouth parts are aborted, for the
creature is now incapable of taking nutriment either solid or fluid;
the antennae are mere short bristles, consisting of two rather large
basal joints and a multi-articulate thread. The prothorax is much
narrowed, whereas the other segments (especially the mesothorax)
are greatly enlarged; the legs long and slender, the anterior pair
often very much longer in the male than in the female; the tarsi
four- or five-jointed; but in some genera (e.g. Oligoneuria and allies)
the legs are aborted, and the creatures are driven helplessly about
by the wind. The wings are carried erect: the anterior pair large,
with numerous longitudinal nervures, and usually abundant transverse
reticulation; the posterior pair very much smaller, often lanceolate,
and frequently wanting absolutely. The abdomen consists of
ten segments; at the end are either two or three long multi-articulate
tails; in the male the ninth joint bears forcipated appendages; in
the female the oviducts terminate at the junction of the seventh
and eighth ventral segments. The independent opening of the
genital ducts and the absence of an ectodermal vagina and ejaculatory
duct are remarkable archaic features of these insects, as has been
pointed out by J. A. Palmén. The sexual act takes place in the air,
and is of very short duration, but is apparently repeated several
times, at any rate in some cases.



Ephemeridae are found all over the world, even up to high
northern latitudes. F. J. Pictet, A. E. Eaton and others have

given us valuable works or monographs on the family; but the
subject still remains little understood, partly owing to the great
difficulty of preserving such delicate insects; and it appears
probable they can only be satisfactorily investigated as moist
preparations. The number of described species is less than 200,
spread over many genera.

From the earliest times attention has been drawn to the enormous
abundance of species of the family in certain localities.
Johann Anton Scopoli, writing in the 18th century, speaks of them
as so abundant in one place in Carniola that in June twenty cartloads
were carried away for manure! Polymitarcys virgo, which,
though not found in England, occurs in many parts of Europe
(and is common at Paris), emerges from the water soon after
sunset, and continues for several hours in such myriads as to
resemble snow showers, putting out lights, and causing inconvenience
to man, and annoyance to horses by entering their
nostrils. In other parts of the world they have been recorded
in multitudes that obscured passers-by on the other side of the
street. And similar records might be multiplied almost to any
extent. In Britain, although they are often very abundant, we
have scarcely anything analogous.

Fish, as is well known, devour them greedily, and enjoy a
veritable feast during the short period in which any particular
species appears. By anglers the common English species of
Ephemera (vulgata and danica, but more especially the latter,
which is more abundant) is known as the “may-fly,” but the
terms “green drake” and “bastard drake” are applied to
conditions of the same species. Useful information on this
point will be found in Ronalds’s Fly-Fisher’s Entomology, edited
by Westwood.

Ephemeridae belong to a very ancient type of insects, and
fossil imprints of allied forms occur even in the Devonian
and Carboniferous formations.

There is much to be said in favour of the view entertained
by some entomologists that the structural and developmental
characteristics of may-flies are sufficiently peculiar to warrant
the formation for them of a special order of insects, for which
the names Agnatha, Plectoptera and Ephemeroptera have been
proposed. (See Hexapoda, Neuroptera.)


Bibliography.—Of especial value to students of these insects
are A. E. Eaton’s monograph (Trans. Linn. Soc. (2) iii. 1883-1885)
and A. Vayssière’s “Recherches sur l’organisation des larves” (Ann.
Sci. Nat. Zool. (6) xiii. 1882 (7) ix. 1890). J. A. Palmén’s memoirs
Zur Morphologie des Tracheensystems (Leipzig, 1877) and Über
paarige Ausführungsgänge der Geschlechtsorgane bei Insekten (Helsingfors,
1884), contain important observations on may-flies. See also
L. C. Miall, Nat. Hist. Aquatic Insects (London, 1895); J. G. Needham
and others (New York State Museum, Bull. 86, 1905).



(R. M’L.; G. H. C.)



MAYHEM (for derivation see Maiming), an old Anglo-French
term of the law signifying an assault whereby the injured person
is deprived of a member proper for his defence in fight, e.g. an
arm, a leg, a fore tooth, &c. The loss of an ear, jaw tooth,
&c., was not mayhem. The most ancient punishment in
English law was retaliative—membrum pro membro, but ultimately
at common law fine and imprisonment. Various statutes
were passed aimed at the offence of maiming and disfiguring,
which is now dealt with by section 18 of the Offences against the
Person Act 1861. Mayhem may also be the ground of a civil
action, which had this peculiarity that the court on sight of the
wound might increase the damages awarded by the jury.



MAYHEW, HENRY (1812-1887), English author and journalist,
son of a London solicitor, was born in 1812. He was sent
to Westminster school, but ran away to sea. He sailed to India,
and on his return studied law for a short time under his father.
He began his journalistic career by founding, with Gilbert à
Beckett, in 1831, a weekly paper, Figaro in London. This was
followed in 1832 by a short-lived paper called The Thief; and
he produced one or two successful farces. His brothers Horace
(1816-1872) and Augustus Septimus (1826-1875) were also
journalists, and with them Henry occasionally collaborated,
notably with the younger in The Greatest Plague of Life (1847)
and in Acting Charades (1850). In 1841 Henry Mayhew was
one of the leading spirits in the foundation of Punch, of which he
was for the first two years joint-editor with Mark Lemon. He
afterwards wrote on all kinds of subjects, and published a number
of volumes of no permanent reputation—humorous stories,
travel and practical handbooks. He is credited with being the
first to “write up” the poverty side of London life from a philanthropic
point of view; with the collaboration of John Binny and
others he published London Labour and London Poor (1851; completed
1864) and other works on social and economic questions.
He died in London, on the 25th of July 1887. Horace Mayhew
was for some years sub-editor of Punch, and was the author of
several humorous publications and plays. The books of Horace
and Augustus Mayhew owe their survival chiefly to Cruikshank’s
illustrations.



MAYHEW, JONATHAN (1720-1766), American clergyman,
was born at Martha’s Vineyard on the 8th of October 1720, being
fifth in descent from Thomas Mayhew (1592-1682), an early
settler and the grantee (1641) of Martha’s Vineyard. Thomas
Mayhew (c. 1616-1657), the younger, his son John (d. 1689)
and John’s son, Experience (1673-1758), were active missionaries
among the Indians of Martha’s Vineyard and the vicinity.
Jonathan, the son of Experience, graduated at Harvard in 1744.
So liberal were his theological views that when he was to be ordained
minister of the West Church in Boston in 1747 only two
ministers attended the first council called for the ordination,
and it was necessary to summon a second council. Mayhew’s
preaching made his church practically the first “Unitarian”
Congregational church in New England, though it was never
officially Unitarian. In 1763 he published Observations on the
Charter and Conduct of the Society for Propagating the Gospel in
Foreign Parts, an attack on the policy of the society in sending
missionaries to New England contrary to its original purpose of
“Maintaining Ministers of the Gospel” in places “wholly destitute
and unprovided with means for the maintenance of ministers
and for the public worship of God;” the Observations
marked him as a leader among those in New England who feared,
as Mayhew said (1762), “that there is a scheme forming for
sending a bishop into this part of the country, and that our
Governor,1 a true churchman, is deeply in the plot.” To an
American reply to the Observations, entitled A Candid Examination
(1763), Mayhew wrote a Defense; and after the publication
of an Answer, anonymously published in London in 1764 and
written by Thomas Seeker, archbishop of Canterbury, he wrote
a Second Defense. He bitterly opposed the Stamp Act, and urged
the necessity of colonial union (or “communion”) to secure
colonial liberties. He died on the 9th of July 1766. Mayhew was
Dudleian lecturer at Harvard in 1765, and in 1749 had received
the degree of D.D. from the University of Aberdeen.


See Alden Bradford, Memoir of the Life and Writings of Rev.
Jonathan Mayhew (Boston, 1838), and “An Early Pulpit Champion
of Colonial Rights,” chapter vi., in vol. i. of M. C. Tyler’s Literary
History of the American Revolution (2 vols., New York, 1897).




 
1 Francis Bernard, whose project for a college at Northampton
seemed to Mayhew and others a move to strengthen Anglicanism.





MAYHEW, THOMAS, English 18th century cabinet-maker.
Mayhew was the less distinguished partner of William Ince (q.v.).
The chief source of information as to his work is supplied by his
own drawings in the volume of designs, The universal system of
household furniture, which he published in collaboration with his
partner. The name of the firm appears to have been Mayhew
and Ince, but on the title page of this book the names are reversed,
perhaps as an indication that Ince was the more extensive contributor.
In the main Mayhew’s designs are heavy and clumsy,
and often downright extravagant, but he had a certain lightness
of accomplishment in his applications of the bizarre Chinese
style. Of original talent he possessed little, yet it is certain that
much of his Chinese work has been attributed to Chippendale.
It is indeed often only by reference to books of design that the
respective work of the English cabinet-makers of the second half
of the 18th century can be correctly attributed.



MAYMYO, a hill sanatorium in India, in the Mandalay district
of Upper Burma, 3500 ft. above the sea, with a station on the

Mandalay-Lashio railway 422 m. from Rangoon. Pop. (1901),
6223. It consists of an undulating plateau, surrounded by hills,
which are covered with thin oak forest and bracken. Though
not entirely free from malaria, it has been chosen for the summer
residence of the lieutenant-governor; and it is also the permanent
headquarters of the lieutenant-general commanding the Burma
division, and of other officials.



MAYNARD, FRANÇOIS DE (1582-1646), French poet, was
born at Toulouse in 1582. His father was conseiller in the parlement
of the town, and François was also trained for the law,
becoming eventually president of Aurillac. He became secretary
to Margaret of Valois, wife of Henry IV., for whom his early
poems are written. He was a disciple of Malherbe, who said
that in the workmanship of his lines he excelled Racan, but
lacked his rival’s energy. In 1634 he accompanied the Cardinal
de Noailles to Rome and spent about two years in Italy. On his
return to France he made many unsuccessful efforts to obtain
the favour of Richelieu, but was obliged to retire to Toulouse.
He never ceased to lament his exile from Paris and his inability
to be present at the meetings of the Academy, of which he
was one of the earliest members. The best of his poems is in
imitation of Horace, “Alcippe, reviens dans nos bois.” He
died at Toulouse on the 23rd of December 1646.


His works consist of odes, epigrams, songs and letters, and were
published in 1646 by Marin le Roy de Gomberville.





MAYNE, JASPER (1604-1672), English author, was baptized
at Hatherleigh, Devonshire, on the 23rd of November 1604. He
was educated at Westminster School and at Christ Church,
Oxford, where he had a distinguished career. He was presented
to two college livings in Oxfordshire, and was made D.D. in 1646.
During the Commonwealth he was dispossessed, and became
chaplain to the duke of Devonshire. At the Restoration he was
made canon of Christ Church, archdeacon of Chichester and
chaplain in ordinary to the king. He wrote a farcical domestic
comedy, The City Match (1639), which is reprinted in vol. xiii.
of Hazlitt’s edition of Dodsley’s Old Plays, and a fantastic
tragi-comedy entitled The Amorous War (printed 1648). After
receiving ecclesiastical preferment he gave up poetry as unbefitting
his profession. His other works comprise some occasional
gems, a translation of Lucian’s Dialogues (printed 1664) and a
number of sermons. He died on the 6th of December 1672 at
Oxford.



MAYNOOTH, a small town of county Kildare, Ireland, on
the Midland Great Western railway and the Royal Canal, 15 m.
W. by N. of Dublin. Pop. (1901), 948. The Royal Catholic
College of Maynooth, founded by an Act of the Irish parliament
in 1795, is the chief seminary for the education of the Roman
Catholic clergy of Ireland. The building is a fine Gothic structure
by A. W. Pugin, erected by a parliamentary grant obtained
in 1846. The chapel, with fine oak choir-stalls, mosaic pavements,
marble altars and stained glass, and with adjoining
cloisters, was dedicated in 1890. The average number of
students is about 500—the number specified under the act of
1845—and the full course of instruction is eight years. Near the
college stand the ruins of Maynooth Castle, probably built in
1176, but subsequently extended, and formerly the residence
of the Fitzgerald family. It was besieged in the reigns of Henry
VIII. and Edward VI., and during the Cromwellian Wars, when
it was demolished. The beautiful mansion of Carton is about a
mile from the town.



MAYO, RICHARD SOUTHWELL BOURKE, 6th Earl of
(1822-1872), British statesman, son of Robert Bourke, the 5th
earl (1797-1867), was born in Dublin on the 21st of February,
1822, and was educated at Trinity College, Dublin. After
travelling in Russia he entered parliament, and sat successively
for Kildare, Coleraine and Cockermouth. He was chief secretary
for Ireland in three administrations, in 1852, 1858 and 1866, and
was appointed viceroy of India in January 1869. He consolidated
the frontiers of India and met Shere Ali, amir of Afghanistan,
in durbar at Umballa in March 1869. His reorganization
of the finances of the country put India on a paying basis; and
he did much to promote irrigation, railways, forests and other
useful public works. Visiting the convict settlement at Port
Blair in the Andaman Islands, for the purpose of inspection, the
viceroy was assassinated by a convict on the 8th of February
1872. His successor was his son, Dermot Robert Wyndham
Bourke (b. 1851) who became 7th earl of Mayo.


See Sir W. W. Hunter, Life of the Earl of Mayo, (1876), and The
Earl of Mayo in the Rulers of India Series (1891).





MAYO, a western county of Ireland, in the province of
Connaught, bounded N. and W. by the Atlantic Ocean, N.E.
by Sligo, E. by Roscommon, S.E. and S. by Galway. The area
is 1,380,390 acres, or about 2157 sq. m., the county being the
largest in Ireland after Cork and Galway. About two-thirds
of the boundary of Mayo is formed by sea, and the coast is very
much indented, and abounds in picturesque scenery. The
principal inlets are Killary Harbour between Mayo and Galway;
Clew Bay, in which are the harbours of Westport and Newport;
Blacksod Bay and Broad Haven, which form the peninsula of
the Mullet; and Killala Bay between Mayo and Sligo. The
islands are very numerous, the principal being Inishturk, near
Killary Harbour; Clare Island, at the mouth of Clew Bay, where
there are many islets, all formed of drift; and Achill, the largest
island off Ireland. The coast scenery is not surpassed by that of
Donegal northward and Connemara southward, and there are
several small coast-towns, among which may be named Killala
on the north coast, Belmullet on the isthmus between Blacksod
Bay and Broad Haven, Newport and Westport on Clew Bay,
with the watering-place of Mallaranny. The majestic cliffs of
the north coast, however, which reach an extreme height in
Benwee Head (892 ft.), are difficult of access and rarely visited.
In the eastern half of the county the surface is comparatively
level, with occasional hills; the western half is mountainous.
Mweelrea (2688 ft.) is included in a mountain range lying
between Killary Harbour and Lough Mask. The next highest
summits are Nephin (2646 ft.), to the west of Lough Conn, and
Croagh Patrick (2510 ft.), to the south of Clew Bay. The river
Moy flows northwards, forming part of the boundary of the county
with Sligo, and falls into Killala Bay. The courses of the other
streams are short, and except when swollen by rains their volume
is small. The principal lakes are Lough Mask and Lough Corrib,
on the borders of the county with Galway, and Loughs Conn in
the east, Carrowmore in the north-west, Beltra in the west, and
Carra adjoining Lough Mask. These loughs and the smaller
loughs, with the streams generally, afford admirable sport with
salmon, sea-trout and brown trout, and Ballina is a favourite
centre.


Geology.—The wild and barren west of this county, including the
great hills on Achill Island, is formed of “Dalradian” rocks, schists
and quartzites, highly folded and metamorphosed, with intrusions
of granite near Belmullet. At Blacksod Bay the granite has been
quarried as an ornamental stone. Nephin Beg, Nephin and Croagh
Patrick are typical quartzite summits, the last named belonging
possibly to a Silurian horizon but rising from a metamorphosed area
on the south side of Clew Bay. The schists and gneisses of the Ox
Mountain axis also enter the county north of Castlebar. The
Muilrea and Ben Gorm range, bounding the fine fjord of Killary
Harbour, is formed of terraced Silurian rocks, from Bala to Ludlow
age. These beds, with intercalated lavas, form the mountainous
west shore of Lough Mask, the east, like that of Lough Corrib, being
formed of low Carboniferous Limestone ground. Silurian rocks,
with Old Red Sandstone over them, come out at the west end of the
Curlew range at Ballaghaderreen. Clew Bay, with its islets capped
by glacial drift, is a submerged part of a synclinal of Carboniferous
strata, and Old Red Sandstone comes out on the north
side of this, from near Achill to Lough Conn. The country from
Lough Conn northward to the sea is a lowland of Carboniferous
Limestone, with L. Carboniferous Sandstone against the Dalradian
on the west.

Industries.—There are some very fertile regions in the level
portions of the county, but in the mountainous districts the soil is
poor, the holdings are subdivided beyond the possibility of affording
proper sustenance to their occupiers, and, except where fishing is
combined with agricultural operations, the circumstances of the
peasantry are among the most wretched of any district of Ireland.
The proportion of tillage to pasturage is roughly as 1 to 31⁄2. Oats
and potatoes are the principal crops. Cattle, sheep, pigs and
poultry are reared. Coarse linen and woollen cloths are manufactured
to a small extent. At Foxford woollen-mills are established
at a nunnery, in connexion with a scheme of technical instruction.
Keel, Belmullet and Ballycastle are the headquarters of sea and

coast fishing districts, and Ballina of a salmon-fishing district, and
these fisheries are of some value to the poor inhabitants. A branch
of the Midland Great Western railway enters the county from
Athlone, in the south-east, and runs north to Ballina and Killala
on the coast, branches diverging from Claremorris to Ballinrobe,
and from Manulla to Westport and Achill on the west coast. The
Limerick and Sligo line of the Great Southern and Western passes
from south to north-east by way of Claremorris.



Population and Administration.—The population was 218,698
in 1891, and 199,166 in 1901. The decrease of population and
the number of emigrants are slightly below the average of the
Irish counties. Of the total population about 97% are rural,
and about the same percentage are Roman Catholics. The chief
towns are Ballina (pop. 4505), Westport (3892) and Castlebar
(3585), the county town. Ballaghaderreen, Claremorris
(Clare), Crossmolina and Swineford are lesser market towns;
and Newport and Westport are small seaports on Clew Bay.
The county includes nine baronies. Assizes are held at Castlebar,
and quarter sessions at Ballina, Ballinrobe, Belmullet, Castlebar,
Claremorris, Swineford and Westport. In the Irish parliament
two members were returned for the county, and two for the
borough of Castlebar, but at the union Castlebar was disfranchised.
The division since 1885 is into north, south, east and
west parliamentary divisions, each returning one member. The
county is in the Protestant diocese of Tuam and the Roman
Catholic dioceses of Taum, Achonry, Galway and Kilmacduagh,
and Killala.

History and Antiquities.—Erris in Mayo was the scene of the
landing of the chief colony of the Firbolgs, and the battle which
is said to have resulted in the overthrow and almost annihilation
of this tribe took place also in this county, at Moytura near Cong.
At the close of the 12th century what is now the county of Mayo
was granted, with other lands, by king John to William, brother
of Hubert de Burgh. After the murder of William de Burgh,
3rd earl of Ulster (1333), the Bourkes (de Burghs) of the collateral
male line, rejecting the claim of William’s heiress (the wife of
Lionel, son of King Edward III.) to the succession, succeeded
in holding the bulk of the De Burgh possessions, what is now
Mayo falling to the branch known by the name of “MacWilliam
Oughter,” who maintained their virtual independence till the
time of Elizabeth. Sir Henry Sydney, during his first viceroyalty,
after making efforts to improve communications between
Dublin and Connaught in 1566, arranged for the shiring of that
province, and Mayo was made shire ground, taking its name from
the monastery of Maio or Mageo, which was the seat of a bishop.
Even after this period the MacWilliams continued to exercise
very great authority, which was regularized in 1603, when “the
MacWilliam Oughter,” Theobald Bourke, surrendered his lands
and received them back, to hold them by English tenure, with
the title of Viscount Mayo (see Burgh, De). Large confiscations
of the estates in the county were made in 1586, and on the termination
of the wars of 1641; and in 1666 the restoration of his
estates to the 4th Viscount Mayo involved another confiscation,
at the expense of Cromwell’s settlers. Killala was the scene of
the landing of a French squadron in connexion with the rebellion
of 1798. In 1879 the village of Knock in the south-east acquired
notoriety from a story that the Virgin Mary had appeared in the
church, which became the resort of many pilgrims.

There are round towers at Killala, Turlough, Meelick and
Balla, and an imperfect one at Aughagower. Killala was formerly
a bishopric. The monasteries were numerous, and many
of them of considerable importance: the principal being those at
Mayo, Ballyhaunis, Cong, Ballinrobe, Ballintober, Burrishoole,
Cross or Holycross in the peninsula of Mullet, Moyne, Roserk or
Rosserick and Templemore or Strade. Of the old castles the
most notable are Carrigahooly near Newport, said to have been
built by the celebrated Grace O’Malley, and Deel Castle near
Ballina, at one time the residence of the earls of Arran.


See Hubert Thomas Knox, History of the County of Mayo (1908).





MAYOR, JOHN EYTON BICKERSTETH (1825-  ), English
classical scholar, was born at Baddegama, Ceylon, on the 28th
of January 1825, and educated in England at Shrewsbury
School and St John’s College, Cambridge. From 1863 to 1867 he
was librarian of the university, and in 1872 succeeded H. A. J.
Munro in the professorship of Latin. His best-known work, an
edition of thirteen satires of Juvenal, is marked by an extraordinary
wealth of illustrative quotations. His Bibliographical
Clue to Latin Literature (1873), based on E. Hübner’s Grundriss
zu Vorlesungen über die römische Litteraturgeschichte is a valuable
aid to the student, and his edition of Cicero’s Second Philippic
is widely used. He also edited the English works of J. Fisher,
bishop of Rochester, i. (1876); Thomas Baker’s History of St
John’s College, Cambridge (1869); Richard of Cirencester’s
Speculum historiale de gestis regum Angliae 447-1066 (1863-1869);
Roger Ascham’s Schoolmaster (new ed., 1883); the
Latin Heptateuch (1889); and the Journal of Philology.

His brother, Joseph Bickersteth Mayor (1828-  ),
classical scholar and theologian, was educated at Rugby and St
John’s College, Cambridge, and from 1870 to 1879 was professor
of classics at King’s College, London. His most important
classical works are an edition of Cicero’s De natura deorum (3
vols., 1880-1885) and Guide to the Choice of Classical Books
(3rd ed., 1885, with supplement, 1896). He also devoted attention
to theological literature and edited the epistles of St James
(2nd ed., 1892), St Jude and St Peter (1907), and the Miscellanies
of Clement of Alexandria (with F. J. A. Hort, 1902). From
1887 to 1893 he was editor of the Classical Review. His Chapters
on English Metre (1886) reached a second edition in 1901.



MAYOR (Lat. major, greater), in modern times the title of a
municipal officer who discharges judicial and administrative
functions. The French form of the word is maire. In Germany
the corresponding title is Bürgermeister, in Italy sindico, and in
Spain alcalde. “Mayor” had originally a much wider significance.
Among the nations which arose on the ruins of the
Roman empire of the West, and which made use of the Latin
spoken by their “Roman” subjects as their official and legal
language, major and the Low Latin feminine majorissa were
found to be very convenient terms to describe important officials
of both sexes who had the superintendence of others. Any
female servant or slave in the household of a barbarian, whose
business it was to overlook other female servants or slaves, would
be quite naturally called a majorissa. So the male officer who
governed the king’s household would be the major domus. In
the households of the Frankish kings of the Merovingian line,
the major domus, who was also variously known as the gubernator,
rector, moderator or praefectus palatii, was so great an officer
that he ended by evicting his master. He was the “mayor of
the palace” (q.v.). The fact that his office became hereditary
in the family of Pippin of Heristal made the fortune of the
Carolingian line. But besides the major domus (the major-domo),
there were other officers who were majores, the major cubiculi,
mayor of the bedchamber, and major equorum, mayor of the
horse. In fact a word which could be applied so easily and with
accuracy in so many circumstances was certain to be widely used
by itself, or in its derivatives. The post-Augustine majorinus,
“one of the larger kind,” was the origin of the medieval Spanish
merinus, who in Castillian is the merino, and sometimes the
merino mayor, or chief merino. He was a judicial and administrative
officer of the king’s. The gregum merinus was the superintendent
of the flocks of the corporation of sheep-owners called
the mesta. From him the sheep, and then the wool, have come
to be known as merinos—a word identical in origin with the municipal
title of mayor. The latter came directly from the heads
of gilds, and other associations of freemen, who had their banner
and formed a group on the populations of the towns, the majores
baneriae or vexilli.

In England the major is the modern representative of the lord’s
bailiff or reeve (see Borough). We find the chief magistrate
of London bearing the title of portreeve for considerably more
than a century after the Conquest. This official was elected by
popular choice, a privilege secured from king John. By the
beginning of the 11th century the title of portreeve1 gave
way to that of mayor as the designation of the chief officer of

London,2 and the adoption of the title by other boroughs
followed at various intervals.


A mayor is now in England and America the official head of a
municipal government. In the United Kingdom the Municipal
Corporations Act, 1882, s. 15, regulates the election of mayors. He
is to be a fit person elected annually on the 9th of November by the
council of the borough from among the aldermen or councillors or
persons qualified to be such. His term of office is one year, but he
is eligible for re-election. He may appoint a deputy to act during
illness or absence, and such deputy must be either an alderman
or councillor. A mayor who is absent from the borough for more
than two months becomes disqualified and vacates his office. A
mayor is ex officio during his year of office and the next year a justice
of the peace for the borough. He receives such remuneration as
the council thinks reasonable. The office of mayor in an English
borough does not entail any important administrative duties. It
is generally regarded as an honour conferred for past services. The
mayor is expected to devote much of his time to ornamental functions
and to preside over meetings which have for their object the
advancement of the public welfare. His administrative duties are
merely to act as returning officer at municipal elections, and as
chairman of the meetings of the council.

The position and power of an English mayor contrast very
strongly with those of the similar official in the United States. The
latter is elected directly by the voters within the city, usually for
several years; and he has extensive administrative powers.

The English method of selecting a mayor by the council is followed
for the corresponding functionaries in France (except Paris), the
more important cities of Italy, and in Germany, where, however,
the central government must confirm the choice of the council.
Direct appointment by the central government exists in Belgium,
Holland, Denmark, Norway, Sweden and the smaller towns of Italy
and Spain. As a rule, too, the term of office is longer in other
countries than in the United Kingdom. In France election is for
four years, in Holland for six, in Belgium for an indefinite period,
and in Germany usually for twelve years, but in some cases for life.
In Germany the post may be said to be a professional one, the
burgomaster being the head of the city magistracy, and requiring,
in order to be eligible, a training in administration. German
burgomasters are most frequently elected by promotion from another
city. In France the maire, and a number of experienced members
termed “adjuncts,” who assist him as an executive committee, are
elected directly by the municipal council from among their own
number. Most of the administrative work is left in the hands of
the maire and his adjuncts, the full council meeting comparatively
seldom. The maire and the adjuncts receive no salary.

Further information will be found in the sections on local government
in the articles on the various countries; see also A. Shaw,
Municipal Government in Continental Europe; J. A. Fairlie, Municipal
Administration; S. and B. Webb, English Local Government;
Redlich and Hirst, Local Government in England; A. L. Lowell,
The Government of England.




 
1 If a place was of mercantile importance it was called a port
(from porta, the city gate), and the reeve or bailiff, a “portreeve.”

2 The mayors of certain cities in the United Kingdom (London,
York, Dublin) have acquired by prescription the prefix of “lord.”
In the case of London it seems to date from 1540. It has also been
conferred during the closing years of the 19th century by letters
patent on other cities—Birmingham, Liverpool, Manchester,
Bristol, Sheffield, Leeds, Cardiff, Bradford, Newcastle-on-Tyne,
Belfast, Cork. In 1910 it was granted to Norwich. Lord mayors
are entitled to be addressed as “right honourable.”





MAYOR OF THE PALACE.—The office of mayor of the
palace was an institution peculiar to the Franks of the Merovingian
period. A landowner who did not manage his own estate
placed it in the hands of a steward (major), who superintended
the working of the estate and collected its revenues. If he had
several estates, he appointed a chief steward, who managed the
whole of the estates and was called the major domus. Each great
personage had a major domus—the queen had hers, the king his;
and since the royal house was called the palace, this officer took
the name of “mayor of the palace.” The mayor of the palace,
however, did not remain restricted to domestic functions; he had
the discipline of the palace and tried persons who resided there.
Soon his functions expanded. If the king were a minor, the
mayor of the palace supervised his education in the capacity of
guardian (nutricius), and often also occupied himself with affairs
of state. When the king came of age, the mayor exerted himself
to keep this power, and succeeded. In the 7th century he became
the head of the administration and a veritable prime minister.
He took part in the nomination of the counts and dukes;
in the king’s absence he presided over the royal tribunal; and he
often commanded the armies. When the custom of commendation
developed, the king charged the mayor of the palace to
protect those who had commended themselves to him and to
intervene at law on their behalf. The mayor of the palace thus
found himself at the head of the commendati, just as he was at
the head of the functionaries.

It is difficult to trace the names of some of the mayors of the
palace, the post being of almost no significance in the time of
Gregory of Tours. When the office increased in importance the
mayors of the palace did not, as has been thought, pursue an
identical policy. Some—for instance, Otto, the mayor of the
palace of Austrasia towards 640—were devoted to the Crown.
On the other hand, mayors like Flaochat (in Burgundy) and
Erkinoald (in Neustria) stirred up the great nobles, who claimed
the right to take part in their nomination, against the king.
Others again, sought to exercise the power in their own name
both against the king and against the great nobles—such as
Ebroïn (in Neustria), and, later, the Carolingians Pippin II.,
Charles Martel, and Pippin III., who, after making use of the
great nobles, kept the authority for themselves. In 751 Pippin
III., fortified by his consultation with Pope Zacharias, could
quite naturally exchange the title of mayor for that of king;
and when he became king, he suppressed the title of mayor of
the palace. It must be observed that from 639 there were
generally separate mayors of Neustria, Austrasia and Burgundy,
even when Austrasia and Burgundy formed a single kingdom;
the mayor was a sign of the independence of the region. Each
mayor, however, sought to supplant the others; the Pippins
and Charles Martel succeeded, and their victory was at the same
time the victory of Austrasia over Neustria and Burgundy.


See G. H. Pertz, Geschichte der merowingischen Hausmeier (Hanover,
1819); H. Bonnell, De dignitate majoris domus (Berlin, 1858);
E. Hermann, Das Hausmeieramt, ein echt germanisches Amt, vol. ix.
of Untersuchungen zur deutschen Staats- und Rechtsgeschichte, ed.
by O. Gierke (Breslau, 1878, seq.); G. Waitz, Deutsche Verfassungsgeschichte,
3rd ed., revised by K. Zeumer; and Fustel de Coulanges,
Histoire des institutions politiques de l’ancienne France: La monarchie
franque (Paris, 1888).



(C. Pf.)



MAYORUNA, a tribe of South American Indians of Panoan
stock. Their country is between the Ucayali and Javari rivers,
north-eastern Peru. They are a fine race, roaming the forests
and living by hunting. They cut their hair in a line across the
forehead and let it hang down their backs. Many have fair
skins and beards, a peculiarity sometimes explained by their
alleged descent from Ursua’s soldiers, but this theory is improbable.
They are famous for the potency of their blow-gun
poison.



MAYO-SMITH, RICHMOND (1854-1901), American economist,
was born in Troy, Ohio, on the 9th of February 1854.
Educated at Amherst, and at Berlin and Heidelberg, he became
assistant professor of economics at Columbia University in
1877. He was an adjunct professor from 1878 to 1883, when
he was appointed professor of political economy and social
science, a post which he held until his death on the 11th of
November 1901. He devoted himself especially to the study
of statistics, and was recognized as one of the foremost authorities
on the subject. His works include Emigration and Immigration
(1890); Sociology and Statistics (1895), and Statistics and
Economics (1899).



MAYOTTE, one of the Comoro Islands, in the Mozambique
Channel between Madagascar and the African mainland. It has
belonged to France since 1843 (see Comoro Islands).



MAYOW, JOHN (1643-1679), English chemist and physiologist,
was born in London in May 1643. At the age of fifteen he
went up to Wadham College, Oxford, of which he became a
scholar a year later, and in 1660 he was elected to a fellowship at
All Souls. He graduated in law (bachelor, 1665, doctor, 1670),
but made medicine his profession, and “became noted for his
practice therein, especially in the summer time, in the city of
Bath.” In 1678, on the proposal of R. Hooke, he was chosen a
fellow of the Royal Society. The following year, after a marriage
which was “not altogether to his content,” he died in London in
September 1679. He published at Oxford in 1668 two tracts,
on respiration and rickets, and in 1674 these were reprinted, the
former in an enlarged and corrected form, with three others “De
sal-nitro et spiritu nitro-aereo,” “De respiratione foetus in

utero et ovo,” and “De motu musculari et spiritibus animalibus”
as Tractatus quinque medico-physici. The contents of this work,
which was several times republished and translated into Dutch,
German and French, show him to have been an investigator
much in advance of his time.


Accepting as proved by Boyle’s experiments that air is necessary
for combustion, he showed that fire is supported not by the air as
a whole but by a “more active and subtle part of it.” This part
he called spiritus igneo-aereus, or sometimes nitro-aereus; for he
identified it with one of the constituents of the acid portion of nitre
which he regarded as formed by the union of fixed alkali with a
spiritus acidus. In combustion the particulae nitro-aereae—either
pre-existent in the thing consumed or supplied by the air—combined
with the material burnt; as he inferred from his observation that
antimony, strongly heated with a burning glass, undergoes an
increase of weight which can be attributed to nothing else but these
particles. In respiration he argued that the same particles are
consumed, because he found that when a small animal and a lighted
candle were placed in a closed vessel full of air the candle first went
out and soon afterwards the animal died, but if there was no candle
present it lived twice as long. He concluded that this constituent
of the air is absolutely necessary for life, and supposed that the
lungs separate it from the atmosphere and pass it into the blood.
It is also necessary, he inferred, for all muscular movements, and
he thought there was reason to believe that the sudden contraction
of muscle is produced by its combination with other combustible
(salino-sulphureous) particles in the body; hence the heart, being
a muscle, ceases to beat when respiration is stopped. Animal heat
also is due to the union of nitro-aerial particles, breathed in from
the air, with the combustible particles in the blood, and is further
formed by the combination of these two sets of particles in muscle
during violent exertion. In effect, therefore, Mayow—who also
gives a remarkably correct anatomical description of the mechanism
of respiration—preceded Priestley and Lavoisier by a century in
recognizing the existence of oxygen, under the guise of his spiritus
nitro-aereus, as a separate entity distinct from the general mass of
the air; he perceived the part it plays in combustion and in increasing
the weight of the calces of metals as compared with metals
themselves; and, rejecting the common notions of his time that the
use of breathing is to cool the heart, or assist the passage of the blood
from the right to the left side of the heart, or merely to agitate it,
he saw in inspiration a mechanism for introducing oxygen into the
body, where it is consumed for the production of heat and muscular
activity, and even vaguely conceived of expiration as an excretory
process.





MAYSVILLE, a city and the county-seat of Mason county,
Kentucky, U.S.A., on the Ohio river, 60 m. by rail S.E. of Cincinnati.
Pop. (1890) 5358; (1900) 6423 (1155 negroes); (1910)
6141. It is served by the Louisville & Nashville, and the
Chesapeake & Ohio railways, and by steamboats on the Ohio
river. Among its principal buildings are the Mason county
public library (1878), the Federal building and Masonic and
Odd Fellows’ temples. The city lies between the river and a
range of hills; at the back of the hills is a fine farming country, of
which tobacco of excellent quality is a leading product. There
is a large plant of the American Tobacco Company at Maysville,
and among the city’s manufactures are pulleys, ploughs,
whisky, flour, lumber, furniture, carriages, cigars, foundry and
machine-shop products, bricks and cotton goods. The city is
a distributing point for coal and other products brought to it by
Ohio river boats. Formerly it was one of the principal hemp
markets of the country. The place early became a landing point
for immigrants to Kentucky, and in 1784 a double log cabin and
a blockhouse were erected here. It was then called Limestone,
from the creek which flows into the Ohio here, but several years
later the present name was adopted in honour of John May,
who with Simon Kenton laid out the town in 1787, and who in
1790 was killed by the Indians. Maysville was incorporated as
a town in 1787, was chartered as a city in 1833, and became the
county-seat in 1848.


In 1830, when the question of “internal improvements” by the
National government was an important political issue, Congress
passed a bill directing the government to aid in building a turnpike
road from Maysville to Lexington. President Andrew Jackson
vetoed the bill on the ground that the proposed improvement was
a local rather than a national one; but one-half the capital was then
furnished privately, the other half was furnished through several
state appropriations, and the road was completed in 1835 and marked
the beginning of a system of turnpike roads built with state aid.





MAZAGAN (El Jadīda), a port on the Atlantic coast of Morocco
in 33° 16′ N. 8° 26′ W. Pop. (1908), about 12,000, of whom a
fourth are Jews and some 400 Europeans. It is the port for
Marrákesh, from which it is 110 m. nearly due north, and also for
the fertile province of Dukálla. Mazagan presents from the
sea a very un-Moorish appearance; it has massive Portuguese
walls of hewn stone. The exports, which include beans, almonds,
maize, chick-peas, wool, hides, wax, eggs, &c., were valued at
£360,000 in 1900, £364,000 in 1904, and £248,000 in 1906. The
imports (cotton goods, sugar, tea, rice, &c.) were valued at
£280,000 in 1900, £286,000 in 1904, and £320,000 in 1906. About
46% of the trade is with Great Britain and 34% with France.
Mazagan was built in 1506 by the Portuguese, who abandoned it
to the Moors in 1769 and established a colony, New Mazagan,
on the shores of Para in Brazil.


See A. H. Dyé, “Les ports du Maroc” in Bull. Soc. Geog. Comm.
Paris, xxx. 325-332 (1908), and British consular reports.





MAZAMET, an industrial town of south-western France in
the department of Tarn, 41 m. S.S.E. of Albi by rail. Pop.
(1906), town, 11,370; commune, 14,386. Mazamet is situated
on the northern slope of the Montagnes Noires and on the
Arnette, a small sub-tributary of the Agout. Numerous establishments
are employed in wool-spinning and in the manufacture
of “swan-skins” and flannels, and clothing for troops, and hosiery,
and there are important tanneries and leather-dressing, glove and
dye works. Extensive commerce is carried on in wool and raw
hides from Argentina, Australia and Cape Colony.



MAZANDARAN, a province of northern Persia, lying between
the Caspian Sea and the Elburz range, and bounded E. and W.
by the provinces of Astarabad and Gilan respectively, 220 m. in
length and 60 m. in (mean) breadth, with an area of about 10,000
sq. m. and a population estimated at from 150,000 to 200,000.
Mazandaran comprises two distinct natural regions presenting
the sharpest contrasts in their relief, climate and products. In
the north the Caspian is encircled by the level and swampy
lowlands, varying in breadth from 10 to 30 m., partly under impenetrable
jungle, partly under rice, cotton, sugar and other crops.
This section is fringed northwards by the sandy beach of the
Caspian, here almost destitute of natural harbours, and rises
somewhat abruptly inland to the second section, comprising the
northern slopes and spurs of the Elburz, which approach at some
points within 1 or 2 m. of the sea, and are almost everywhere
covered with dense forest. The lowlands, rising but a few feet
above the Caspian, and subject to frequent floodings, are extremely
malarious, while the highlands, culminating with the
magnificent Demavend (19,400 ft.), enjoy a tolerably healthy
climate. But the climate, generally hot and moist in summer,
is everywhere capricious and liable to sudden changes of temperature,
whence the prevalence of rheumatism, dropsy and especially
ophthalmia, noticed by all travellers. Snow falls heavily in the
uplands, where it often lies for weeks on the ground. The direction
of the long sandbanks at the river mouths, which project
with remarkable uniformity from west to east, shows that the
prevailing winds blow from the west and north-west. The
rivers themselves, of which there are as many as fifty, are little
more than mountain torrents, all rising on the northern slopes
of Elburz, flowing mostly in independent channels to the Caspian,
and subject to sudden freshets and inundations along their lower
course. The chief are the Sardab-rud, Chalus, Herhaz (Lar
in its upper course), Babul, Tejen and Nika, and all are well
stocked with trout, salmon (azad-mahi), perch (safid-mahi), carp
(kupur), bream (subulu), sturgeon (sag-mahi) and other fish,
which with rice form the staple food of the inhabitants; the
sturgeon supplies the caviare for the Russian market. Near
their mouths the rivers, running counter to the prevailing winds
and waves of the Caspian, form long sand-hills 20 to 30 ft. high
and about 200 yds. broad, behind which are developed the so-called
múrd-áb, or “dead waters,” stagnant pools and swamps
characteristic of this coast, and a main cause of its unhealthiness.

The chief products are rice, cotton, sugar, a little silk, and fruits
in great variety, including several kinds of the orange, lemon
and citron. Some of the slopes are covered with extensive
thickets of the pomegranate, and the wild vine climbs to a great
height round the trunks of the forest trees. These woodlands

are haunted by the tiger, panther, bear, wolf and wild boar in
considerable numbers. Of the domestic animals, all remarkable
for their small size, the chief are the black, humped cattle somewhat
resembling the Indian variety, and sheep and goats.


Kinneir, Fraser and other observers speak unfavourably of the
Mazandarani people, whom they describe as very ignorant and
bigoted, arrogant, rudely inquisitive and almost insolent towards
strangers. The peasantry, however, are far from dull, and betray
much shrewdness where their interests are concerned. In the
healthy districts they are stout and well made, and are considered
a warlike race, furnishing some cavalry (800 men) and eight battalions
of infantry (5600 men) to government. They speak a marked
Persian dialect, but a Tūrki idiom closely akin to the Turkoman
is still current amongst the tribes, although they have mostly already
passed from the nomad to the settled state. Of these tribes the
most numerous are the Modaunlū, Khojehvand and Abdul Maleki,
originally of Lek or Kurd stock, besides branches of the royal Afshār
and Kājār tribes of Tūrki descent. All these are exempt from taxes
in consideration of their military service.

The export trade is chiefly with Russia from Meshed-i-Sar, the
principal port of the province, to Baku, where European goods are
taken in exchange for the white and coloured calicoes, caviare, rice,
fruits and raw cotton of Mazandarān. Great quantities of rice are
also exported to the interior of Persia, principally to Teheran and
Kazvin. Owing to the almost impenetrable character of the country
there are scarcely any roads accessible to wheeled carriages, and the
great causeway of Shah Abbas along the coast has in many places
even disappeared under the jungle. Two routes, however, lead to
Teheran, one by Firuz Kuh, 180 m. long, the other by Larijan,
144 m. long, both in tolerably good repair. Except where crossed
by these routes the Elburz forms an almost impassable barrier to
the south.

The administration is in the hands of a governor, who appoints
the sub-governors of the nine districts of Amol, Barfarush, Meshed-i-Sar,
Sari, Ashref, Farah-abad, Tunakabun, Kelarrustak and Kujur
into which the province is divided. There is fair security for life
and property; and, although otherwise indifferently administered,
the country is quite free from marauders; but local disturbances
have latterly been frequent in the two last-named districts. The
revenue is about £30,000, of which little goes to the state treasury,
most being required for the governors, troops and pensions. The
capital is Sari, the other chief towns being Barfarush, Meshed-i-Sar,
Ashref and Farah-abad.



(A. H.-S.)



MAZARIN, JULES (1602-1661), French cardinal and statesman,
elder son of a Sicilian, Pietro Mazarini, the intendant of
the household of Philip Colonna, and of his wife Ortensia
Buffalini, a connexion of the Colonnas, was born at Piscina in
the Abruzzi on the 14th of July 1602. He was educated by the
Jesuits at Rome till his seventeenth year, when he accompanied
Jerome Colonna as chamberlain to the university of Alcala in
Spain. There he distinguished himself more by his love of
gambling and his gallant adventures than by study, but made
himself a thorough master, not only of the Spanish language
and character, but also of that romantic fashion of Spanish
love-making which was to help him greatly in after life, when he
became the servant of a Spanish queen. On his return to Rome,
about 1622, he took his degree as Doctor utriusque juris, and
then became captain of infantry in the regiment of Colonna,
which took part in the war in the Valtelline. During this war
he gave proofs of much diplomatic ability, and Pope Urban VIII.
entrusted him, in 1629, with the difficult task of putting an end
to the war of the Mantuan succession. His success marked him
out for further distinction. He was presented to two canonries
in the churches of St John Lateran and Sta Maria Maggiore,
although he had only taken the minor orders, and had never
been consecrated priest; he negotiated the treaty of Turin between
France and Savoy in 1632, became vice-legate at Avignon
in 1634, and nuncio at the court of France from 1634 to 1636.
But he began to wish for a wider sphere than papal negotiations,
and, seeing that he had no chance of becoming a cardinal except
by the aid of some great power, he accepted Richelieu’s offer of
entering the service of the king of France, and in 1639 became a
naturalized Frenchman.

In 1640 Richelieu sent him to Savoy, where the regency of
Christine, the duchess of Savoy, and sister of Louis XIII., was
disputed by her brothers-in-law, the princes Maurice and Thomas
of Savoy, and he succeeded not only in firmly establishing
Christine but in winning over the princes to France. This great
service was rewarded by his promotion to the rank of cardinal
on the presentation of the king of France in December 1641.
On the 4th of December 1642 Cardinal Richelieu died, and on the
very next day the king sent a circular letter to all officials ordering
them to send in their reports to Cardinal Mazarin, as they had
formerly done to Cardinal Richelieu. Mazarin was thus acknowledged
supreme minister, but he still had a difficult part to play.
The king evidently could not live long, and to preserve power he
must make himself necessary to the queen, who would then be
regent, and do this without arousing the suspicions of the king
or the distrust of the queen. His measures were ably taken, and
when the king died, on the 14th of May 1643, to everyone’s
surprise her husband’s minister remained the queen’s. The
king had by a royal edict cumbered the queen-regent with a
council and other restrictions, and it was necessary to get the
parlement of Paris to overrule the edict and make the queen
absolute regent, which was done with the greatest complaisance.
Now that the queen was all-powerful, it was expected she
would at once dismiss Mazarin and summon her own friends
to power. One of them, Potier, bishop of Beauvais, already
gave himself airs as prime minister, but Mazarin had had the
address to touch both the queen’s heart by his Spanish gallantry
and her desire for her son’s glory by his skilful policy abroad,
and he found himself able easily to overthrow the clique of
Importants, as they were called. That skilful policy was
shown in every arena on which the great Thirty Years’ War
was being fought out. Mazarin had inherited the policy of
France during the Thirty Years’ War from Richelieu. He had
inherited his desire for the humiliation of the house of Austria
in both its branches, his desire to push the French frontier to
the Rhine and maintain a counterpoise of German states against
Austria, his alliances with the Netherlands and with Sweden,
and his four theatres of war—on the Rhine, in Flanders, in Italy
and in Catalonia.

During the last five years of the great war it was Mazarin alone
who directed the French diplomacy of the period. He it was
who made the peace of Brömsebro between the Danes and the
Swedes, and turned the latter once again against the empire; he
it was who sent Lionne to make the peace of Castro, and combine
the princes of North Italy against the Spaniards, and who made
the peace of Ulm between France and Bavaria, thus detaching the
emperor’s best ally. He made one fatal mistake—he dreamt
of the French frontier being the Rhine and the Scheldt, and that
a Spanish princess might bring the Spanish Netherlands as dowry
to Louis XIV. This roused the jealousy of the United Provinces,
and they made a separate peace with Spain in January 1648;
but the valour of the French generals made the skill of the Spanish
diplomatists of no avail, for Turenne’s victory at Zusmarshausen,
and Condé’s at Lens, caused the peace of Westphalia to
be definitely signed in October 1648. This celebrated treaty
belongs rather to the history of Germany than to a life of Mazarin;
but two questions have been often asked, whether Mazarin did
not delay the peace as long as possible in order to more completely
ruin Germany, and whether Richelieu would have made a similar
peace. To the first question Mazarin’s letters, published by
M. Chéruel, prove a complete negative, for in them appears the
zeal of Mazarin for the peace. On the second point, Richelieu’s
letters in many places indicate that his treatment of the great
question of frontier would have been more thorough, but then he
would not have been hampered in France itself.

At home Mazarin’s policy lacked the strength of Richelieu’s.
The Frondes were largely due to his own fault. The arrest of
Broussel threw the people on the side of the parlement. His
avarice and unscrupulous plundering of the revenues of the
realm, the enormous fortune which he thus amassed, his supple
ways, his nepotism, and the general lack of public interest in the
great foreign policy of Richelieu, made Mazarin the especial
object of hatred both by bourgeois and nobles. The irritation
of the latter was greatly Mazarin’s own fault; he had tried consistently
to play off the king’s brother Gaston of Orleans against
Condé, and their respective followers against each other, and had
also, as his carnets prove, jealously kept any courtier from getting
into the good graces of the queen-regent except by his means, so

that it was not unnatural that the nobility should hate him,
while the queen found herself surrounded by his creatures alone.
Events followed each other quickly; the day of the barricades
was followed by the peace of Ruel, the peace of Ruel by the
arrest of the princes, by the battle of Rethel, and Mazarin’s exile
to Brühl before the union of the two Frondes. It was while in
exile at Brühl that Mazarin saw the mistake he had made in
isolating himself and the queen, and that his policy of balancing
every party in the state against each other had made every party
distrust him. So by his counsel the queen, while nominally in
league with De Retz and the parliamentary Fronde, laboured to
form a purely royal party, wearied by civil dissensions, who
should act for her and her son’s interest alone, under the leadership
of Mathieu Molé, the famous premier president of the
parlement of Paris. The new party grew in strength, and in
January 1652, after exactly a year’s absence, Mazarin returned
to the court. Turenne had now become the royal general, and
out-manœuvred Condé, while the royal party at last grew to such
strength in Paris that Condé had to leave the capital and France.
In order to promote a reconciliation with the parlement of Paris
Mazarin had again retired from court, this time to Sedan, in
August 1652, but he returned finally in February 1653. Long
had been the trial, and greatly had Mazarin been to blame in
allowing the Frondes to come into existence, but he had retrieved
his position by founding that great royal party which steadily
grew until Louis XIV. could fairly have said “L’État, c’est moi.”
As the war had progressed, Mazarin had steadily followed Richelieu’s
policy of weakening the nobles on their country estates.
Whenever he had an opportunity he destroyed a feudal castle,
and by destroying the towers which commanded nearly every
town in France, he freed such towns as Bourges, for instance,
from their long practical subjection to the neighbouring great
lord.

The Fronde over, Mazarin had to build up afresh the power
of France at home and abroad. It is to his shame that he did so
little at home. Beyond destroying the brick-and-mortar remains
of feudalism, he did nothing for the people. But abroad his
policy was everywhere successful, and opened the way for the
policy of Louis XIV. He at first, by means of an alliance with
Cromwell, recovered the north-western cities of France, though
at the price of yielding Dunkirk to the Protector. On the Baltic,
France guaranteed the Treaty of Oliva between her old allies
Sweden, Poland and Brandenburg, which preserved her influence
in that quarter. In Germany he, through Hugues de Lionne,
formed the league of the Rhine, by which the states along the
Rhine bound themselves under the headship of France to be on
their guard against the house of Austria. By such measures
Spain was induced to sue for peace, which was finally signed in the
Isle of Pheasants on the Bidassoa, and is known as the Treaty
of the Pyrenees. By it Spain recovered Franche Comté, but
ceded to France Roussillon, and much of French Flanders; and,
what was of greater ultimate importance to Europe, Louis XIV.
was to marry a Spanish princess, who was to renounce her claims
to the Spanish succession if her dowry was paid, which Mazarin
knew could not happen at present from the emptiness of the
Spanish exchequer. He returned to Paris in declining health,
and did not long survive the unhealthy sojourn on the Bidassoa;
after some political instruction to his young master he passed
away at Vincennes on the 9th of March 1661, leaving a fortune
estimated at from 18 to 40 million livres behind him, and his
nieces married into the greatest families of France and Italy.


The man who could have had such success, who could have made
the Treaties of Westphalia and the Pyrenees, who could have
weathered the storm of the Fronde, and left France at peace with
itself and with Europe to Louis XIV., must have been a great man;
and historians, relying too much on the brilliant memoirs of his
adversaries, like De Retz, are apt to rank him too low. That he
had many a petty fault there can be no doubt; that he was
avaricious and double-dealing was also undoubted; and his carnets
show to what unworthy means he had recourse to maintain his influence
over the queen. What that influence was will be always
debated, but both his carnets and the Brühl letters show that a real
personal affection, amounting to passion on the queen’s part, existed.
Whether they were ever married may be doubted; but that hypothesis
is made more possible by M. Chéruel’s having been able to
prove from Mazarin’s letters that the cardinal himself had never
taken more than the minor orders, which could always be thrown
off. With regard to France he played a more patriotic part than
Condé or Turenne, for he never treated with the Spaniards, and his
letters show that in the midst of his difficulties he followed with
intense eagerness every movement on the frontiers. It is that
immense mass of letters that prove the real greatness of the statesman,
and disprove De Retz’s portrait, which is carefully arranged
to show off his enemy against the might of Richelieu. To concede
that the master was the greater man and the greater statesman does
not imply that Mazarin was but a foil to his predecessor. It is true
that we find none of those deep plans for the internal prosperity
of France which shine through Richelieu’s policy. Mazarin was not
a Frenchman, but a citizen of the world, and always paid most
attention to foreign affairs; in his letters all that could teach a diplomatist
is to be found, broad general views of policy, minute details
carefully elaborated, keen insight into men’s characters, cunning
directions when to dissimulate or when to be frank. Italian though
he was by birth, education and nature, France owed him a great
debt for his skilful management during the early years of Louis XIV.,
and the king owed him yet more, for he had not only transmitted to
him a nation at peace, but had educated for him his great servants
Le Tellier, Lionne and Colbert. Literary men owed him also much;
not only did he throw his famous library open to them, but he
pensioned all their leaders, including Descartes, Vincent Voiture
(1598-1648), Jean Louis Guez de Balzac (1597-1654) and Pierre
Corneille. The last-named applied, with an adroit allusion to his
birthplace, in the dedication of his Pompée, the line of Virgil:—

“Tu regere imperio populos, Romane, memento.”

(H. M. S.)

Authorities.—All the earlier works on Mazarin, and early accounts
of his administration, of which the best were Bazin’s Histoire
de France sous Louis XIII. et sous le Cardinal Mazarin, 4 vols.
(1846), and Saint-Aulaire’s Histoire de la Fronde, have been superseded
by P. A. Chéruel’s admirable Histoire de France pendant
la minorité de Louis XIV., 4 vols. (1879-1880), which covers from
1643-1651, and its sequel Histoire de France sous le ministère de
Cardinal Mazarin, 2 vols. (1881-1882), which is the first account
of the period written by one able to sift the statements of De Retz
and the memoir writers, and rest upon such documents as Mazarin’s
letters and carnets. Mazarin’s Lettres, which must be carefully
studied by any student of the history of France, have appeared
in the Collection des documents inédits, 9 vols. For his carnets
reference must be made to V. Cousin’s articles in the Journal des
Savants, and Chéruel in Revue historique (1877), see also Chéruel’s
Histoire de France pendant la minorité, &c., app. to vol. iii.; for his
early life to Cousin’s Jeunesse de Mazarin (1865) and for the careers
of his nieces to Renée’s Les Nièces de Mazarin (1856). For the
Mazarinades or squibs written against him in Paris during the
Fronde, see C. Moreau’s Bibliographie des mazarinades (1850),
containing an account of 4082 Mazarinades. See also A. Hassall,
Mazarin (1903).





MAZAR-I-SHARIF, a town of Afghanistan, the capital of the
province of Afghan Turkestan. Owing to the importance of
the military cantonment of Takhtapul, and its religious sanctity,
it has long ago supplanted the more ancient capital of Balkh. It
is situated in a malarious, almost desert plain, 9 m. E. of Balkh,
and 30 m. S. of the Pata Kesar ferry on the Oxus river. In
this neighbourhood is concentrated most of the Afghan army
north of the Hindu Kush mountains, the fortified cantonment
of Dehdadi having been completed by Sirdar Ghulam Ali Khan
and incorporated with Mazar. Mazar-i-Sharif also contains a
celebrated mosque, from which the town takes its name. It is a
huge ornate building with minarets and a lofty cupola faced
with shining blue tiles. It was built by Sultan Ali Mirza about
A.D. 1420, and is held in great veneration by all Mussulmans,
and especially by Shiites, because it is supposed to be the tomb of
Ali, the son-in-law of Mahomet.



MAZARRÓN, a town of eastern Spain, in the province of
Murcia, 19 m. W. of Cartagena. Pop. (1900), 23,284. There are
soap and flour mills and metallurgic factories in the town, and
iron, copper and lead mines in the neighbouring Sierra de Almenara.
A railway 5 m. long unites Mazarron to its port on the
Mediterranean, where there is a suburb with 2500 inhabitants
(mostly engaged in fisheries and coasting trade), containing
barracks, a custom-house, and important leadworks. Outside
of the suburb there are saltpans, most of the proceeds of which
are exported to Galicia.



MAZATLÁN, a city and port of the state of Sinaloa, Mexico,
120 m. (direct) W.S.W. of the city of Durango, in lat. 23° 12′ N.,
long 106° 24′ W.  Pop. (1895), 15,852; (1900), 17,852. It is

the Pacific coast terminus of the International railway which
crosses northern Mexico from Ciudad Porfirio Diaz, and a port of
call for the principal steamship lines on this coast. The harbour
is spacious, but the entrance is obstructed by a bar. The city
is built on a small peninsula. Its public buildings include a
fine town-hall, chamber of commerce, a custom-house and two
hospitals, besides which there is a nautical school and a meteorological
station, one of the first established in Mexico. The
harbour is provided with a sea-wall at Olas Altas. A government
wireless telegraph service is maintained between Mazatlán
and La Paz, Lower California. Among the manufactures are
saw-mills, foundries, cotton factories and ropeworks, and the
exports are chiefly hides, ixtle, dried and salted fish, gold, silver
and copper (bars and ores), fruit, rubber, tortoise-shell, and gums
and resins.



MAZE, a network of winding paths, a labyrinth (q.v.). The
word means properly a state of confusion or wonder, and is
probably of Scandinavian origin; cf. Norw. mas, exhausting
labour, also chatter, masa, to be busy, also to worry, annoy;
Swed. masa, to lounge, move slowly and lazily, to dream, muse.
Skeat (Etym. Dict.) takes the original sense to be probably “to
be lost in thought,” “to dream,” and connects with the root
ma-man-, to think, cf. “mind,” “man,” &c. The word “maze”
represents the addition of an intensive suffix.



MAZEPA-KOLEDINSKY, IVAN STEPANOVICH (1644?-1709),
hetman of the Cossacks, belonging to a noble Orthodox
family, was born possibly at Mazeptsina, either in 1629 or 1644,
the latter being the more probable date. He was educated at the
court of the Polish king, John Casimir, and completed his studies
abroad. An intrigue with a Polish married lady forced him to
fly into the Ukraine. There is a trustworthy tradition that the
infuriated husband tied the naked youth to the back of a wild
horse and sent him forth into the steppe. He was rescued and
cared for by the Dnieperian Cossacks, and speedily became one of
their ablest leaders. In 1687, during a visit to Moscow, he won
the favour of the then all-powerful Vasily Golitsuin, from whom
he virtually purchased the hetmanship of the Cossacks (July 25).
He took a very active part in the Azov campaigns of Peter the
Great and won the entire confidence of the young tsar by his
zeal and energy. He was also very serviceable to Peter at the
beginning of the Great Northern War, especially in 1705 and 1706,
when he took part in the Volhynian campaign and helped to
construct the fortress of Pechersk. The power and influence of
Mazepa were fully recognized by Peter the Great. No other
Cossack hetman had ever been treated with such deference at
Moscow. He ranked with the highest dignitaries in the state; he
sat at the tsar’s own table. He had been made one of the first
cavaliers of the newly established order of St Andrew, and
Augustus of Poland had bestowed upon him, at Peter’s earnest
solicitation, the universally coveted order of the White Eagle.
Mazepa had no temptations to be anything but loyal, and loyal
he would doubtless have remained had not Charles XII. crossed
the Russian frontier. Then it was that Mazepa, who had had
doubts of the issue of the struggle all along, made up his mind
that Charles, not Peter, was going to win, and that it was high
time he looked after his own interests. Besides, he had his
personal grievances against the tsar. He did not like the new ways
because they interfered with his old ones. He was very jealous
of the favourite (Menshikov), whom he suspected of a design to
supplant him. But he proceeded very cautiously. Indeed, he
would have preferred to remain neutral, but he was not strong
enough to stand alone. The crisis came when Peter ordered him
to co-operate actively with the Russian forces in the Ukraine. At
this very time he was in communication with Charles’s first
minister, Count Piper, and had agreed to harbour the Swedes in
the Ukraine and close it against the Russians (Oct. 1708). The
last doubt disappeared when Menshikov was sent to supervise
Mazepa. At the approach of his rival the old hetman hastened
to the Swedish outposts at Horki, in Severia. Mazepa’s treason
took Peter completely by surprise. He instantly commanded
Menshikov to get a new hetman elected and raze Baturin,
Mazepa’s chief stronghold in the Ukraine, to the ground. When
Charles, a week later, passed Baturin by, all that remained of the
Cossack capital was a heap of smouldering mills and ruined
houses. The total destruction of Baturin, almost in sight of the
Swedes, overawed the bulk of the Cossacks into obedience, and
Mazepa’s ancient prestige was ruined in a day when the metropolitan
of Kiev solemnly excommunicated him from the high
altar, and his effigy, after being dragged with contumely through
the mud at Kiev, was publicly burnt by the common hangman.
Henceforth Mazepa, perforce, attached himself to Charles.
What part he took at the battle of Poltava is not quite clear.
After the catastrophe he accompanied Charles to Turkey with
some 1500 horsemen (the miserable remnant of his 80,000
warriors). The sultan refused to surrender him to the tsar,
though Peter offered 300,000 ducats for his head. He died at
Bender on the 22nd of August 1709.


See N. I. Kostomarov, Mazepa and the Mazepanites (Russ.) (St
Petersburg), 1885; R. Nisbet Bain, The First Romanovs (London,
1905); S. M. Solovev, History of Russia (Russ.), vol. xv. (St Petersburg,
1895).



(R. N. B.)



MAZER, the name of a special type of drinking vessel, properly
made of maple-wood, and so-called from the spotted or “birds-eye”
marking on the wood (Ger. Maser, spot, marking,
especially on wood; cf. “measles”). These drinking vessels are
shallow bowls without handles, with a broad flat foot and a knob
or boss in the centre of the inside, known technically as the
“print.” They were made from the 13th to the 16th centuries,
and were the most prized of the various wooden cups in use, and
so were ornamented with a rim of precious metal, generally of
silver or silver gilt; the foot and the “print” being also of metal.
The depth of the mazers seems to have decreased in course of
time, those of the 16th century that survive being much shallower
than the earlier examples. There are examples with
wooden covers with a metal handle, such as the Flemish and
German mazers in the Franks Bequest in the British Museum.
On the metal rim is usually an inscription, religious or bacchanalian,
and the “print” was also often decorated. The later mazers
sometimes had metal straps between the rim and the foot.


A very fine mazer with silver gilt ornamentation 3 in. deep and
91⁄2 in. in diameter was sold in the Braikenridge collection in 1908
for £2300. It bears the London hall-mark of 1534. This example
is illustrated in the article Plate: see also Drinking Vessels.





MAZURKA (Polish for a woman of the province of Mazovia),
a lively dance, originating in Poland, somewhat resembling the
polka.It is danced in couples, the music being in 3⁄8 or 3⁄4 time.



MAZZARA DEL VALLO, a town of Sicily, in the province of
Trapani, on the south-west coast of the island, 32 m. by rail
S. of Trapani. Pop. (1901), 20,130. It is the seat of a bishop;
the cathedral, founded in 1093, was rebuilt in the 17th century.
The castle, at the south-eastern angle of the town walls, was
erected in 1073. The mouth of the river, which bears the same
name, serves as a port for small ships only. Mazzara was in
origin a colony of Selinus: it was destroyed in 409, but it is
mentioned again as a Carthaginian fortress in the First Punic
War and as a post station on the Roman coast road, though
whether it had municipal rights is doubtful.1 A few inscriptions
of the imperial period exist, but no other remains of importance.
On the west bank of the river are grottoes cut in the rock, of
uncertain date: and there are quarries in the neighbourhood
resembling those of Syracuse, but on a smaller scale.


See A. Castiglione, Sulle cose antiche della città di Mazzara (Alcamo,
1878).




 
1 Th. Mommsen in Corpus inscr. lat. (Berlin, 1883), x. 739.





MAZZINI, GIUSEPPE (1805-1872), Italian patriot, was born
on the 22nd of June 1805 at Genoa, where his father, Giacomo
Mazzini, was a physician in good practice, and a professor in the
university. His mother is described as having been a woman of
great personal beauty, as well as of active intellect and strong
affections. During infancy and childhood his health was
extremely delicate, and it appears that he was nearly six years
of age before he was quite able to walk; but he had already begun
to devour books of all kinds and to show other signs of great
intellectual precocity. He studied Latin with his first tutor,

an old priest, but no one directed his extensive course of reading.
He became a student at the university of Genoa at an unusually
early age, and intended to follow his father’s profession, but
being unable to conquer his horror of practical anatomy, he
decided to graduate in law (1826). His exceptional abilities,
together with his remarkable generosity, kindness and loftiness
of character, endeared him to his fellow students. As to his
inner life during this period, we have only one brief but significant
sentence; “for a short time,” he says, “my mind was somewhat
tainted by the doctrines of the foreign materialistic school;
but the study of history and the intuitions of conscience—the
only tests of truth—soon led me back to the spiritualism of our
Italian fathers.”

The natural bent of his genius was towards literature, and, in
the course of the four years of his nominal connexion with the
legal profession, he wrote a considerable number of essays and
reviews, some of which have been wholly or partially reproduced
in the critical and literary volumes of his Life and Writings.
His first essay, characteristically enough on “Dante’s Love of
Country,” was sent to the editor of the Antologia fiorentina in
1826, but did not appear until some years afterwards in the
Subalpino. He was an ardent supporter of romanticism as
against what he called “literary servitude under the name of
classicism”; and in this interest all his critiques (as, for example,
that of Giannoni’s “Exile” in the Indicatore Livornese, 1829)
were penned. But in the meantime the “republican instincts”
which he tells us he had inherited from his mother had been
developing, and his sense of the evils under which Italy was groaning
had been intensified; and at the same time he became possessed
with the idea that Italians, and he himself in particular,
“could and therefore ought to struggle for liberty of country.”
Therefore, he at once put aside his dearest ambition, that of
producing a complete history of religion, developing his scheme
of a new theology uniting the spiritual with the practical life,
and devoted himself to political thought. His literary articles
accordingly became more and more suggestive of advanced
liberalism in politics, and led to the suppression by government
of the Indicatore Genovese and the Indicatore Livornese successively.
Having joined the Carbonari, he soon rose to one of the
higher grades in their hierarchy, and was entrusted with a special
secret mission into Tuscany; but, as his acquaintance grew, his
dissatisfaction with the organization of the society increased, and
he was already meditating the formation of a new association
stripped of foolish mysterious and theatrical formulae, which
instead of merely combating existing authorities should have a
definite and purely patriotic aim, when shortly after the French
revolution of 1830 he was betrayed, while initiating a new member,
to the Piedmontese authorities. He was imprisoned in the
fortress of Savona on the western Riviera for about six months,
when, a conviction having been found impracticable through
deficiency of evidence, he was released, but upon conditions
involving so many restrictions of his liberty that he preferred
the alternative of leaving the country. He withdrew accordingly
into France, living chiefly in Marseilles.

While in his lonely cell at Savona, in presence of “those
symbols of the infinite, the sky and the sea,” with a greenfinch
for his sole companion, and having access to no books but “a
Tacitus, a Byron, and a Bible,” he had finally become aware
of the great mission or “apostolate” (as he himself called it) of
his life; and soon after his release his prison meditations took
shape in the programme of the organization which was destined
soon to become so famous throughout Europe, that of La Giovine
Italia, or Young Italy. Its publicly avowed aims were to be the
liberation of Italy both from foreign and domestic tyranny, and
its unification under a republican form of government; the means
to be used were education, and, where advisable, insurrection by
guerrilla bands; the motto was to be “God and the people,” and
the banner was to bear on one side the words “Unity” and
“Independence” and on the other “Liberty,” “Equality,” and
“Humanity,” to describe respectively the national and the
international aims. In April 1831 Charles Albert, “the ex-Carbonaro
conspirator of 1821,” succeeded Charles Felix on the
Sardinian throne, and towards the close of that year Mazzini,
making himself, as he afterwards confessed, “the interpreter of a
hope which he did not share,” wrote the new king a letter,
published at Marseilles, urging him to take the lead in the
impending struggle for Italian independence. Clandestinely
reprinted, and rapidly circulated all over Italy, its bold and outspoken
words produced a great sensation, but so deep was the
offence it gave to the Sardinian government that orders were
issued for the immediate arrest and imprisonment of the author
should he attempt to cross the frontier. Towards the end of the
same year appeared the important Young Italy “Manifesto,”
the substance of which is given in the first volume of the Life
and Writings of Mazzini; and this was followed soon afterwards
by the society’s Journal, which, smuggled across the Italian
frontier, had great success in the objects for which it was written,
numerous “congregations” being formed at Genoa, Leghorn,
and elsewhere. Representations were consequently made by
the Sardinian to the French government, which issued in an
order for Mazzini’s withdrawal from Marseilles (Aug. 1832); he
lingered for a few months in concealment, but ultimately found
it necessary to retire into Switzerland.

From this point it is somewhat difficult to follow the career of
the mysterious and terrible conspirator who for twenty years out
of the next thirty led a life of voluntary imprisonment (as he
himself tells us) “within the four walls of a room,” and “kept
no record of dates, made no biographical notes, and preserved
no copies of letters.” In 1833, however, he is known to have
been concerned in an abortive revolutionary movement which
took place in the Sardinian army; several executions took place,
and he himself was laid under sentence of death. Before the
close of the same year a similar movement in Genoa had been
planned, but failed through the youth and inexperience of the
leaders. At Geneva, also in 1833, Mazzini set on foot L’Europe
Centrale, a journal of which one of the main objects was the
emancipation of Savoy; but he did not confine himself to a merely
literary agitation for this end. Chiefly through his agency a
considerable body of German, Polish and Italian exiles was
organized, and an armed invasion of the duchy planned. The
frontier was actually crossed on the 1st of February 1834, but
the attack ignominiously broke down without a shot having
been fired. Mazzini, who personally accompanied the expedition,
is no doubt correct in attributing the failure to dissensions with
the Carbonari leaders in Paris, and to want of a cordial understanding
between himself and the Savoyard Ramorino, who had
been chosen as military leader.

In April 1834 the “Young Europe” association “of men
believing in a future of liberty, equality and fraternity for all
mankind, and desirous of consecrating their thoughts and actions
to the realization of that future” was formed also under the
influence of Mazzini’s enthusiasm; it was followed soon afterwards
by a “Young Switzerland” society, having for its leading
idea the formation of an Alpine confederation, to include
Switzerland, Tyrol, Savoy and the rest of the Alpine chain as
well. But La Jeune Suisse newspaper was compelled to stop
within a year, and in other respects the affairs of the struggling
patriot became embarrassed. He was permitted to remain at
Grenchen in Solothurn for a while, but at last the Swiss diet,
yielding to strong and persistent pressure from abroad, exiled
him about the end of 1836. In January 1837 he arrived in
London, where for many months he had to carry on a hard fight
with poverty and the sense of spiritual loneliness, so touchingly
described by himself in the first volume of the Life and Writings.
Ultimately, as he gained command of the English language, he
began to earn a livelihood by writing review articles, some of
which have since been reprinted, and are of a high order of
literary merit; they include papers on “Italian Literature since
1830” and “Paolo Sarpi” in the Westminster Review, articles on
“Lamennais,” “George Sand,” “Byron and Goethe” in the
Monthly Chronicle, and on “Lamartine,” “Carlyle,” and “The
Minor Works of Dante” in the British and Foreign Review. In
1839 he entered into relations with the revolutionary committees
sitting in Malta and Paris, and in 1840 he originated a working

men’s association, and the weekly journal entitled Apostolato
Popolare, in which the admirable popular treatise “On the
Duties of Man” was commenced. Among the patriotic and
philanthropic labours undertaken by Mazzini during this period
of retirement in London may be mentioned a free evening school
conducted by himself and a few others for some years, at which
several hundreds of Italian children received at least the rudiments
of secular and religious education. He also exposed and
combated the infamous traffic carried on in southern Italy,
where scoundrels bought small boys from poverty-stricken
parents and carried them off to England and elsewhere to grind
organs and suffer martyrdom at the hands of cruel taskmasters.

The most memorable episode in his life during the same period
was perhaps that which arose out of the conduct of Sir James
Graham, the home secretary, in systematically, for some months,
opening Mazzini’s letters as they passed through the British
post office, and communicating their contents to the Neapolitan
government—a proceeding which was believed at the time to
have led to the arrest and execution of the brothers Bandiera,
Austrian subjects, who had been planning an expedition against
Naples, although the recent publication of Sir James Graham’s
life seems to exonerate him from the charge. The prolonged
discussions in parliament, and the report of the committee
appointed to inquire into the matter, did not, however, lead to
any practical result, unless indeed the incidental vindication of
Mazzini’s character, which had been recklessly assailed in the
course of debate. In this connexion Thomas Carlyle wrote to
The Times: “I have had the honour to know Mr Mazzini for a
series of years, and, whatever I may think of his practical insight
and skill in worldly affairs, I can with great freedom testify that
he, if I have ever seen one such, is a man of genius and virtue,
one of those rare men, numerable unfortunately but as units
in this world, who are worthy to be called martyr souls; who
in silence, piously in their daily life, practise what is meant by
that.”

Mazzini did not share the enthusiastic hopes everywhere raised
in the ranks of the Liberal party throughout Europe by the first
acts of Pius IX., in 1846, but at the same time he availed himself,
towards the end of 1847, of the opportunity to publish a letter
addressed to the new pope, indicating the nature of the religious
and national mission which the Liberals expected him to undertake.
The leaders of the revolutionary outbreaks in Milan and
Messina in the beginning of 1848 had long been in secret correspondence
with Mazzini; and their action, along with the revolution
in Paris, brought him early in the same year to Italy, where
he took a great and active interest in the events which dragged
Charles Albert into an unprofitable war with Austria; he actually
for a short time bore arms under Garibaldi immediately before
the reoccupation of Milan, but ultimately, after vain attempts to
maintain the insurrection in the mountain districts, found it
necessary to retire to Lugano. In the beginning of the following
year he was nominated a member of the short-lived provisional
government of Tuscany formed after the flight of the grand-duke,
and almost simultaneously, when Rome had, in consequence of
the withdrawal of Pius IX., been proclaimed a republic, he was
declared a member of the constituent assembly there. A month
afterwards, the battle of Novara having again decided against
Charles Albert in the brief struggle with Austria, into which he
had once more been drawn, Mazzini was appointed a member of
the Roman triumvirate, with supreme executive power (March
23, 1849). The opportunity he now had for showing the administrative
and political ability which he was believed to possess
was more apparent than real, for the approach of the professedly
friendly French troops soon led to hostilities, and resulted in
a siege which terminated, towards the end of June, with the
assembly’s resolution to discontinue the defence, and Mazzini’s
indignant resignation. That he succeeded, however, for so long
a time, and in circumstances so adverse, in maintaining a high
degree of order within the turbulent city is a fact that speaks for
itself. His diplomacy, backed as it was by no adequate physical
force, naturally showed at the time to very great disadvantage,
but his official correspondence and proclamations can still be
read with admiration and intellectual pleasure, as well as his
eloquent vindication of the revolution in his published “Letter
to MM. de Tocqueville and de Falloux.” The surrender of the
city on the 30th of June was followed by Mazzini’s not too
precipitate flight by way of Marseilles into Switzerland, whence
he once more found his way to London. Here in 1850 he became
president of the National Italian Committee, and at the same
time entered into close relations with Ledru-Rollin and Kossuth.
He had a firm belief in the value of revolutionary attempts,
however hopeless they might seem; he had a hand in the abortive
rising at Mantua in 1852, and again, in February 1853, a considerable
share in the ill-planned insurrection at Milan on the 6th
of February 1853, the failure of which greatly weakened his
influence; once more, in 1854, he had gone far with preparations
for renewed action when his plans were completely disconcerted
by the withdrawal of professed supporters, and by the action
of the French and English governments in sending ships of war to
Naples.

The year 1857 found him yet once more in Italy, where, for
complicity in short-lived émeutes which took place at Genoa,
Leghorn and Naples, he was again laid under sentence of death.
Undiscouraged in the pursuit of the one great aim of his life by
any such incidents as these, he returned to London, where he
edited his new journal Pensiero ed Azione, in which the constant
burden of his message to the overcautious practical politicians
of Italy was: “I am but a voice crying Action; but the state
of Italy cries for it also. So do the best men and people of her
cities. Do you wish to destroy my influence? Act.” The same
tone was at a somewhat later date assumed in the letter he wrote
to Victor Emmanuel, urging him to put himself at the head of the
movement for Italian unity, and promising republican support.
As regards the events of 1859-1860, however, it may be questioned
whether, through his characteristic inability to distinguish
between the ideally perfect and the practically possible, he did
not actually hinder more than he helped the course of events
by which the realization of so much of the great dream of his
life was at last brought about. If Mazzini was the prophet of
Italian unity, and Garibaldi its knight errant, to Cavour alone
belongs the honour of having been the statesman by whom it was
finally accomplished. After the irresistible pressure of the popular
movement had led to the establishment not of an Italian republic
but of an Italian kingdom, Mazzini could honestly enough write,
“I too have striven to realize unity under a monarchical flag,”
but candour compelled him to add, “The Italian people are led
astray by a delusion at the present day, a delusion which has
induced them to substitute material for moral unity and their
own reorganization. Not so I. I bow my head sorrowfully to
the sovereignty of the national will; but monarchy will never
number me amongst its servants or followers.” In 1865, by way
of protest against the still uncancelled sentence of death under
which he lay, Mazzini was elected by Messina as delegate to the
Italian parliament, but, feeling himself unable to take the oath
of allegiance to the monarchy, he never took his seat. In the
following year, when a general amnesty was granted after the
cession of Venice to Italy, the sentence of death was at last
removed, but he declined to accept such an “offer of oblivion
and pardon for having loved Italy above all earthly things.” In
May 1869 he was again expelled from Switzerland at the instance
of the Italian government for having conspired with Garibaldi;
after a few months spent in England he set out (1870) for Sicily,
but was promptly arrested at sea and carried to Gaeta, where he
was imprisoned for two months. Events soon made it evident
that there was little danger to fear from the contemplated rising,
and the occasion of the birth of a prince was seized for restoring
him to liberty. The remainder of his life, spent partly in London
and partly at Lugano, presents no noteworthy incidents.
For some time his health had been far from satisfactory, but
the immediate cause of his death was an attack of pleurisy with
which he was seized at Pisa, and which terminated fatally on
the 10th of March 1872. The Italian parliament by a unanimous
vote expressed the national sorrow with which the tidings of his
death had been received, the president pronouncing an eloquent

eulogy on the departed patriot as a model of disinterestedness
and self-denial, and one who had dedicated his whole life
ungrudgingly to the cause of his country’s freedom. A public
funeral took place at Pisa on the 14th of March, and the remains
were afterwards conveyed to Genoa.

(J. S. Bl.)


The published writings of Mazzini, mostly occasional, are very
voluminous. An edition was begun by himself and continued by
A. Saffi, Scritti editi e inediti di Giuseppe Mazzini, in 18 vols. (Milan
and Rome, 1861-1891); many of the most important are found in
the partially autobiographical Life and Writings of Joseph Mazzini
(1864-1870) and the two most systematic—Thoughts upon Democracy
in Europe, a remarkable series of criticisms on Benthamism, St
Simonianism, Fourierism, and other economic and socialistic schools
of the day, and the treatise On the Duties of Man, an admirable
primer of ethics, dedicated to the Italian working class—will be
found in Joseph Mazzini: a Memoir, by Mrs E. A. Venturi (London,
1875). Mazzini’s “first great sacrifice,” he tells us, was “the renunciation
of the career of literature for the more direct path of
political action,” and as late as 1861 we find him still recurring to
the long-cherished hope of being able to leave the stormy arena of
politics and consecrate the last years of his life to the dream of his
youth. He had specially contemplated three considerable literary
undertakings—a volume of Thoughts on Religion, a popular History
of Italy, to enable the working classes to apprehend what he conceived
to be the “mission” of Italy in God’s providential ordering
of the world, and a comprehensive collection of translations of
ancient and modern classics into Italian. None of these was actually
achieved. No one, however, can read even the briefest and most
occasional writing of Mazzini without gaining some impression of
the simple grandeur of the man, the lofty elevation of his moral
tone, his unwavering faith in the living God, who is ever revealing
Himself in the progressive development of humanity. His last public
utterance is to be found in a highly characteristic article on Renan’s
Réforme Morale et Intellectuelle, finished on the 3rd of March 1872,
and published in the Fortnightly Review for February 1874. Of the
40,000 letters of Mazzini only a small part have been published.
In 1887 two hundred unpublished letters were printed at Turin
(Duecento lettere inedite di Giuseppe Mazzini), in 1895 the Lettres
intimes were published in Paris, and in 1905 Francesco Rosso published
Lettre inedite di Giuseppe Mazzini (Turin, 1905). A popular
edition of Mazzini’s writings has been undertaken by order of the
Italian government.

For Mazzini’s biography see Jessie White Mario, Della vita di
Giuseppe Mazzini (Milan, 1886), a useful if somewhat too enthusiastic
work; Bolton King, Mazzini (London, 1903); Count von Schack,
Joseph Mazzini und die italienische Einheit (Stuttgart, 1891). A.
Luzio’s Giuseppe Mazzini (Milan, 1905) contains a great deal of
valuable information, bibliographical and other, and Dora Melegari
in La giovine Italia e Giuseppe Mazzini (Milan, 1906) publishes the
correspondence between Mazzini and Luigi A. Melegari during the
early days of “Young Italy.” For the literary side of Mazzini’s
life see Peretti, Gli scritti letterarii di Giuseppe Mazzini (Turin,
1904).



(L. V.*)



MAZZONI, GIACOMO (1548-1598), Italian philosopher, was
born at Cesena and died at Ferrara. A member of a noble
family and highly educated, he was one of the most eminent
savants of the period. He occupied chairs in the universities
of Pisa and Rome, was one of the founders of the Della Crusca
Academy, and had the distinction, it is said, of thrice vanquishing
the Admirable Crichton in dialectic. His chief work in philosophy
was an attempt to reconcile Plato and Aristotle, and in
this spirit he published in 1597 a treatise In universam Platonis
et Aristotelis philosophiam praecludia. He wrote also De triplici
hominum vita, wherein he outlined a theory of the infinite perfection
and development of nature. Apart from philosophy, he
was prominent in literature as the champion of Dante, and
produced two works in the poet’s defence: Discorso composto
in difesa della comedia di Dante (1572), and Della difesa della
comedia di Dante (1587, reprinted 1688). He was an authority
on ancient languages and philology, and gave a great impetus
to the scientific study of the Italian language.



MAZZONI, GUIDO (1859-  ), Italian poet, was born at
Florence, and educated at Pisa and Bologna. In 1887 he became
professor of Italian at Padua, and in 1894 at Florence. He was
much influenced by Carducci, and became prominent both as a
prolific and well-read critic and as a poet of individual distinction.
His chief volumes of verse are Versi (1880), Nuove poesie (1886),
Poesie (1891), Voci della vita (1893).



MEAD, LARKIN GOLDSMITH (1835-  ), American
sculptor, was born at Chesterfield, New Hampshire, on the 3rd
of January 1835. He was a pupil (1853-1855) of Henry Kirke
Brown. During the early part of the Civil War he was at the
front for six months, with the army of the Potomac, as an artist
for Harper’s Weekly; and in 1862-1865 he was in Italy, being
for part of the time attached to the United States consulate at
Venice, while William D. Howells, his brother-in-law, was
consul. He returned to America in 1865, but subsequently
went back to Italy and lived at Florence. His first important
work was a statue of Ethan Allen, now at the State House,
Montpelier, Vermont. His principal works are: the monument to
President Lincoln, Springfield, Illinois; “Ethan Allen” (1876),
National Hall of Statuary, Capitol, Washington; an heroic
marble statue, “The Father of Waters,” New Orleans; and
“Triumph of Ceres,” made for the Columbian Exposition,
Chicago.

His brother, William Rutherford Mead (1846-  ),
graduated at Amherst College in 1867, and studied architecture
in New York under Russell Sturgis, and also abroad. In 1879
he and J. F. McKim, with whom he had been in partnership for
two years as architects, were joined by Stanford White, and
formed the well-known firm of McKim, Mead & White.



MEAD, RICHARD (1673-1754), English physician, eleventh
child of Matthew Mead (1630-1699), Independent divine, was
born on the 11th of August 1673 at Stepney, London. He
studied at Utrecht for three years under J. G. Graevius; having
decided to follow the medical profession, he then went to Leiden
and attended the lectures of Paul Hermann and Archibald
Pitcairne. In 1695 he graduated in philosophy and physic
at Padua, and in 1696 he returned to London, entering at once
on a successful practice. His Mechanical Account of Poisons
appeared in 1702, and in 1703 he was admitted to the Royal
Society, to whose Transactions he contributed in that year a
paper on the parasitic nature of scabies. In the same year he
was elected physician to St Thomas’s Hospital, and appointed
to read anatomical lectures at the Surgeons’ Hall. On the death
of John Radcliffe in 1714 Mead became the recognized head of
his profession; he attended Queen Anne on her deathbed, and
in 1727 was appointed physician to George II., having previously
served him in that capacity when he was prince of Wales. He
died in London on the 16th of February 1754.


Besides the Mechanical Account of Poisons (2nd ed., 1708), Mead
published a treatise De imperio solis et lunae in corpora humana et
morbis inde oriundis (1704), A Short Discourse concerning Pestilential
Contagion, and the Method to be used to prevent it (1720), De variolis
et morbillis dissertatio (1747), Medica sacra, sive de morbis insignioribus
qui in bibliis memorantur commentarius (1748), On the Scurvy
(1749), and Monita et praecepta medica (1751). A Life of Mead by
Dr Matthew Maty appeared in 1755.





MEAD. (1) A word now only used more or less poetically
for the commoner form “meadow,” properly land laid down for
grass and cut for hay, but often extended in meaning to include
pasture-land. “Meadow” represents the oblique case, maédwe,
of O. Eng. maéd, which comes from the root seen in “mow”; the
word, therefore, means “mowed land.” Cognate words appear
in other Teutonic languages, a familiar instance being Ger. matt,
seen in place-names such as Zermatt, Andermatt, &c. (See
Grass.) (2) The name of a drink made by the fermentation of
honey mixed with water. Alcoholic drinks made from honey were
common in ancient times, and during the middle ages throughout
Europe. The Greeks and Romans knew of such under the names
of ὁδρόμελι and hydromel; mulsum was a form of mead with
the addition of wine. The word is common to Teutonic
languages (cf. Du. mede, Ger. Met or Meth), and is cognate with
Gr. μέθυ, wine, and Sansk. mádhu, sweet drink. “Metheglin,”
another word for mead, properly a medicated or spiced form of
the drink, is an adaptation of the Welsh meddyglyn, which
is derived from meddyg, healing (Lat. medicus) and llyn, liquor.
It therefore means “spiced or medicated drink,” and is not
etymologically connected with “mead.”



MEADE, GEORGE GORDON (1815-1872), American soldier,
was born of American parentage at Cadiz, Spain, on the 31st of
December 1815. On graduation at the United States Military
Academy in 1835, he served in Florida with the 3rd Artillery
against the Seminoles. Resigning from the army in 1836, he

became a civil engineer and constructor of railways, and was
engaged under the war department in survey work. In 1842 he
was appointed a second lieutenant in the corps of the topographical
engineers. In the war with Mexico he was on the staffs
successively of Generals Taylor, J. Worth and Robert Patterson,
and was brevetted for gallant conduct at Monterey. Until the
Civil War he was engaged in various engineering works, mainly
in connexion with lighthouses, and later as a captain of
topographical engineers in the survey of the northern lakes. In
1861 he was appointed brigadier-general of volunteers, and had
command of the 2nd brigade of the Pennsylvania Reserves in
the Army of the Potomac under General M’Call. He served
in the Seven Days, receiving a severe wound at the action of
Frazier’s Farm. He was absent from his command until the
second battle of Bull Run, after which he obtained the command
of his division. He distinguished himself greatly at the battles
of South Mountain and Antietam. At Fredericksburg he and
his division won great distinction by their attack on the position
held by Jackson’s corps, and Meade was promoted major-general
of volunteers, to date from the 29th of November. Soon
afterwards he was placed in command of the V. corps. At
Chancellorsville he displayed great intrepidity and energy, and
on the eve of the battle of Gettysburg was appointed to succeed
Hooker. The choice was unexpected, but Meade justified it by
his conduct of the operations, and in the famous three days’
battle he inflicted a complete defeat on General Lee’s army. His
reward was the commission of brigadier-general in the regular
army. In the autumn of 1863 a war of manœuvre was fought
between the two commanders, on the whole favourably to the
Union arms. Grant, commanding all the armies of the United
States, joined the Army of the Potomac in the spring of 1864,
and remained with it until the end of the war; but he continued
Meade in his command, and successfully urged his appointment
as major-general in the regular army (Aug. 18, 1864),
eulogizing him as the commander who had successfully met and
defeated the best general and the strongest army on the Confederate
side. After the war Meade commanded successively the
military division of the Atlantic, the department of the east, the
third military district (Georgia and Alabama) and the department
of the south. He died at Philadelphia on the 6th of November,
1872. The degree of LL.D. was conferred upon him by Harvard
University, and his scientific attainments were recognized by the
American Philosophical Society and the Philadelphia Academy
of Natural Sciences. There are statues of General Meade in
Philadelphia and at Gettysburg.


See I. R. Pennypacker, General Meade (“Great Commanders”
series, New York, 1901).





MEADE, WILLIAM (1789-1862), American Protestant
Episcopal bishop, the son of Richard Kidder Meade (1746-1805),
one of General Washington’s aides during the War of Independence,
was born on the 11th of November 1789, near Millwood,
in that part of Frederick county which is now Clarke county,
Virginia. He graduated as valedictorian in 1808 at the college
of New Jersey (Princeton); studied theology under the Rev.
Walter Addison of Maryland, and in Princeton; was ordained
deacon in 1811 and priest in 1814; and preached both in the
Stone Chapel, Millwood, and in Christ Church, Alexandria, for
some time. He became assistant bishop of Virginia in 1829;
was pastor of Christ Church, Norfolk, in 1834-1836; in 1841
became bishop of Virginia; and in 1842-1862 was president of
the Protestant Episcopal Theological Seminary in Virginia, near
Alexandria, delivering an annual course of lectures on pastoral
theology. In 1819 he had acted as the agent of the American
Colonization Society to purchase slaves, illegally brought into
Georgia, which had become the property of that state and were
sold publicly at Milledgeville. He had been prominent in the
work of the Education Society, which was organized in 1818 to
advance funds to needy students for the ministry of the American
Episcopal Church, and in the establishment of the Theological
Seminary near Alexandria, as he was afterwards in the work of
the American Tract Society, and the Bible Society. He was a
founder and president of the Evangelical Knowledge Society
(1847), which, opposing what it considered the heterodoxy of
many of the books published by the Sunday School Union,
attempted to displace them by issuing works of a more evangelical
type. A low Churchman, he strongly opposed Tractarianism.
He was active in the case against Bishop Henry Ustick Onderdonk
(1789-1858) of Pennsylvania, who because of intemperance
was forced to resign and was suspended from the ministry in 1844;
in that against Bishop Benjamin Tredwell Onderdonk (1791-1861)
of New York, who in 1845 was suspended from the ministry on
the charge of intoxication and improper conduct; and in that
against Bishop G. W. Doane of New Jersey. He fought against
the threatening secession of Virginia, but acquiesced in the
decision of the state and became presiding bishop of the Southern
Church. He died in Richmond, Virginia, on the 14th of March
1862.


Among his publications, besides many sermons, were A Brief
Review of the Episcopal Church in Virginia (1845); Wilberforce,
Cranmer, Jewett and the Prayer Book on the Incarnation (1850);
Reasons for Loving the Episcopal Church (1852); and Old Churches,
Ministers and Families of Virginia (1857); a storehouse of material
on the ecclesiastical history of the state.

See the Life by John Johns (Baltimore, 1867).





MEADVILLE, a city and the county-seat of Crawford county,
Pennsylvania, U.S.A., on French Creek, 36 m. S. of Erie. Pop.
(1900), 10,291, of whom 912 were foreign-born and 173 were
negroes; (1910 census) 12,780. It is served by the Erie, and
the Bessemer & Lake Erie railways. Meadville has three
public parks, two general hospitals and a public library, and is
the seat of the Pennsylvania College of Music, of a commercial
college, of the Meadville Theological School (1844, Unitarian),
and of Allegheny College (co-educational), which was opened in
1815, came under the general patronage of the Methodist
Episcopal Church in 1833, and in 1909 had 322 students (200 men
and 122 women). Meadville is the commercial centre of a good
agricultural region, which also abounds in oil and natural gas.
The Erie Railroad has extensive shops here, which in 1905
employed 46.7% of the total number of wage-earners, and there
are various manufactures. The factory product in 1905 was
valued at $2,074,600, being 24.4% more than that of 1900.
Meadville, the oldest settlement in N.W. Pennsylvania, was
founded as a fortified post by David Mead in 1793, laid out as a
town in 1795, incorporated as a borough in 1823 and chartered
as a city in 1866.



MEAGHER, THOMAS FRANCIS (1823-1867), Irish nationalist
and American soldier, was born in Waterford, Ireland, on
the 3rd of August 1823. He graduated at Stonyhurst College,
Lancashire, in 1843, and in 1844 began the study of law at
Dublin. He became a member of the Young Ireland Party in
1845, and in 1847 was one of the founders of the Irish Confederation.
In March 1848 he made a speech before the Confederation
which led to his arrest for sedition, but at his trial the jury failed
to agree and he was discharged. In the following July the Confederation
created a “war directory” of five, of which Meagher
was a member, and he and William Smith O’Brien travelled
through Ireland for the purpose of starting a revolution. The
attempt proved abortive; Meagher was arrested in August, and in
October was tried for high treason before a special commission
at Clonmel. He was found guilty and was condemned to death,
but his sentence was commuted to life imprisonment in Van
Diemen’s Land, whither he was transported in the summer of
1849. Early in 1852 he escaped, and in May reached New York
City. He made a tour of the cities of the United States as a
popular lecturer, and then studied law and was admitted to the
New York bar in 1855. He made two unsuccessful ventures in
journalism, and in 1857 went to Central America, where he
acquired material for another series of lectures. In 1861 he
was captain of a company (which he had raised) in the 69th
regiment of New York volunteers and fought at the first battle
of Bull Run; he then organized an Irish brigade, of whose first
regiment he was colonel until the 3rd of February 1862, when
he was appointed to the command of this organization with the
rank of brigadier-general. He took part in the siege of Yorktown,
the battle of Fair Oaks, the seven days’ battle before

Richmond, and the battles of Antietam, Fredericksburg, where
he was wounded, and Chancellorsville, where his brigade was
reduced in numbers to less than a regiment, and General Meagher
resigned his commission. On the 23rd of December 1863 his
resignation was cancelled, and he was assigned to the command
of the military district of Etowah, with headquarters at Chattanooga.
At the close of the war he was appointed by President
Johnson secretary of Montana Territory, and there, in the
absence of the territorial governor, he acted as governor from
September 1866 until his death from accidental drowning in
the Missouri River near Fort Benton, Montana, on the 1st of
July 1867. He published Speeches on the Legislative Independence
of Ireland (1852).


W. F. Lyons, in Brigadier-General Thomas Francis Meagher
(New York, 1870), gives a eulogistic account of his career.





MEAL. (1) (A word common to Teutonic languages, cf. Ger.
Mehl, Du. meel; the ultimate source is the root seen in various
Teutonic words meaning “to grind,” and in Eng. “mill,”
Lat. mola, molěre, Gr. μύλη), a powder made from the edible
part of any grain or pulse, with the exception of wheat, which
is known as “flour.” In America the word is specifically applied
to the meal produced from Indian corn or maize, as in Scotland
and Ireland to that produced from oats, while in South Africa
the ears of the Indian corn itself are called “mealies.” (2)
Properly, eating and drinking at regular stated times of the day,
as breakfast, dinner, &c., hence taking of food at any time and
also the food provided. The word was in O.E. mael, which also
had the meanings (now lost) of time, mark, measure, &c., which
still appear in many forms of the word in Teutonic languages;
thus Ger. mal, time, mark, cf. Denkmal, monument, Mahl, meal,
repast, or Du. maal, Swed. mal, also with both meanings. The
ultimate source is the pre-Teutonic root me- ma-, to measure,
and the word thus stood for a marked-out point of time.



MEALIE, the South African name for Indian corn or maize.
The word as spelled represents the pronunciation of the Cape
Dutch milje, an adaptation of milho (da India), the millet of
India, the Portuguese name for millet, used in South Africa for
maize.



MEAN, an homonymous word, the chief uses of which may be
divided thus. (1) A verb with two principal applications, to
intend, purpose or design, and to signify. This word is in O.E.
maenan, and cognate forms appear in other Teutonic languages,
cf. Du. meenen, Ger. meinen. The ultimate origin is usually
taken to be the root men-, to think, the root of “mind.” (2) An
adjective and substantive meaning “that which is in the middle.”
This is derived through the O. Fr. men, meien or moien, modern
moyen, from the late Lat. adjective medianus, from medius,
middle. The law French form mesne is still preserved in certain
legal phrases (see Mesne). The adjective “mean” is chiefly
used in the sense of “average,” as in mean temperature, mean
birth or death rate, &c.

“Mean” as a substantive has the following principal applications;
it is used of that quality, course of action, condition, state,
&c., which is equally distant from two extremes, as in such
phrases as the “golden (or happy) mean.” For the philosophic
application see Aristotle and Ethics.

In mathematics, the term “mean,” in its most general sense,
is given to some function of two or more quantities which (1)
becomes equal to each of the quantities when they themselves
are made equal, and (2) is unaffected in value when the quantities
suffer any transpositions. The three commonest means are the
arithmetical, geometrical, and harmonic; of less importance are
the contraharmonical, arithmetico-geometrical, and quadratic.

From the sense of that which stands between two things,
“mean,” or the plural “means,” often with a singular construction,
takes the further significance of agency, instrument, &c.,
of which that produces some result, hence resources capable of
producing a result, particularly the pecuniary or other resources
by which a person is enabled to live, and so used either of employment
or of property, wealth, &c. There are many adverbial
phrases, such as “by all means,” “by no means,” &c., which
are extensions of “means” in the sense of agency.

The word “mean” (like the French moyen) had also the sense
of middling, moderate, and this considerably influenced the
uses of “mean” (3). This, which is now chiefly used in the
sense of inferior, low, ignoble, or of avaricious, penurious,
“stingy,” meant originally that which is common to more
persons or things than one. The word in O. E. is gemaéne, and
is represented in the modern Ger. gemein, common. It is
cognate with Lat. communis, from which “common” is derived.
The descent in meaning from that which is shared alike by
several to that which is inferior, vulgar or low, is paralleled by
the uses of “common.”

In astronomy the “mean sun” is a fictitious sun which moves
uniformly in the celestial equator and has its right ascension
always equal to the sun’s mean longitude. The time recorded
by the mean sun is termed mean-solar or clock time; it is regular
as distinct from the non-uniform solar or sun-dial time. The
“mean moon” is a fictitious moon which moves around the
earth with a uniform velocity and in the same time as the real
moon. The “mean longitude” of a planet is the longitude of
the “mean” planet, i.e. a fictitious planet performing uniform
revolutions in the same time as the real planet.


The arithmetical mean of n quantities is the sum of the quantities
divided by their number n. The geometrical mean of n quantities
is the nth root of their product. The harmonic mean of n quantities
is the arithmetical mean of their reciprocals. The significance of
the word “mean,” i.e., middle, is seen by considering 3 instead of
n quantities; these will be denoted by a, b, c. The arithmetic mean b,
is seen to be such that the terms a, b, c are in arithmetical progression,
i.e. b = 1⁄2(a + c); the geometrical mean b places a, b, c in geometrical
progression, i.e. in the proportion a : b :: b : c or b2 = ac; and the harmonic
mean places the quantities in harmonic proportion, i.e.
a : c :: a − b : b − c, or b = 2ac/(a + c). The contraharmonical mean
is the quantity b given by the proportion a : c :: b − c : a − b, i.e.
b = (a2 + c2)/(a + c). The arithmetico-geometrical mean of two
quantities is obtained by first forming the geometrical and arithmetical
means, then forming the means of these means, and repeating
the process until the numbers become equal. They were invented
by Gauss to facilitate the computation of elliptic integrals. The
quadratic mean of n quantities is the square root of the arithmetical
mean of their squares.





MEASLES, (Morbilli, Rubeola; the M. E. word is maseles,
properly a diminutive of a word meaning “spot,” O.H.G. māsa,
cf. “mazer”; the equivalent is Ger. Masern; Fr. Rougeole), an
acute infectious disease occurring mostly in children. It is
mentioned in the writings of Rhazes and others of the Arabian
physicians in the 10th century. For long, however, it was held
to be a variety of small-pox. After the non-identity of these two
diseases had been established, measles and scarlet-fever continued
to be confounded with each other; and in the account given by
Thomas Sydenham of epidemics of measles in London in 1670
and 1674 it is evident that even that accurate observer had not
as yet clearly perceived their pathological distinction, although
it would seem to have been made a century earlier by Giovanni
Filippo Ingrassias (1510-1580), a physician of Palermo. The
specific micro-organism responsible for measles has not been
definitely isolated.

Its progress is marked by several stages more or less sharply
defined. After the reception of the contagion into the system,
there follows a period of incubation or latency during which
scarcely any disturbance of the health is perceptible. This
period generally lasts for from ten to fourteen days, when it is
followed by the invasion of the symptoms specially characteristic
of measles. These consist in the somewhat sudden onset of
acute catarrh of the mucous membranes. At this stage minute
white spots in the buccal mucous membrane frequently occur;
when they do, they are diagnostic of the disease. Sneezing,
accompanied with a watery discharge, sometimes bleeding, from
the nose, redness and watering of the eyes, cough of a short,
frequent, and noisy character, with little or no expectoration,
hoarseness of the voice, and occasionally sickness and diarrhoea,
are the chief local phenomena of this stage. With these there is
well-marked febrile disturbance, the temperature being elevated
(102°-104° F.), and the pulse rapid, while headache, thirst, and
restlessness are usually present. In some instances, these initial
symptoms are slight, and the child is allowed to associate with

others at a time when, as will be afterwards seen, the contagion
of the disease is most active. In rare cases, especially in young
children, convulsions usher in, or occur in the course of, this
stage of invasion, which lasts as a rule for four or five days, the
febrile symptoms, however, showing some tendency to undergo
abatement after the second day. On the fourth or fifth day
after the invasion, sometimes later, rarely earlier, the characteristic
eruption appears on the skin, being first noticed on the
brow, cheeks, chin, also behind the ears, and on the neck. It
consists of small spots of a dusky red or crimson colour, just like
flea-bites, slightly elevated above the surface, at first isolated,
but tending to become grouped into patches of irregular, occasionally
crescentic, outline, with portions of skin free from the
eruption intervening. The face acquires a swollen and bloated
appearance, which, taken with the catarrh of the nostrils and
eyes, is almost characteristic, and renders the diagnosis at this
stage a matter of no difficulty. The eruption spreads downwards
over the body and limbs, which are soon thickly studded with
the red spots or patches. Sometimes these become confluent
over a considerable surface. The rash continues to come out
for two or three days, and then begins to fade in the order in
which it first showed itself, namely from above downwards. By
the end of about a week after its first appearance scarcely any
trace of the eruption remains beyond a faint staining of the skin.
Usually during convalescence slight peeling of the epidermis
takes place, but much less distinctly than is the case in scarlet
fever. At the commencement of the eruptive stage the fever,
catarrh, and other constitutional disturbance, which were
present from the beginning, become aggravated, the temperature
often rising to 105° or more, and there is headache, thirst, furred
tongue, and soreness of the throat, upon which red patches
similar to those on the surface of the body may be observed.
These symptoms usually decline as soon as the rash has attained
its maximum, and often there occurs a sudden and extensive
fall of temperature, indicating that the crisis of the disease has
been reached. In favourable cases convalescence proceeds
rapidly, the patient feeling perfectly well even before the rash
has faded from the skin.

Measles may, however, occur in a very malignant form, in
which the symptoms throughout are of urgent character, the
rash but feebly developed, and of dark purple hue, while there
is great prostration, accompanied with intense catarrh of the
respiratory or gastro-intestinal mucous membrane. Such cases
are rare, occurring mostly in circumstances of bad hygiene, both
as regards the individual and his surroundings. On the other
hand, cases of measles are often of so mild a form throughout
that the patient can scarcely be persuaded to submit to
treatment.

Measles as a disease derives its chief importance from the risk,
by no means slight, of certain complications which are apt to
arise during its course, more especially inflammatory affections
of the respiratory organs. These are most liable to occur in the
colder seasons of the year and in very young and delicate
children. It has been already stated that irritation of the
respiratory passages is one of the symptoms characteristic of
measles, but that this subsides with the decline of the eruption.
Not unfrequently, however, these symptoms, instead of abating,
become aggravated, and bronchitis of the capillary form (see
Bronchitis), or pneumonia, generally of the diffuse or lobular
variety (see Pneumonia), supervene. By far the greater proportion
of the mortality in measles is due to its complications, of
which those just mentioned are the most common, but which
also include inflammatory affections of the larynx, with attacks
resembling croup, and also diarrhoea assuming a dysenteric
character. Or there may remain as direct results of the disease
chronic ophthalmia, or discharge from the ears with deafness,
and occasionally a form of gangrene affecting the tissues of the
mouth or cheeks and other parts of the body, leading to disfigurement
and gravely endangering life.

Apart from those immediate risks there appears to be a
tendency in many cases for the disease to leave behind a weakened
and vulnerable condition of the general health, which may render
children, previously robust, delicate and liable to chest complaints,
and is in not a few instances the precursor of some of
those tubercular affections to which the period of childhood and
youth is liable. These various effects or sequelae of measles
indicate that although in itself a comparatively mild ailment,
it should not be regarded with indifference. Indeed it is doubtful
whether any other disease of early life demands more careful
watching as to its influence on the health. Happily many of
those attending evils may by proper management be averted.

Measles is a disease of the earlier years of childhood. Like
other infectious maladies, it is admittedly rare, though not
unknown, in nurslings or infants under six months old. It is comparatively
seldom met with in adults, but this is due to the fact
that most persons have undergone an attack in early life. Where
this has not been the case, the old suffer equally with the young.
All races of men appear liable to this disease, provided that
which constitutes the essential factor in its origin and spread
exists, namely, contagion. Some countries enjoy long immunity
from outbreaks of measles, but it has frequently been found in
such cases that when the contagion has once been introduced
the disease extends with great rapidity and virulence. This
was shown by the epidemic in the Faroe Islands in 1846, where,
within six months after the arrival of a single case of measles,
more than three-fourths of the entire population were attacked
and many perished; and the similarly produced and still more
destructive outbreak in Fiji in 1875, in which it was estimated
that about one-fourth of the inhabitants died from the disease
in about three months. In both these cases the great mortality
was due to the complications of the malady, specially induced
by overcrowding, insanitary surroundings, the absence of proper
nourishment and nursing for the sick, and the utter prostration
and terror of the people, and to the disease being specially
malignant, occurring on what might be termed virgin soil.1 It
may be regarded as an invariable rule that the first epidemic of
any disease in a community is specially virulent, each successive
attack conferring a certain immunity.

In many lands, such as the United Kingdom, measles is rarely
absent, especially from large centres of population, where
sporadic cases are found at all seasons. Every now and then
epidemics arise from the extension of the disease among those
members of a community who have not been in some measure
protected by a previous attack. There are few diseases so contagious
as measles, and its rapid spread in epidemic outbreaks
is no doubt due to the well-ascertained fact that contagion is
most potent in the earlier stages, even before its real nature has
been evinced by the characteristic appearances on the skin.
Hence the difficulty of timely isolation, and the readiness with
which the disease is spread in schools and families. The
contagion is present in the skin and the various secretions.
While the contagion is generally direct, it can also be conveyed
by the particles from the nose and mouth which, after being
expelled, become dry and are conveyed as dust on clothes, toys,
&c. Fortunately the germs of measles do not retain their
virulence long under such conditions, comparing favourably
with those of some other diseases.

Treatment.—The treatment embraces the preventive measures
to be adopted by the isolation of the sick at as early a period as
possible. Epidemics have often, especially in limited localities,
been curtailed by such a precaution. In families with little
house accommodation this measure is frequently, for the reason
given regarding the communicable period of the disease, ineffectual;
nevertheless where practicable it ought to be tried. The
unaffected children should be kept from school for a time
(probably about three weeks from the outbreak in the family
would suffice if no other case occur in the interval), and all
clothing in contact with the patient or nurses should be disinfected.
In extensive epidemics it is often desirable to close
the schools for a time. As regards special treatment, in an
ordinary case of measles little is required beyond what is necessary
in febrile conditions generally. Confinement to bed in a
somewhat darkened room, into which, however, air is freely

admitted; light, nourishing, liquid diet (soups, milk, &c.), water
almost ad lib. to drink, and mild diaphoretic remedies such as the
acetate of ammonia or ipecacuanha, are all that is necessary in
the febrile stage. When the fever is very severe, sponging the
body generally or the chest and arms affords relief. The serious
chest complications of measles are to be dealt with by those
measures applicable for the relief of the particular symptoms (see
Bronchitis; Pneumonia). The preparations of ammonia are of
special efficacy. During convalescence the patient must be
guarded from exposure to cold, and for a time after recovery the
state of the health ought to be watched with a view of averting
the evils, both local and constitutional, which too often follow
this disease.


“German measles” (Rötheln, or Epidemic Roseola) is a term
applied to a contagious eruptive disorder having certain points of
resemblance to measles, and also to scarlet fever, but exhibiting its
distinct individuality in the fact that it protects from neither of these
diseases. It occurs most commonly in children, but frequently in
adults also, and is occasionally seen in extensive epidemics. Beyond
confinement to the house in the eruptive stage, which, from the slight
symptoms experienced, is often difficult of accomplishment, no
special treatment is called for. There is little doubt that the disease
is often mistaken for true measles, and many of the alleged second
attacks of the latter malady are probably cases of rötheln. The
chief points of difference are the following: (1) The absence of
distinct premonitory symptoms, the stage of invasion, which in
measles is usually of four days’ duration, and accompanied with
well-marked fever and catarrh, being in rötheln either wholly absent
or exceedingly slight, enduring only for one day. (2) The eruption
of rötheln, which, although as regards its locality and manner of
progress similar to measles, differs somewhat in its appearance,
the spots being of smaller size, paler colour, and with less tendency
to grouping in crescentic patches. The rash attains its maximum in
about one day, and quickly disappears. There is not the same
increase of temperature in this stage as in measles. (3) The presence
of white spots on the buccal mucous membrane, in the case of measles.
(4) The milder character of the symptoms of rötheln throughout its
whole course, and the absence of complications and of liability to
subsequent impairment of health such as have been seen to appertain
to measles.




 
1 Transactions of the Epidemiological Society (London, 1877).





MEAT, a word originally applied to food in general, and so
still used in such phrases as “meat and drink”; but now,
except as an archaism, generally used of the flesh of certain
domestic animals, slaughtered for human food by butchers,
“butcher’s meat,” as opposed to “game,” that of wild animals,
“fish” or “poultry.” Cognate forms of the O. Eng. mete are
found in certain Teutonic languages, e.g. Swed. mat, Dan. mad
and O. H. Ger. Maz. The ultimate origin has been disputed; the
New English Dictionary considers probable a connexion with the
root med-, “to be fat,” seen in Sansk. mēda, Lat. madere, “to be
wet,” and Eng. “mast,” the fruit of the beech as food for pigs.


See Dietetics; Food Preservation; Public Health; Agriculture;
and the sections dealing with agricultural statistics under
the names of the various countries.





MEATH (pronounced with th soft, as in the), a county of
Ireland in the province of Leinster, bounded E. by the Irish
Sea, S.E. by Dublin, S. by Kildare and King’s County, W. by
Westmeath, N.W. by Cavan and Monaghan, and N.E. by Louth.
Area 579,320 acres, or about 905 sq. m. In some districts the
surface is varied by hills and swells, which to the west reach a
considerable elevation, although the general features of a fine
champain country are never lost. The coast, low and shelving,
extends about 10 m., but there is no harbour of importance.
Laytown is a small seaside resort, 5 m. S.E. of Drogheda. The
Boyne enters the county at its south-western extremity, and
flowing north-east to Drogheda divides it into two almost equal
parts. At Navan it receives the Blackwater, which flows
south-west from Cavan. Both these rivers are noted for their
trout, and salmon are taken in the Boyne. The Boyne is
navigable for barges as far as Navan whence a canal is carried to
Trim. The Royal Canal passes along the southern boundary
of the county from Dublin.


In the north is a broken country of Silurian rocks with much
igneous material, partly contemporaneous, partly intrusive, near
Slane. Carboniferous Limestone stretches from the Boyne valley
to the Dublin border, giving rise to a flat plain especially suitable for
grazing. Outliers of higher Carboniferous strata occur on the surface;
but the Coal Measures have all been removed by denudation.

The climate is genial and favourable for all kinds of crops, there
being less rain than even in the neighbouring counties. Except
a small portion occupied by the Bog of Allen, the county is verdant and
fertile. The soil is principally a rich deep loam resting on limestone
gravel, but varies from a strong clayey loam to a light sandy gravel.
The proportion of tillage to pasturage is roughly as 1 to 31⁄2. Oats,
potatoes and turnips are the principal crops, but all decrease. The
numbers of cattle, sheep and poultry, however, are increasing or well
maintained. Agriculture is almost the sole industry, but coarse
linen is woven by hand-looms, and there are a few woollen manufactories.
The main line of the Midland Great Western railway
skirts the southern boundary, with a branch line north from Clonsilla
to Navan and Kingscourt (county Cavan). From Kilmessan on
this line a branch serves Trim and Athboy. From Drogheda
(county Louth) a branch of the Great Northern railway crosses the
county from east to West by Navan and Kells to Oldcastle.

The population (76,111 in 1891; 67,497 in 1901) suffers a large
decrease, considerably above the average of Irish counties, and emigration
is heavy. Nearly 93% are Roman Catholics. The chief
towns are Navan (pop. 3839), Kells (2428) and Trim (1513), the
county town. Lesser market towns are Oldcastle and Athboy,
an ancient town which received a charter from Henry IV. The
county includes eighteen baronies. Assizes are held at Trim, and
quarter sessions at Kells, Navan and Trim. The county is in the
Protestant dioceses of Armagh, Kilmore and Meath, and in the
Roman Catholic dioceses of Armagh and Meath. Before the Union
in 1800 it sent fourteen members to parliament, but now only two
members are returned, for the north and south divisions of the
county respectively.



History and Antiquities.—A district known as Meath (Midhe),
and including the present county of Meath as well as Westmeath
and Longford, with parts of Cavan, Kildare and King’s County,
was formed by Tuathal (c. 130) into a kingdom to serve as
mensal land or personal estate of the Ard Ri or over-king of
Ireland. Kings of Meath reigned until 1173, and the title was
claimed as late as the 15th century by their descendants, but
at the date mentioned Hugh de Lacy obtained the lordship of
the country and was confirmed in it by Henry II. Meath thus
came into the English “Pale.” But though it was declared
a county in the reign of Edward I. (1296), and though it came
by descent into the possession of the Crown in the person of
Edward IV., it was long before it was fully subdued and its
boundaries clearly defined. In 1543 Westmeath was created a
county apart from that of Meath, but as late as 1598 Meath was
still regarded as a province by some, who included in it the
counties Westmeath, East Meath, Longford and Cavan. In
the early part of the 17th century it was at last established
as a county, and no longer considered as a fifth province of
Ireland.

There are two ancient round towers, the one at Kells and the
other in the churchyard of Donaghmore, near Navan. By the
river Boyne near Slane there is an extensive ancient burial-place
called Brugh. Here are some twenty burial mounds, the
largest of which is that of New Grange, a domed tumulus erected
above a circular chamber, which is entered by a narrow passage
enclosed by great upright blocks of stone, covered with carvings.
The mound is surrounded by remains of a stone circle, and the
whole forms one of the most remarkable extant erections of
its kind. Tara (q.v.) is famous in history, especially as the seat
of a royal palace referred to in the well-known lines of Thomas
Moore. Monastic buildings were very numerous in Meath,
among the more important ruins being those of Duleek, which
is said to have been the first ecclesiastical building in Ireland
of stone and mortar; the extensive remains of Bective Abbey;
and those of Clonard, where also were a cathedral and a
famous college. Of the old fortresses, the castle of Trim still
presents an imposing appearance. There are many fine old
mansions.



MEAUX, a town of northern France, capital of an arrondissement
in the department of Seine-et-Marne, and chief town of
the agricultural region of Brie, 28 m. E.N.E. of Paris by rail.
Pop. (1906), 11,089. The town proper stands on an eminence
on the right bank of the Marne; on the left bank lies the old
suburb of Le Marché, with which it is united by a bridge of
the 16th century. Two rows of picturesque mills of the same
period are built across the river. The cathedral of St Stephen
dates from the 12th to the 16th centuries, and was restored in

the 19th century. Of the two western towers, the completed
one is that to the north of the façade, the other being disfigured
by an unsightly slate roof. The building, which is 275 ft. long
and 105 ft. high, consists of a short nave, with aisles, a fine
transept, a choir and a sanctuary. The choir contains the
statue and the tomb of Bossuet, bishop from 1681 to 1704, and
the pulpit of the cathedral has been reconstructed with the
panels of that from which the “eagle of Meaux” used to preach.
The transept terminates at each end in a fine portal surmounted
by a rose-window. The episcopal palace (17th century) has
several curious old rooms; the buildings of the choir school are
likewise of some archaeological interest. A statue of General
Raoult (1870) stands in one of the squares.

Meaux is the centre of a considerable trade in cereals, wool,
Brie cheeses, and other farm-produce, while its mills provide
much of the flour with which Paris is supplied. Other industries
are saw-milling, metal-founding, distilling, the preparation
of vermicelli and preserved vegetables, and the manufacture
of mustard, hosiery, plaster and machinery. There are nursery-gardens
in the vicinity. The Canal de l’Ourcq, which surrounds
the town, and the Marne furnish the means of transport. Meaux
is the seat of a bishopric dating from the 4th century, and has
among its public institutions a sub-prefecture, and tribunals
of first instance and of commerce.

In the Roman period Meaux was the capital of the Meldi, a
small Gallic tribe, and in the middle ages of the Brie. It formed
part of the kingdom of Austrasia, and afterwards belonged to
the counts of Vermandois and Champagne, the latter of whom
established important markets on the left bank of the Marne.
Its communal charter, received from them, is dated 1179. A
treaty signed at Meaux in 1229 after the Albigensian War sealed
the submission of Raymond VII., count of Toulouse. The
town suffered much during the Jacquerie, the peasants receiving
a severe check there in 1358; during the Hundred Years’ War;
and also during the Religious Wars, in which it was an important
Protestant centre. It was the first town which opened its gates
to Henry IV. in 1594. On the high-road for invaders marching
on Paris from the east of France, Meaux saw its environs ravaged
by the army of Lorraine in 1652, and was laid under heavy
requisitions in 1814, 1815 and 1870. In September 1567 Meaux
was the scene of an attempt made by the Protestants to seize
the French king Charles IX., and his mother Catherine de’ Medici.
The plot, which is sometimes called the “enterprise of Meaux,”
failed, the king and queen with their courtiers escaping to Paris.
This conduct, however, on the part of the Huguenots had
doubtless some share in influencing Charles to assent to the
massacre of St Bartholomew.



MECCA (Arab. Makkah),1 the chief town of the Hejaz in
Arabia, and the great holy city of Islām. It is situated two
camel marches (the resting-place being Bahra or Hadda), or
about 45 m. almost due E., from Jidda on the Red Sea. Thus
on a rough estimate Mecca lies in 21° 25′ N., 39° 50′ E. It is said
in the Koran (Sur. xiv. 40) that Mecca lies in a sterile valley, and
the old geographers observe that the whole Haram or sacred
territory round the city is almost without cultivation or date
palms, while fruit trees, springs, wells, gardens and green valleys
are found immediately beyond. Mecca in fact lies in the heart
of a mass of rough hills, intersected by a labyrinth of narrow
valleys and passes, and projecting into the Tehāma or low
country on the Red Sea, in front of the great mountain wall that
divides the coast-lands from the central plateau, though in turn
they are themselves separated from the sea by a second curtain
of hills forming the western wall of the great Wādi Marr. The
inner mountain wall is pierced by only two great passes, and the
valleys descending from these embrace on both sides the Mecca
hills.

Holding this position commanding two great routes between
the lowlands and inner Arabia, and situated in a narrow and
barren valley incapable of supporting an urban population,
Mecca must have been from the first a commercial centre.2 In
the palmy days of South Arabia it was probably a station on
the great incense route, and thus Ptolemy may have learned the
name, which he writes Makoraba. At all events, long before
Mahomet we find Mecca established in the twofold quality of a
commercial centre and a privileged holy place, surrounded by
an inviolable territory (the Haram), which was not the sanctuary
of a single tribe but a place of pilgrimage, where religious
observances were associated with a series of annual fairs at
different points in the vicinity. Indeed in the unsettled state
of the country commerce was possible only under the sanctions
of religion, and through the provisions of the sacred truce which
prohibited war for four months of the year, three of these being
the month of pilgrimage, with those immediately preceding and
following. The first of the series of fairs in which the Meccans
had an interest was at Okaz on the easier road between Mecca and
Taif, where there was also a sanctuary, and from it the visitors
moved on to points still nearer Mecca (Majanna, and finally
Dhul-Majāz, on the flank of Jebel Kabkab behind Arafa) where
further fairs were held,3 culminating in the special religious
ceremonies of the great feast at ‘Arafa, Quzaḥ (Mozdalifa), and
Mecca itself. The system of intercalation in the lunar calendar
of the heathen Arabs was designed to secure that the feast should
always fall at the time when the hides, fruits and other merchandise
were ready for market,4 and the Meccans, who knew
how to attract the Bedouins by hospitality, bought up these
wares in exchange for imported goods, and so became the leaders
of the international trade of Arabia. Their caravans traversed
the length and breadth of the peninsula. Syria, and especially
Gaza, was their chief goal. The Syrian caravan intercepted,
on its return, at Badr (see Mahomet) represented capital to
the value of £20,000, an enormous sum for those days.5

The victory of Mahommedanism made a vast change in the
position of Mecca. The merchant aristocracy became satraps
or pensioners of a great empire; but the seat of dominion was
removed beyond the desert, and though Mecca and the Hejāz
strove for a time to maintain political as well as religious predominance,
the struggle was vain, and terminated on the death
of Ibn Zubair, the Meccan pretendant to the caliphate, when
the city was taken by Hajjāj (A.D. 692). The sanctuary and
feast of Mecca received, however, a new prestige from the
victory of Islām. Purged of elements obviously heathen, the
Ka‘ba became the holiest site, and the pilgrimage the most
sacred ritual observance of Mahommedanism, drawing worshippers
from so wide a circle that the confluence of the petty
traders of the desert was no longer the main feature of the holy
season. The pilgrimage retained its importance for the commercial
well-being of Mecca; to this day the Meccans live by
the Hajj—letting rooms, acting as guides and directors in the
sacred ceremonies, as contractors and touts for land and sea
transport, as well as exploiting the many benefactions that
flow to the holy city; while the surrounding Bedouins derive
support from the camel-transport it demands and from the
subsidies by which they are engaged to protect or abstain from
molesting the pilgrim caravans. But the ancient “fairs of
heathenism” were given up, and the traffic of the pilgrim season,
sanctioned by the Prophet in Sur. ii. 194, was concentrated
at Minā and Mecca, where most of the pilgrims still have something
to buy or sell, so that Minā, after the sacrifice of the
feast day, presents the aspect of a huge international fancy

fair.6 In the middle ages this trade was much more important
than it is now. Ibn Jubair (ed. Wright, p. 118 seq.) in the 12th
century describes the mart of Mecca in the eight days following
the feast as full of gems, unguents, precious drugs, and all
rare merchandise from India, Irāk, Khorāsān, and every part
of the Moslem world.

The hills east and west of Mecca, which are partly built over
and rise several hundred feet above the valley, so enclose the
city that the ancient walls only barred the valley at three points,
where three gates led into the town. In the time of Ibn Jubair
the gates still stood though the walls were ruined, but now the
gates have only left their names to quarters of the town. At the
northern or upper end was the Bāb el Mā‘lā, or gate of the upper
quarter, whence the road continues up the valley towards Minā
and Arafa as well as towards Zeima and the Nejd. Beyond the
gate, in a place called the Hajūn, is the chief cemetery, commonly
called el Mā‘lā, and said to be the resting-place of many of the
companions of Mahomet. Here a cross-road, running over the
hill to join the main Medina road from the western gate, turns
off to the west by the pass of Kadā, the point from which the
troops of the Prophet stormed the city (A.H. 8).7 Here too the
body of Ibn Zubair was hung on a cross by Ḥajjāj. The lower
or southern gate, at the Masfala quarter, opened on the Yemen
road, where the rain-water from Mecca flows off into an open
valley. Beyond, there are mountains on both sides; on that to
the east, commanding the town, is the great castle, a fortress
of considerable strength. The third or western gate, Bāb el-Omra
(formerly also Bāb el-Zāhir, from a village of that name),
lay almost opposite the great mosque, and opened on a road
leading westwards round the southern spurs of the Red Mountain.
This is the way to Wādi Fātima and Medīna, the Jidda
road branching off from it to the left. Considerable suburbs
now lie outside the quarter named after this gate; in the middle
ages a pleasant country road led for some miles through partly
cultivated land with good wells, as far as the boundary of the
sacred territory and gathering place of the pilgrims at Tanīm,
near the mosque of Ayesha. This is the spot on the Medīna
road now called the Omra, from a ceremonial connected with it
which will be mentioned below.

The length of the sinuous main axis of the city from the
farthest suburbs on the Medina road to the suburbs in the
extreme north, now frequented by Bedouins, is, according to
Burckhardt, 3500 paces.8 About the middle of this line the
longitudinal thoroughfares are pushed aside by the vast courtyard
and colonnades composing the great mosque, which, with
its spacious arcades surrounding the Ka‘ba and other holy
places, and its seven minarets, forms the only prominent architectural
feature of the city. The mosque is enclosed by houses
with windows opening on the arcades and commanding a view
of the Ka‘ba. Immediately beyond these, on the side facing
Jebel Abu Kobais, a broad street runs south-east and north-west
across the valley. This is the Mas‘ā (sacred course) between the
eminences of Safā and Merwa, and has been from very early
times one of the most lively bazaars and the centre of Meccan
life. The other chief bazaars are also near the mosque in
smaller streets. The general aspect of the town is picturesque;
the streets are fairly spacious, though ill-kept and filthy; the
houses are all of stone, many of them well-built and four or five
storeys high, with terraced roofs and large projecting windows
as in Jidda—a style of building which has not varied materially
since the 10th century (Mukaddasī, p. 71), and gains in effect
from the way in which the dwellings run up the sides and spurs
of the mountains. Of public institutions there are baths, ribāṭs,
or hospices, for poor pilgrims from India, Java, &c., a hospital
and a public kitchen for the poor.

The mosque is at the same time the university hall, where
between two pilgrim seasons lectures are delivered on Mahommedan
law, doctrine and connected branches of science. A
poorly provided public library is open to the use of students.
The madrassehs or buildings around the mosque, originally
intended as lodgings for students and professors, have long been
let out to rich pilgrims. The minor places of visitation for
pilgrims, such as the birthplaces of the prophet and his chief
followers, are not notable.9 Both these and the court of the
great mosque lie beneath the general level of the city, the site
having been gradually raised by accumulated rubbish. The
town in fact has little air of antiquity; genuine Arab buildings
do not last long, especially in a valley periodically ravaged by
tremendous floods when the tropical rains burst on the surrounding hills.
The history of Mecca is full of the record of these inundations,
unsuccessfully combated by the great dam drawn across
the valley by the caliph Omar (Kutbeddin, p. 76), and later
works of Mahdī.10

The fixed population of Mecca in 1878 was estimated by
Assistant-Surgeon ‘Abd el-Razzāq at 50,000 to 60,000; there
is a large floating population—and that not merely at the proper
season of pilgrimage, the pilgrims of one season often beginning
to arrive before those of the former season have all dispersed.
At the height of the season the town is much overcrowded, and
the entire want of a drainage system is severely felt. Fortunately
good water is tolerably plentiful; for, though the wells are mostly
undrinkable, and even the famous Zamzam water only available
for medicinal or religious purposes, the underground conduit
from beyond Arafa, completed by Sultan Selim II. in 1571,
supplies to the public fountains a sweet and light water, containing,
according to ‘Abd el-Razzāq, a large amount of chlorides.
The water is said to be free to townsmen, but is sold to the
pilgrims at a rather high rate.11

Medieval writers celebrate the copious supplies, especially
of fine fruits, brought to the city from Tāif and other fertile
parts of Arabia. These fruits are still famous; rice and other
foreign products are brought by sea to Jidda; mutton, milk
and butter are plentifully supplied from the desert.12 The
industries all centre in the pilgrimage; the chief object of every
Meccan—from the notables and sheikhs, who use their influence
to gain custom for the Jidda speculators in the pilgrim traffic,
down to the cicerones, pilgrim brokers, lodging-house keepers,
and mendicants at the holy places—being to pillage the visitor
in every possible way. The fanaticism of the Meccan is an affair
of the purse; the mongrel population (for the town is by no means
purely Arab) has exchanged the virtues of the Bedouin for the
worst corruptions of Eastern town life, without casting off the
ferocity of the desert, and it is hardly possible to find a worse
certificate of character than the three parallel gashes on each
cheek, called Tashrīṭ, which are the customary mark of birth in
the holy city. The unspeakable vices of Mecca are a scandal to
all Islām, and a constant source of wonder to pious pilgrims.13
The slave trade has connexions with the pilgrimage which
are not thoroughly clear; but under cover of the pilgrimage a
great deal of importation and exportation of slaves goes on.

Since the fall of Ibn Zubair the political position of Mecca

has always been dependent on the movements of the greater
Mahommedan world. In the splendid times of the caliphs
immense sums were lavished upon the pilgrimage and the holy
city; and conversely the decay of the central authority of Islām
brought with it a long period of faction, wars and misery, in
which the most notable episode was the sack of Mecca by the
Carmathians at the pilgrimage season of A.D. 930. The victors
carried off the “black stone,” which was not restored for twenty-two
years, and then only for a great ransom, when it was plain
that even the loss of its palladium could not destroy the sacred
character of the city. Under the Fatimites Egyptian influence
began to be strong in Mecca; it was opposed by the sultans of
Yemen, while native princes claiming descent from the Prophet—the
Hāshimite amīrs of Mecca, and after them the amīrs of the
house of Qatāda (since 1202)—attained to great authority and
aimed at independence; but soon after the final fall of the
Abbasids the Egyptian overlordship was definitely established
by sultan Bībars (A.D. 1269). The Turkish conquest of Egypt
transferred the supremacy to the Ottoman sultans (1517), who
treated Mecca with much favour, and during the 16th century
executed great works in the sanctuary and temple. The
Ottoman power, however, became gradually almost nominal,
and that of the amīrs or sherīfs increased in proportion, culminating
under Ghālib, whose accession dates from 1786. Then
followed the wars of the Wahhābīs (see Arabia and Wahhābīs)
and the restoration of Turkish rule by the troops of Mehemet
‘Ali. By him the dignity of sherīf was deprived of much of
its weight, and in 1827 a change of dynasty was effected by the
appointment of Ibn ‘Aun. Afterwards Turkish authority again
decayed. Mecca is, however, officially the capital of a Turkish
province, and has a governor-general and a Turkish garrison,
while Mahommedan law is administered by a judge sent from
Constantinople. But the real sovereign of Mecca and the Hejāz
is the sherīf, who, as head of a princely family claiming descent
from the Prophet, holds a sort of feudal position. The dignity
of sherīf (or grand sherīf, as Europeans usually say for the sake
of distinction, since all the kin of the princely houses reckoning
descent from the Prophet are also named sherīfs), although by
no means a religious pontificate, is highly respected owing to
its traditional descent in the line of Hasan, son of the fourth
caliph ‘Ali. From a political point of view the sherīf is the
modern counterpart of the ancient amīrs of Mecca, who were
named in the public prayers immediately after the reigning
caliph. When the great Mahommedan sultanates had become
too much occupied in internecine wars to maintain order in
the distant Hejāz, those branches of the Hassanids which from
the beginning of Islam had retained rural property in Arabia
usurped power in the holy cities and the adjacent Bedouin
territories. About A.D. 960 they established a sort of kingdom
with Mecca as capital. The influence of the princes of Mecca
has varied from time to time, according to the strength of the
foreign protectorate in the Hejāz or in consequence of feuds
among the branches of the house; until about 1882 it was for
most purposes much greater than that of the Turks. The
latter were strong enough to hold the garrisoned towns, and
thus the sultan was able within certain limits—playing off
one against the other the two rival branches of the aristocracy,
viz. the kin of Ghālib and the house of Ibn‘Aun—to assert the
right of designating or removing the sherīf, to whom in turn
he owed the possibility of maintaining, with the aid of considerable
pensions, the semblance of his much-prized lordship
over the holy cities. The grand sherīf can muster a considerable
force of freedmen and clients, and his kin, holding wells and
lands in various places through the Hejāz, act as his deputies and
administer the old Arabic customary law to the Bedouin. To
this influence the Hejāz owes what little of law and order it
enjoys. During the last quarter of the 19th century Turkish
influence became preponderant in western Arabia, and the
railway from Syria to the Hejāz tended to consolidate the
sultan’s supremacy. After the sherīfs, the principal family of
Mecca is the house of Shaibah, which holds the hereditary
custodianship of the Ka‘ba.

The Great Mosque and the Ka‘ba.—Long before Mahomet
the chief sanctuary of Mecca was the Ka‘ba, a rude stone building
without windows, and having a door 7 ft. from the ground;
and so named from its resemblance to a monstrous astragalus
(die) of about 40 ft. cube, though the shapeless structure is
not really an exact cube nor even exactly rectangular.14 The
Ka‘ba has been rebuilt more than once since Mahomet purged
it of idols and adopted it as the chief sanctuary of Islām, but
the old form has been preserved, except in secondary details;15
so that the “Ancient House,” as it is titled, is still essentially
a heathen temple, adapted to the worship of Islām by the
clumsy fiction that it was built by Abraham and Ishmael
by divine revelation as a temple of pure monotheism, and
that it was only temporarily perverted to idol worship from
the time when ‘Amr ibn Lohai introduced the statue of Hobal
from Syria16 till the victory of Islam. This fiction has involved
the superinduction of a new mythology over the old heathen
ritual, which remains practically unchanged. Thus the chief
object of veneration is the black stone, which is fixed in the
external angle facing Safā. The building is not exactly oriented,
but it may be called the south-east corner. Its technical name
is the black corner, the others being named the Yemen (south-west),
Syrian (north-west), and Irāk (north-east) corners,
from the lands to which they approximately point. The
black stone is a small dark mass a span long, with an aspect
suggesting volcanic or meteoric origin, fixed at such a height
that it can be conveniently kissed by a person of middle size.
It was broken by fire in the siege of A.D. 683 (not, as many authors
relate, by the Carmathians), and the pieces are kept together
by a silver setting. The history of this heavenly stone, given
by Gabriel to Abraham, does not conceal the fact that it was
originally a fetish, the most venerated of a multitude of idols
and sacred stones which stood all round the sanctuary in the
time of Mahomet. The Prophet destroyed the idols, but he
left the characteristic form of worship—the ṭawāf, or sevenfold
circuit of the sanctuary, the worshipper kissing or touching
the objects of his veneration—and besides the black stone
he recognized the so-called “southern” stone, the same presumably
as that which is still touched in the ṭawāf at the Yemen
corner (Muh. in Med. pp. 336, 425). The ceremony of the
ṭawāf and the worship of stone fetishes was common to Mecca
with other ancient Arabian sanctuaries.17 It was, as it still
is, a frequent religious exercise of the Meccans, and the first
duty of one who returned to the city or arrived there under a
vow of pilgrimage; and thus the outside of the Ka‘ba was and
is more important than the inside. Islām did away with the
worship of idols; what was lost in interest by their suppression

has been supplied by the invention of spots consecrated by
recollections of Abraham, Ishmael and Hagar, or held to
be acceptable places of prayer. Thus the space of ten spans
between the black stone and the door, which is on the east
side, between the black and Irāk corners, and a man’s height
from the ground, is called the Multazam, and here prayer should
be offered after the ṭawāf with outstretched arms and breast
pressed against the house. On the other side of the door,
against the same wall, is a shallow trough, which is said to mark
the original site of the stone on which Abraham stood to build
the Ka‘ba. Here the growth of the legend can be traced,
for the place is now called the “kneading-place” (Ma‘jan),
where the cement for the Ka‘ba was prepared. This name and
story do not appear in the older accounts. Once more, on the
north side of the Ka‘ba, there projects a low semicircular wall
of marble, with an opening at each end between it and the walls
of the house. The space within is paved with mosaic, and is
called the Ḥijr. It is included in the ṭawāf, and two slabs
of verde antico within it are called the graves of Ishmael and
Hagar, and are places of acceptable prayer. Even the golden
or gilded mīzāb (water-spout) that projects into the Ḥijr marks
a place where prayer is heard, and another such place is the
part of the west wall close to the Yemen corner.

The feeling of religious conservatism which has preserved
the structural rudeness of the Ka‘ba did not prohibit costly
surface decoration. In Mahomet’s time the outer walls were
covered by a veil (or kiswa) of striped Yemen cloth. The
caliphs substituted a covering of figured brocade, and the
Egyptian government still sends with each pilgrim caravan
from Cairo a new kiswa of black brocade, adorned with a broad
band embroidered with golden inscriptions from the Korān,
as well as a richer curtain for the door.18 The door of two
leaves, with its posts and lintel, is of silver gilt.

The interior of the Ka‘ba is now opened but a few times
every year for the general public, which ascends by the portable
staircase brought forward for the purpose. Foreigners can
obtain admission at any time for a special fee. The modern
descriptions, from observations made under difficulties, are
not very complete. Little change, however, seems to have
been made since the time of Ibn Jubair, who describes the
floor and walls as overlaid with richly variegated marbles,
and the upper half of the walls as plated with silver thickly
gilt, while the roof was veiled with coloured silk. Modern
writers describe the place as windowless, but Ibn Jubair mentions
five windows of rich stained glass from Irāk. Between the
three pillars of teak hung thirteen silver lamps. A chest in
the corner to the left of one entering contained Korans, and
at the Irāk corner a space was cut off enclosing the stair that
leads to the roof. The door to this stair (called the door of
mercy—Bāb el-Raḥma) was plated with silver by the caliph
Motawakkil. Here, in the time of Ibn Jubair, the Maqām
or standing stone of Abraham was usually placed for better
security, but brought out on great occasions.19

The houses of ancient Mecca pressed close upon the Ka‘ba,
the noblest families, who traced their descent from Ḳoṣai,
the reputed founder of the city, having their dwellings immediately
round the sanctuary. To the north of the Ka‘ba was
the Dār el-Nadwa, or place of assembly of the Koreish. The
multiplication of pilgrims after Islām soon made it necessary
to clear away the nearest dwellings and enlarge the place of
prayer around the Ancient House. Omar, Othmān and Ibn
Jubair had all a share in this work, but the great founder of
the mosque in its present form, with its spacious area and deep
colonnades, was the caliph Mahdī, who spent enormous sums
in bringing costly pillars from Egypt and Syria. The work
was still incomplete at his death in A.D. 785, and was finished
in less sumptuous style by his successor. Subsequent repairs
and additions, extending down to Turkish times, have left
little of Mahdī’s work untouched, though a few of the pillars
probably date from his days. There are more than five hundred
pillars in all, of very various style and workmanship, and the
enclosure—250 paces in length and 200 in breadth, according
to Burckhardt’s measurement—is entered by nineteen archways
irregularly disposed.

After the Ka‘ba the principal points of interest in the mosque
are the well Zamzam and the Maqām Ibrāhīm. The former
is a deep shaft enclosed in a massive vaulted building paved
with marble, and, according to Mahommedan tradition, is
the source (corresponding to the Beer-lahai-roi of Gen. xvi. 14)
from which Hagar drew water for her son Ishmael. The legend
tells that the well was long covered up and rediscovered by
‘Abd al-Moṭṭalib, the grandfather of the Prophet. Sacred
wells are familiar features of Semitic sanctuaries, and Islām,
retaining the well, made a quasi-biblical story for it, and
endowed its tepid waters with miraculous curative virtues.
They are eagerly drunk by the pilgrims, or when poured
over the body are held to give a miraculous refreshment after
the fatigues of religious exercise; and the manufacture of bottles
or jars for carrying the water to distant countries is quite a
trade. Ibn Jubair mentions a curious superstition of the
Meccans, who believed that the water rose in the shaft at the
full moon of the month Shaban. On this occasion a great
crowd, especially of young people, thronged round the well
with shouts of religious enthusiasm, while the servants of the
well dashed buckets of water over their heads. The Maqām
of Abraham is also connected with a relic of heathenism, the
ancient holy stone which once stood on the Ma‘jan, and is said
to bear the prints of the patriarch’s feet. The whole legend
of this stone, which is full of miraculous incidents, seems to
have arisen from a misconception, the Maqām Ibrāhīm in the
Korān meaning the sanctuary itself; but the stone, which is
a block about 3 spans in height and 2 in breadth, and in shape
“like a potter’s furnace” (Ibn Jubair), is certainly very ancient.
No one is now allowed to see it, though the box in which it
lies can be seen or touched through a grating in the little chapel
that surrounds it. In the middle ages it was sometimes shown,
and Ibn Jubair describes the pious enthusiasm with which he
drank Zamzam water poured on the footprints. It was covered
with inscriptions in an unknown character, one of which was
copied by Fākihī in his history of Mecca. To judge by the
facsimile in Dozy’s Israeliten te Mekka, the character is probably
essentially one with that of the Syrian Safā inscriptions, which
extended through the Nejd and into the Ḥejāz.20


Safā and Merwa.—In religious importance these two points or
“hills,” connected by the Mas‘ā, stand second only to the Ka‘ba.
Safā is an elevated platform surmounted by a triple arch, and approached
by a flight of steps.21 It lies south-east of the Ka‘ba,
facing the black corner, and 76 paces from the “Gate of Safā,”
which is architecturally the chief gate of the mosque. Merwa is
a similar platform, formerly covered with a single arch, on the
opposite side of the valley. It stands on a spur of the Red
Mountain called Jebel Kuayḳian. The course between these two
sacred points is 493 paces long, and the religious ceremony called
the “sa‘y” consists in traversing it seven times, beginning and
ending at Safā. The lowest part of the course, between the so-called
green milestones, is done at a run. This ceremony, which,
as we shall presently see, is part of the omra, is generally said to be
performed in memory of Hagar, who ran to and fro between the
two eminences vainly seeking water for her son. The observance,
however, is certainly of pagan origin; and at one time there were
idols on both the so-called hills (see especially Azraqī, pp. 74, 78).

The Ceremonies and the Pilgrimage.—Before Islām the Ka‘ba was
the local sanctuary of the Meccans, where they prayed and did

sacrifice, where oaths were administered and hard cases submitted
to divine sentence according to the immemorial custom of Semitic
shrines. But, besides this, Mecca was already a place of pilgrimage.
Pilgrimage with the ancient Arabs was the fulfilment of a vow,
which appears to have generally terminated—at least on the part
of the well-to-do—in a sacrificial feast. A vow of pilgrimage might
be directed to other sanctuaries than Mecca—the technical word
for it (ihlāl) is applied, for example, to the pilgrimage to Manāt
(Bakri, p. 519). He who was under such a vow was bound by ceremonial
observances of abstinence from certain acts (e.g. hunting)
and sensual pleasures, and in particular was forbidden to shear or
comb his hair till the fulfilment of the vow. This old Semitic usage
has its close parallel in the vow of the Nazarite. It was not peculiarly
connected with Mecca; at Tāif, for example, it was customary
on return to the city after an absence to present oneself at the sanctuary,
and there shear the hair (Muh. in Med., p. 381). Pilgrimages
to Mecca were not tied to a single time, but they were naturally
associated with festive occasions, and especially with the great
annual feast and market. The pilgrimage was so intimately
connected with the well-being of Mecca, and had already such a hold
on the Arabs round about, that Mahomet could not afford to sacrifice
it to an abstract purity of religion, and thus the old usages were
transplanted into Islām in the double form of the omra or vow of
pilgrimage to Mecca, which can be discharged at any time, and the
ḥajj or pilgrimage at the great annual feast. The latter closes with
a visit to the Ka‘ba, but its essential ceremonies lie outside Mecca,
at the neighbouring shrines where the old Arabs gathered before the
Meccan fair.

The omra begins at some point outside the Ḥaram (or holy territory),
generally at Tanim, both for convenience sake and because Ayesha
began the omra there in the year 10 of the Hegira. The pilgrim
enters the Ḥaram in the antique and scanty pilgrimage dress (iḥrām),
consisting of two cloths wound round his person in a way prescribed
by ritual. His devotion is expressed in shouts of “Labbeyka”
(a word of obscure origin and meaning); he enters the great mosque,
performs the ṭawāf and the sa‘y22 and then has his head shaved
and resumes his common dress. This ceremony is now generally
combined with the ḥajj, or is performed by every stranger or traveller
when he enters Mecca, and the iḥrām (which involves the acts of
abstinence already referred to) is assumed at a considerable distance
from the city. But it is also proper during one’s residence in the
holy city to perform at least one omra from Tanim in connexion
with a visit to the mosque of Ayesha there. The triviality of these
rites is ill concealed by the legends of the sa‘y of Hagar and of the
ṭawāf being first performed by Adam in imitation of the circuit
of the angels about the throne of God; the meaning of their ceremonies
seems to have been almost a blank to the Arabs before Islām,
whose religion had become a mere formal tradition. We do not
even know to what deity the worship expressed in the ṭawāf was
properly addressed. There is a tradition that the Ka‘ba was a
temple of Saturn (Shahrastānī, p. 431); perhaps the most distinctive
feature of the shrine may be sought in the sacred doves which still
enjoy the protection of the sanctuary. These recall the sacred doves
of Ascalon (Philo vi. 200 of Richter’s ed.), and suggests Venus-worship
as at least one element (cf. Herod i. 131, iii. 8; Ephr. Syr.,
Op. Syr. ii. 457).

To the ordinary pilgrim the omra has become so much an episode
of the ḥajj that it is described by some European pilgrims as a mere
visit to the mosque of Ayesha; a better conception of its original
significance is got from the Meccan feast of the seventh month
(Rajab), graphically described by Ibn Jubair from his observations
in A.D. 1184. Rajab was one of the ancient sacred months, and the
feast, which extended through the whole month and was a joyful
season of hospitality and thanksgiving, no doubt represents the
ancient feasts of Mecca more exactly than the ceremonies of the
ḥajj, in which old usage has been overlaid by traditions and glosses
of Islām. The omra was performed by crowds from day to day,
especially at new and full moon.23 The new moon celebration was
nocturnal; the road to Tanim, the Mas‘ā, and the mosque were
brilliantly illuminated; and the appearing of the moon was greeted
with noisy music. A genuine old Arab market was held, for the
wild Bedouins of the Yemen mountains came in thousands to barter
their cattle and fruits for clothing, and deemed that to absent themselves
would bring drought and cattle plague in their homes. Though
ignorant of the legal ritual and prayers, they performed the ṭawāf
with enthusiasm, throwing themselves against the Ka‘ba and clinging
to its curtains as a child clings to its mother. They also made a
point of entering the Ka‘ba. The 29th of the month was the feast
day of the Meccan women, when they and their little ones had the
Ka‘ba to themselves without the presence even of the Sheybās.

The central and essential ceremonies of the ḥajj or greater pilgrimage
are those of the day of Arafa, the 9th of the “pilgrimage month”
(Dhu‘l Ḥijja), the last of the Arab year; and every Moslem who is
his own master, and can command the necessary means, is bound to
join in these once in his life, or to have them fulfilled by a substitute
on his behalf and at his expense. By them the pilgrim becomes as
pure from sin as when he was born, and gains for the rest of his life
the honourable title of ḥajj. Neglect of many other parts of the
pilgrim ceremonial may be compensated by offerings, but to miss
the “stand” (woqūf) at Arafa is to miss the pilgrimage. Arafa
or Arafat is a space, artificially limited, round a small isolated hill
called the Hill of Mercy, a little way outside the holy territory, on the
road from Mecca to Taif. One leaving Mecca after midday can easily
reach the place on foot the same evening. The road is first northwards
along the Mecca valley and then turns eastward. It leads
through the straggling village of Mina, occupying a long narrow
valley (Wādi Mina), two to three hours from Mecca, and thence by
the mosque of Mozdalifa over a narrow pass opening out into the
plain of Arafa, which is an expansion of the great Wādi Naman, through
which the Taif road descends from Mount Kara. The lofty and
rugged mountains of the Hodheyl tower over the plain on the north
side and overshadow the little Hill of Mercy, which is one of those
bosses of weathered granite so common in the Hejāz. Arafa lay
quite near Dhul-Majaz, where, according to Arabian tradition, a
great fair was held from the 1st to the 8th of the pilgrimage month;
and the ceremonies from which the ḥajj was derived were originally
an appendix to this fair. Now, on the contrary, the pilgrim is expected
to follow as closely as may be the movements of the prophet
at his “farewell pilgrimage” in the year 10 of the Hegira (A.D. 632).
He therefore leaves Mecca in pilgrim garb on the 8th of Dhu‘l
Ḥijja, called the day of tarwīya (an obscure and pre-Islamic name),
and, strictly speaking, should spend the night at Mina. It is now,
however, customary to go right on and encamp at once at Arafa.
The night should be spent in devotion, but the coffee booths do a
lively trade, and songs are as common as prayers. Next forenoon
the pilgrim is free to move about, and towards midday he may if
he please hear a sermon. In the afternoon the essential ceremony
begins; it consists simply in “standing” on Arafa shouting “Labbeyka”
and reciting prayers and texts till sunset. After the sun is
down the vast assemblage breaks up, and a rush (technically ifāḍa,
daf‘, nafr) is made in the utmost confusion to Mozdalifa, where the night
prayer is said and the night spent. Before sunrise next morning
(the 10th) a second “stand” like that on Arafa is made for a short
time by torchlight round the mosque of Mozdalifa, but before the
sun is fairly up all must be in motion in the second ifāḍa towards
Mina. The day thus begun is the “day of sacrifice,” and has four
ceremonies—(1) to pelt with seven stones a cairn (jamrat al ‘aqaba)
at the eastern end of W. Mina, (2) to slay a victim at Mina and hold a
sacrificial meal, part of the flesh being also dried and so preserved,
or given to the poor,24 (3) to be shaved and so terminate the iḥrām,
(4) to make the third ifāḍa, i.e. go to Mecca and perform the ṭawāf
and sa‘y (‘omrat al-ifāḍa), returning thereafter to Mina. The
sacrifice and visit to Mecca may, however, be delayed till the 11th,
12th or 13th. These are the days of Mina, a fair and joyous feast,
with no special ceremony except that each day the pilgrim is expected
to throw seven stones at the jamrat al ‘aqaba, and also at each of
two similar cairns in the valley. The stones are thrown in the name
of Allah, and are generally thought to be directed at the devil.
This is, however, a custom older than Islām, and a tradition in
Azraqī, p. 412, represents it as an act of worship to idols at Mina.
As the stones are thrown on the days of the fair, it is not unlikely
that they have something to do with the old Arab mode of closing
a sale by the purchaser throwing a stone (Bīrūnī, p. 328).25 The pilgrims
leave Mina on the 12th or 13th, and the ḥajj is then over.
(See further Mahommedan Religion.)

The colourless character of these ceremonies is plainly due to the
fact that they are nothing more than expurgated heathen rites.
In Islām proper they have no raison d’être; the legends about Adam
and Eve on Arafa, about Abraham’s sacrifice of the ram at Thabii
by Mina, imitated in the sacrifices of the pilgrimage, are clumsy
afterthoughts, as appears from their variations and only partial
acceptance. It is not so easy to get at the nature of the original
rites, which Islām was careful to suppress. But we find mention
of practices condemned by the orthodox, or forming no part of the
Moslem ritual, which may be regarded as traces of an older ceremonial.
Such are nocturnal illuminations at Mina (Ibn Baṭūta
i. 396), Arafa and Mozdalifa (Ibn Jubair, 179), and ṭawāfs performed
by the ignorant at holy spots at Arafa not recognized by law (Snouck-Hurgronje
p. 149 sqq.). We know that the rites at Mozdalifa were
originally connected with a holy hill bearing the name of the god
Quzah (the Edomite Kozē) whose bow is the rainbow, and there is
reason to think that the ifāḍas from Arafa and Quzah, which were
not made as now after sunset and before sunrise, but when the sun
rested on the tops of the mountains, were ceremonies of farewell and
salutation to the sun-god.

The statistics of the pilgrimage cannot be given with certainty
and vary much from year to year. The quarantine office keeps a
record of arrivals by sea at Jidda (66,000 for 1904); but to these
must be added those travelling by land from Cairo, Damascus

and Irāk, the pilgrims who reach Medina from Yanbu and go on to
Mecca, and those from all parts of the peninsula. Burckhardt
in 1814 estimated the crowd at Arafa at 70,000, Burton in 1853
at 50,000, ‘Abd el-Razzāk in 1858 at 60,000. This great assemblage
is always a dangerous centre of infection, and the days of Mina
especially, spent under circumstances originally adapted only for a
Bedouin fair, with no provisions for proper cleanliness, and with the
air full of the smell of putrefying offal and flesh drying in the sun,
produce much sickness.

Literature.—Besides the Arabic geographers and cosmographers,
we have Ibn ‘Abd Rabbih’s description of the mosque, early in the
10th century (‘Iḳd Farīd, Cairo ed., iii. 362 sqq.), but above all the
admirable record of Ibn Jubair (A.D. 1184), by far the best account
extant of Mecca and the pilgrimage. It has been much pillaged
by Ibn Baṭūta. The Arabic historians are largely occupied with
fabulous matter as to Mecca before Islām; for these legends the reader
may refer to C. de Perceval’s Essai. How little confidence can be
placed in the pre-Islamic history appears very clearly from the
distorted accounts of Abraha’s excursion against the Hejāz, which
fell but a few years before the birth of the Prophet, and is the first
event in Meccan history which has confirmation from other sources.
See Nöldeke’s version of Ţabarī, p. 204 sqq. For the period of the
Prophet, Ibn Hishām and Wāḳidī are valuable sources in topography
as well as history. Of the special histories and descriptions of Mecca
published by Wüstenfeld (Chroniken der Stadt Mekka, 3 vols., 1857-1859,
with an abstract in German, 1861), the most valuable is that of
Azraqī. It has passed through the hands of several editors, but the
oldest part goes back to the beginning of the 9th Christian century.
Kutbeddin’s history (vol. iii. of the Chroniken) goes down with the
additions of his nephew to A.D. 1592.

Of European descriptions of Mecca from personal observation
the best is Burckhardt’s Travels in Arabia (cited above from the 8vo
ed., 1829). The Travels of Aly Bey (Badia, London, 1816) describe
a visit in 1807; Burton’s Pilgrimage (3rd ed., 1879) often supplements
Burckhardt; Von Maltzan’s Wallfahrt nach Mekka (1865) is lively
but very slight. ‘Abd el-Razzāq’s report to the government of India
on the pilgrimage of 1858 is specially directed to sanitary questions;
C. Snouck-Hurgronje, Mekka (2 vols., and a collection of photographs,
The Hague, 1888-1889), gives a description of the Meccan
sanctuary and of the public and private life of the Meccans as
observed by the author during a sojourn in the holy city in 1884-1885
and a political history of Mecca from native sources from the Hegira
till 1884. For the pilgrimage see particularly Snouck-Hurgronje,
Het Mekkaansche Feest (Leiden, 1880).



(W. R. S.)


 
1 A variant of the name Makkah is Bakkah (Sur. iii. 90; Bakrī,
155 seq.). For other names and honorific epithets of the city see
Bakrī, ut supra, Azraqī, p. 197, Yāqūt iv. 617 seq. The lists are in
part corrupt, and some of the names (Kūthā and ‘Arsh or ‘Ursh,
“the huts”) are not properly names of the town as a whole.

2 Mecca, says one of its citizens, in Wāqidī (Kremer’s ed., p. 196, or
Muh. in Med. p. 100), is a settlement formed for trade with Syria
in summer and Abyssinia in winter, and cannot continue to exist if
the trade is interrupted.

3 The details are variously related. See Bīrūnī, p. 328 (E. T., p. 324);
Asma‘i in Yāqūt, iii. 705, iv. 416, 421; Azraqī, p. 129 seq.; Bakrī,
p. 661. Jebel Kabkab is a great mountain occupying the angle
between W. Namān and the plain of Arafa. The peak is due north
of Sheddād, the hamlet which Burckhardt (i. 115) calls Shedad.
According to Azraqī, p. 80, the last shrine visited was that of the
three trees of Uzzā in W. Nakhla.

4 So we are told by Bīrūnī, p. 62 (E. T., 73).

5 Wāqidī, ed. Kremer, pp. 20, 21; Muh. in Med. p. 39.

6 The older fairs were not entirely deserted till the troubles of the
last days of the Omayyads (Azraqī, p. 131).

7 This is the cross-road traversed by Burckhardt (i. 109), and
described by him as cut through the rocks with much labour.

8 Iṣṭakhrī gives the length of the city proper from north to south
as 2 m., and the greatest breadth from the Jiyād quarter east of the
great mosque across the valley and up the western slopes as two-thirds
of the length.

9 For details as to the ancient quarters of Mecca, where the several
families or septs lived apart, see Azraqī, 455 pp. seq., and compare
Ya‘qūbī, ed. Juynboll, p. 100. The minor sacred places are described
at length by Azraqī and Ibn Jubair. They are either connected
with genuine memories of the Prophet and his times, or have spurious
legends to conceal the fact that they were originally holy stones,
wells, or the like, of heathen sanctity.

10 Balādhurī, in his chapter on the floods of Mecca (pp. 53 seq.),
says that ‘Omar built two dams.

11 The aqueduct is the successor of an older one associated with the
names of Zobaida, wife of Harūn al-Rashīd, and other benefactors.
But the old aqueduct was frequently out of repair, and seems to have
played but a secondary part in the medieval water supply. Even
the new aqueduct gave no adequate supply in Burckhardt’s time.

12 In Ibn Jubair’s time large supplies were brought from the Yemen
mountains.

13 The corruption of manners in Mecca is no new thing. See the
letter of the caliph Mahdi on the subject; Wüstenfeld, Chron. Mek.,
iv. 168.

14 The exact measurements (which, however, vary according to
different authorities) are stated to be: sides 37 ft. 2 in. and 38 ft.
4 in.; ends 31 ft. 7 in. and 29 ft.; height 35 ft.

15 The Ka‘ba of Mahomet’s time was the successor of an older
building, said to have been destroyed by fire. It was constructed
in the still usual rude style of Arabic masonry, with string courses
of timber between the stones (like Solomon’s Temple). The roof
rested on six pillars; the door was raised above the ground and
approached by a stair (probably on account of the floods which often
swept the valley); and worshippers left their shoes under the stair
before entering. During the first siege of Mecca (A.D. 683), the building
was burned down, the Ibn Zubair reconstructed it on an enlarged
scale and in better style of solid ashlar-work. After his death his most
glaring innovations (the introduction of two doors on a level with
the ground, and the extension of the building lengthwise to include
the Ḥijr) were corrected by Ḥajjāj, under orders from the caliph,
but the building retained its more solid structure. The roof now rested
on three pillars, and the height was raised one-half. The Ka‘ba was
again entirely rebuilt after the flood of A.D. 1626, but since Ḥajjāj
there seem to have been no structural changes.

16 Hobal was set up within the Temple over the pit that contained
the sacred treasures. His chief function was connected with the
sacred lot to which the Meccans were accustomed to betake themselves
in all matters of difficulty.

17 See Ibn Hishām i. 54, Azraḳī p. 80 (‘Uzzā in Baṭn Marr); Yāḳūt
iii. 705 (Otheydā); Bar Hebraeus on Psalm xii. 9. Stones worshipped
by circling round them bore the name dawār or duwār
(Krehl, Rel. d. Araber, p. 69). The later Arabs not unnaturally viewed
such cultus as imitated from that of Mecca (Yāqūt iv. 622,
cf. Dozy, Israeliten te Mekka, p. 125, who draws very perverse
inferences).

18 The old kiswa is removed on the 25th day of the month before
the pilgrimage, and fragments of it are bought by the pilgrims as
charms. Till the 10th day of the pilgrimage month the Ka‘ba is
bare.

19 Before Islām the Ka‘ba was opened every Monday and Thursday;
in the time of Ibn Jubair it was opened with considerable ceremony
every Monday and Friday, and daily in the month Rajab. But,
though prayer within the building is favoured by the example of
the Prophet, it is not compulsory on the Moslem, and even in the
time of Ibn Baṭūṭa the opportunities of entrance were reduced to
Friday and the birthday of the Prophet.

20 See De Vogué, Syrie centrale: inscr. sem.; Lady Anne Blunt
Pilgrimage of Nejd, ii., and W. R. Smith, in the Athenaeum, March
20, 1880.

21 Ibn Jubair speaks of fourteen steps, Ali Bey of four, Burckhardt
of three. The surrounding ground no doubt has risen so that the
old name “hill of Safā” is now inapplicable.

22 The latter perhaps was no part of the ancient omra; see Snouck-Hurgronje,
Het Mekkaansche Feest (1880) p. 115 sqq.

23 The 27th was also a great day, but this day was in commemoration
of the rebuilding of the Ka‘ba by Ibn Jubair.

24 The sacrifice is not indispensable except for those who can afford
it and are combining the hajj with the omra.

25 On the similar pelting of the supposed graves of Abū Lahab
and his wife (Ibn Jubair, p. 110) and of Abū Righāl at Mughammas,
see Nöldeke’s translation of Tabarī, 208.





MECHANICS. The subject of mechanics may be divided
into two parts: (1) theoretical or abstract mechanics, and
(2) applied mechanics.

1. Theoretical Mechanics

Historically theoretical mechanics began with the study of
practical contrivances such as the lever, and the name mechanics
(Gr. τὰ μηχανικά), which might more properly be restricted
to the theory of mechanisms, and which was indeed used in
this narrower sense by Newton, has clung to it, although the
subject has long attained a far wider scope. In recent times
it has been proposed to adopt the term dynamics (from Gr.
δύναμις force,) as including the whole science of the action of
force on bodies, whether at rest or in motion. The subject
is usually expounded under the two divisions of statics and
kinetics, the former dealing with the conditions of rest or equilibrium
and the latter with the phenomena of motion as affected
by force. To this latter division the old name of dynamics
(in a restricted sense) is still often applied. The mere geometrical
description and analysis of various types of motion, apart
from the consideration of the forces concerned, belongs to
kinematics. This is sometimes discussed as a separate theory,
but for our present purposes it is more convenient to introduce
kinematical motions as they are required. We follow also
the traditional practice of dealing first with statics and then
with kinetics. This is, in the main, the historical order of
development, and for purposes of exposition it has many advantages.
The laws of equilibrium are, it is true, necessarily
included as a particular case under those of motion; but there
is no real inconvenience in formulating as the basis of statics
a few provisional postulates which are afterwards seen to be
comprehended in a more general scheme.

The whole subject rests ultimately on the Newtonian laws
of motion and on some natural extensions of them. As these
laws are discussed under a separate heading (Motion, Laws of),
it is here only necessary to indicate the standpoint from which
the present article is written. It is a purely empirical one.
Guided by experience, we are able to frame rules which enable
us to say with more or less accuracy what will be the consequences,
or what were the antecedents, of a given state of things.
These rules are sometimes dignified by the name of “laws
of nature,” but they have relation to our present state of knowledge
and to the degree of skill with which we have succeeded
in giving more or less compact expression to it. They are
therefore liable to be modified from time to time, or to be
superseded by more convenient or more comprehensive modes
of statement. Again, we do not aim at anything so hopeless,
or indeed so useless, as a complete description of any phenomenon.
Some features are naturally more important or
more interesting to us than others; by their relative simplicity
and evident constancy they have the first hold on our attention,
whilst those which are apparently accidental and vary from
one occasion to another arc ignored, or postponed for later
examination. It follows that for the purposes of such description
as is possible some process of abstraction is inevitable
if our statements are to be simple and definite. Thus in studying
the flight of a stone through the air we replace the body in
imagination by a mathematical point endowed with a mass-coefficient.
The size and shape, the complicated spinning
motion which it is seen to execute, the internal strains and
vibrations which doubtless take place, are all sacrificed in the
mental picture in order that attention may be concentrated
on those features of the phenomenon which are in the first
place most interesting to us. At a later stage in our subject
the conception of the ideal rigid body is introduced; this enables
us to fill in some details which were previously wanting, but
others are still omitted. Again, the conception of a force as
concentrated in a mathematical line is as unreal as that of
a mass concentrated in a point, but it is a convenient fiction
for our purpose, owing to the simplicity which it lends to our
statements.

The laws which are to be imposed on these ideal representations
are in the first instance largely at our choice. Any scheme
of abstract dynamics constructed in this way, provided it be
self-consistent, is mathematically legitimate; but from the
physical point of view we require that it should help us to
picture the sequence of phenomena as they actually occur.
Its success or failure in this respect can only be judged a posteriori
by comparison of the results to which it leads with
the facts. It is to be noticed, moreover, that all available tests
apply only to the scheme as a whole; owing to the complexity
of phenomena we cannot submit any one of its postulates to
verification apart from the rest.

It is from this point of view that the question of relativity
of motion, which is often felt to be a stumbling-block on the
very threshold of the subject, is to be judged. By “motion”
we mean of necessity motion relative to some frame of reference
which is conventionally spoken of as “fixed.” In the earlier
stages of our subject this may be any rigid, or apparently
rigid, structure fixed relatively to the earth. If we meet with
phenomena which do not fit easily into this view, we have the
alternatives either to modify our assumed laws of motion,
or to call to our aid adventitious forces, or to examine whether
the discrepancy can be reconciled by the simpler expedient
of a new basis of reference. It is hardly necessary to say that
the latter procedure has hitherto been found to be adequate.
As a first step we adopt a system of rectangular axes whose
origin is fixed in the earth, but whose directions are fixed by
relation to the stars; in the planetary theory the origin is transferred
to the sun, and afterwards to the mass-centre of the
solar system; and so on. At each step there is a gain in accuracy
and comprehensiveness; and the conviction is cherished
that some system of rectangular axes exists with respect
to which the Newtonian scheme holds with all imaginable
accuracy.

A similar account might be given of the conception of
time as a measurable quantity, but the remarks which it
is necessary to make under this head will find a place
later.




The following synopsis shows the scheme on which the treatment
is based:—


	Part 1.—Statics.

	1. 	Statics of a particle.

	2. 	Statics of a system of particles.

	3. 	Plane kinematics of a rigid body.

	4. 	Plane statics.

	5. 	Graphical statics.

	6. 	Theory of frames.

	7. 	Three-dimensional kinematics of a rigid body.

	8. 	Three-dimensional statics.

	9. 	Work.

	10. 	Statics of inextensible chains.

	11. 	Theory of mass-systems.

	Part 2.—Kinetics.

	12. 	Rectilinear motion.

	13. 	General motion of a particle.

	14. 	Central forces. Hodograph.

	15. 	Kinetics of a system of discrete particles.

	16. 	Kinetics of a rigid body. Fundamental principles.

	17. 	Two-dimensional problems.

	18. 	Equations of motion in three dimensions.

	19. 	Free motion of a solid.

	20. 	Motion of a solid of revolution.

	21. 	Moving axes of reference.

	22. 	Equations of motion in generalized co-ordinates.

	23. 	Stability of equilibrium. Theory of vibrations.




Part I.—Statics

§ 1. Statics of a Particle.—By a particle is meant a body
whose position can for the purpose in hand be sufficiently
specified by a mathematical point. It need not be “infinitely
small,” or even small compared with ordinary standards;
thus in astronomy such vast bodies as the sun, the earth, and
the other planets can for many purposes be treated merely
as points endowed with mass.

A force is conceived as an effort having a certain direction
and a certain magnitude. It is therefore adequately represented,
for mathematical purposes, by a straight line AB drawn
in the direction in question, of length proportional (on any
convenient scale) to the magnitude of the force. In other
words, a force is mathematically of the nature of a “vector”
(see Vector Analysis, Quaternions). In most questions
of pure statics we are concerned only with the ratios of the
various forces which enter into the problem, so that it is indifferent
what unit of force is adopted. For many purposes a gravitational
system of measurement is most natural; thus we speak
of a force of so many pounds or so many kilogrammes. The
“absolute” system of measurement will be referred to below
in Part II., Kinetics. It is to be remembered that all “force”
is of the nature of a push or a pull, and that according to the
accepted terminology of modern mechanics such phrases as
“force of inertia,” “accelerating force,” “moving force,”
once classical, are proscribed. This rigorous limitation of the
meaning of the word is of comparatively recent origin, and it
is perhaps to be regretted that some more technical term has
not been devised, but the convention must now be regarded
as established.


	

	Fig. 1.


The fundamental postulate of this part of our subject is that
the two forces acting on a particle may be compounded by the
“parallelogram rule.” Thus, if the two forces P,Q be represented
by the lines OA, OB, they can be replaced by a single force
R represented by the diagonal OC of the parallelogram determined
by OA, OB. This is of course a physical assumption
whose propriety is justified solely by experience. We shall
see later that it is implied in Newton’s statement of his Second
Law of motion. In modern language, forces are compounded
by “vector-addition”; thus, if we draw in succession vectors
HK>, KL> to represent P, Q, the force R is represented by the
vector HL> which is the “geometric sum” of HK>, KL>.

By successive applications of the above rule any number
of forces acting on a particle may be replaced by a single force
which is the vector-sum of the given forces: this single force
is called the resultant. Thus if AB>, BC>, CD> ..., HK> be
vectors representing the given forces, the resultant will be given
by AK>. It will be understood that the figure ABCD ... K
need not be confined to one plane.


	

	Fig. 2.


If, in particular, the point K coincides with A, so that the
resultant vanishes, the given system of forces is said to be
in equilibrium—i.e. the particle could remain permanently at
rest under its action. This is the proposition known as the
polygon of forces. In the particular case of three forces it
reduces to the triangle of forces, viz. “If three forces acting
on a particle are represented as to magnitude and direction
by the sides of a triangle taken in order, they are in equilibrium.”

A sort of converse proposition is frequently useful, viz.
if three forces acting on a particle be in equilibrium, and any
triangle be constructed whose sides are respectively parallel
to the forces, the magnitudes of the forces will be to one another
as the corresponding sides of the triangle. This follows from
the fact that all such triangles are necessarily similar.


	

	Fig. 3.



As a simple example of the geometrical method of treating statical
problems we may consider the equilibrium of a particle on a “rough”
inclined plane. The usual empirical law of sliding friction is that
the mutual action between two plane surfaces in contact, or between
a particle and a curve or surface, cannot make with the normal an
angle exceeding a certain limit λ called the angle of friction. If the
conditions of equilibrium require an obliquity greater than this, sliding
will take place. The precise value of λ will vary with the nature
and condition of the surfaces in contact. In the case of a body
simply resting on an inclined plane, the reaction must of course be
vertical, for equilibrium, and the slope α of the plane must therefore
not exceed λ. For this reason λ is also known as the angle of
repose. If α > λ, a force P must be applied in order to maintain
equilibrium; let θ be the inclination of P to the plane, as shown in
the left-hand diagram. The relations between this force P, the
gravity W of the body, and the reaction S of the plane are then
determined by a triangle of forces HKL. Since the inclination of S
to the normal cannot exceed λ on either side, the value of P must
lie between two limits which are represented by L1H, L2H, in the
right-hand diagram. Denoting these limits by P1, P2, we have

P1/W = L1H/HK = sin (α − λ)/cos (θ + λ),

P2/W = L2H/HK = sin (α + λ)/cos (θ − λ).

It appears, moreover, that if θ be varied P will be least when L1H
is at right angles to KL1, in which case P1 = W sin (α − λ), corresponding
to θ = −λ.




	

	


Just as two or more forces can be combined into a single
resultant, so a single force may be resolved into components

acting in assigned directions. Thus a force can be uniquely
resolved into two components acting in two assigned directions
in the same plane with it by an inversion of the parallelogram
construction of fig. 1. If, as is usually most convenient, the
two assigned directions are at right angles, the two components
of a force P will be P cos θ, P sin θ, where θ is the inclination
of P to the direction of the
former component. This leads
to formulae for the analytical
reduction of a system of coplanar
forces acting on a
particle. Adopting rectangular
axes Ox, Oy, in the plane of
the forces, and distinguishing
the various forces of the system
by suffixes, we can replace the
system by two forces X, Y, in the direction of co-ordinate axes;
viz.—

X = P1 cos θ1 + P2 cos θ2 + ... = Σ (P cos θ),

Y = P1 sin θ1 + P2 sin θ2 + ... = Σ (P sin θ).

(1)

These two forces X, Y, may be combined into a single resultant
R making an angle φ with Ox, provided

X = R cos φ,   Y = R sin φ,

(2)

whence

R2 = X2 + Y2, tan φ = Y/X.

(3)

For equilibrium we must have R = 0, which requires X = 0,
Y = 0; in words, the sum of the components of the system
must be zero for each of two perpendicular directions in the
plane.


	

	Fig. 5.


A similar procedure applies to a three-dimensional system.
Thus if, O being the origin, OH> represent any force P of the
system, the planes drawn through
H parallel to the co-ordinate
planes will enclose with the latter
a parallelepiped, and it is evident
that OH> is the geometric sum of
OA>, AN>, NH>, or OA>, OB>, OC>,  in
the figure. Hence P is equivalent
to three forces Pl, Pm, Pn acting
along Ox, Oy, Oz, respectively,
where l, m, n, are the “direction-ratios”
of OH>. The whole system can be reduced in this way
to three forces

X = Σ (Pl),   Y = Σ (Pm),   Z = Σ (Pn),

(4)

acting along the co-ordinate axes. These can again be combined
into a single resultant R acting in the direction (λ, μ, ν), provided

X = Rλ,   Y = Rμ,   Z = Rν.

(5)

If the axes are rectangular, the direction-ratios become direction-cosines,
so that λ2 + μ2 + ν2 = 1, whence

R2 = X2 + Y2 + Z2.

(6)

The conditions of equilibrium are X = 0, Y = 0, Z = 0.

§ 2. Statics of a System of Particles.—We assume that the
mutual forces between the pairs of particles, whatever their
nature, are subject to the “Law of Action and Reaction”
(Newton’s Third Law); i.e. the force exerted by a particle A
on a particle B, and the force exerted by B on A, are equal
and opposite in the line AB. The problem of determining the
possible configurations of equilibrium of a system of particles
subject to extraneous forces which are known functions of
the positions of the particles, and to internal forces which are
known functions of the distances of the pairs of particles between
which they act, is in general determinate. For if n be the
number of particles, the 3n conditions of equilibrium (three
for each particle) are equal in number to the 3n Cartesian (or
other) co-ordinates of the particles, which are to be found. If
the system be subject to frictionless constraints, e.g. if some of
the particles be constrained to lie on smooth surfaces, or if
pairs of particles be connected by inextensible strings, then
for each geometrical relation thus introduced we have an unknown
reaction (e.g. the pressure of the smooth surface, or
the tension of the string), so that the problem is still determinate.


	

	Fig. 6.



	

	Fig. 7.

	

	Fig. 8.



The case of the funicular polygon will be of use to us later. A
number of particles attached at various points of a string are acted
on by given extraneous forces P1, P2, P3 ... respectively. The
relation between the three forces acting on any particle, viz. the
extraneous force and the tensions in the two adjacent portions of
the string can be exhibited by means of a triangle of forces; and if
the successive triangles be drawn to the same scale they can be fitted
together so as to constitute a single force-diagram, as shown in fig. 6.
This diagram consists of a polygon whose successive sides represent
the given forces P1, P2, P3 ..., and of a series of lines connecting
the vertices with a point O. These latter lines measure the tensions
in the successive portions of string. As a special, but very important
case, the forces P1, P2, P3 ... may be parallel, e.g. they may be the
weights of the several
particles. The polygon
of forces is then made
up of segments of a
vertical line. We note
that the tensions have
now the same horizontal
projection (represented
by the dotted line in
fig. 7). It is further of
interest to note that if
the weights be all equal,
and at equal horizontal
intervals, the vertices of the funicular will lie on a parabola whose
axis is vertical. To prove this statement, let A, B, C, D ... be
successive vertices, and let H, K ... be the middle points of AC,
BD ...; then BH, CK ... will be vertical by the hypothesis, and
since the geometric sum of
BA>, BC> is represented by 2BH>,
the tension in BA: tension in
BC: weight at B

as BA : BC : 2BH.

The tensions in the successive portions
of the string are therefore
proportional to the respective
lengths, and the lines BH, CK ...
are all equal. Hence AD, BC are
parallel and are bisected by the
same vertical line; and a parabola with vertical axis can therefore
be described through A, B, C, D. The same holds for the four points
B, C, D, E and so on; but since a parabola is uniquely determined
by the direction of its axis and by three points on the curve, the
successive parabolas ABCD, BCDE, CDEF ... must be coincident.



§ 3. Plane Kinematics of a Rigid Body.—The ideal rigid
body is one in which the distance between any two points is
invariable. For the present we confine ourselves to the consideration
of displacements in two dimensions, so that the
body is adequately represented by a thin lamina or plate.


	

	Fig. 9.


The position of a lamina movable in its own plane is determinate
when we know the positions of any two points A, B of
it. Since the four co-ordinates (Cartesian or other) of these
two points are connected
by the relation which expresses
the invariability of
the length AB, it is plain
that virtually three independent
elements are required
and suffice to specify
the position of the lamina.
For instance, the lamina
may in general be fixed by
connecting any three points of it by rigid links to three fixed
points in its plane. The three independent elements may
be chosen in a variety of ways (e.g. they may be the lengths

of the three links in the above example). They may be called
(in a generalized sense) the co-ordinates of the lamina. The
lamina when perfectly free to move in its own plane is said
to have three degrees of freedom.


	

	Fig. 10.

	

	Fig. 11.


By a theorem due to M. Chasles any displacement whatever
of the lamina in its own plane is equivalent to a rotation about
some finite or infinitely distant point J. For suppose that
in consequence of the displacement a point of the lamina is
brought from A to B, whilst the point of the lamina which was
originally at B is brought to C. Since AB, BC, are two different
positions of the same line in the
lamina they are equal, and it is
evident that the rotation could have
been effected by a rotation about J,
the centre of the circle ABC, through
an angle AJB. As a special case
the three points A, B, C may be in
a straight line; J is then at infinity
and the displacement is equivalent to
a pure translation, since every point
of the lamina is now displaced parallel
to AB through a space equal to AB.

Next, consider any continuous motion of the lamina. The
latter may be brought from any one of its positions to a neighbouring
one by a rotation about the proper centre. The limiting
position J of this centre, when the two positions are taken
infinitely close to one another, is called the instantaneous centre.
If P, P′ be consecutive positions of the same point, and δθ
the corresponding angle of rotation, then ultimately PP′ is
at right angles to JP and equal to JP·δθ. The instantaneous
centre will have a certain locus in space, and a certain locus
in the lamina. These two loci are called pole-curves or centrodes,
and are sometimes distinguished as the space-centrode and
the body-centrode, respectively. In the continuous motion in
question the latter curve rolls without slipping on the former
(M. Chasles). Consider in fact any series of successive positions
1, 2, 3... of the lamina (fig. 11); and let J12, J23, J34...
be the positions in space of the
centres of the rotations by
which the lamina can be
brought from the first position
to the second, from the second
to the third, and so on. Further,
in the position 1, let J12, J′23,
J′34 ... be the points of the
lamina which have become the
successive centres of rotation.
The given series of positions
will be assumed in succession if we imagine the lamina to
rotate first about J12 until J′23 comes into coincidence with J23,
then about J23 until J′34 comes into coincidence with J34, and so
on. This is equivalent to imagining the polygon J12 J′23 J′34 ...,
supposed fixed in the lamina, to roll on the polygon J12 J23
J34 ..., which is supposed fixed in space. By imagining the
successive positions to be taken infinitely close to one another
we derive the theorem stated. The particular case where both
centrodes are circles is specially important in mechanism.
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	Fig. 13.



The theory may be illustrated by the case of “three-bar motion.”
Let ABCD be any quadrilateral formed of jointed links. If,
AB being held fixed, the
quadrilateral be slightly deformed,
it is obvious that the
instantaneous centre J will
be at the intersection of the
straight lines AD, BC, since
the displacements of the points
D, C are necessarily at right
angles to AD, BC, respectively.
Hence these displacements are
proportional to JD, JC, and
therefore to DD′ CC′, where
C′D′ is any line drawn
parallel to CD, meeting BC,
AD in C′, D′, respectively.
The determination of the centrodes in three-bar motion is in
general complicated, but in one case, that of the “crossed
parallelogram” (fig. 13), they assume simple forms. We then
have AB = DC and AD = BC, and
from the symmetries of the figure
it is plain that

AJ + JB = CJ + JD = AD.

Hence the locus of J relative to
AB, and the locus relative to CD
are equal ellipses of which A, B
and C, D are respectively the
foci. It may be noticed that the
lamina in fig. 9 is not, strictly
speaking, fixed, but admits of
infinitesimal displacement, whenever
the directions of the
three links are concurrent (or
parallel).



The matter may of course be
treated analytically, but we shall only require the formula for
infinitely small displacements. If the origin of rectangular
axes fixed in the lamina be shifted through a space whose
projections on the original directions of the axes are λ, μ, and
if the axes are simultaneously turned through an angle ε, the co-ordinates
of a point of the lamina, relative to the original axes,
are changed from x, y to λ + x cos ε − y sin ε, μ + x sin ε + y cos ε,
or λ + x − yε, μ + xε + y, ultimately. Hence the component
displacements are ultimately

δx = λ − yε, δy = μ + xε

(1)

If we equate these to zero we get the co-ordinates of the instantaneous
centre.

§ 4. Plane Statics.—The statics of a rigid body rests on the
following two assumptions:—

(i) A force may be supposed to be applied indifferently at
any point in its line of action. In other words, a force is of
the nature of a “bound” or “localized” vector; it is regarded
as resident in a certain line, but has no special reference to
any particular point of the line.

(ii) Two forces in intersecting lines may be replaced by a
force which is their geometric sum, acting through the intersection.
The theory of parallel forces is included as a limiting
case. For if O, A, B be any three points, and m, n any scalar
quantities, we have in vectors

m · OA> + n · OB> = (m + n) OC>,

(1)

provided

m · CA> + n · CB> = 0.

(2)

Hence if forces P, Q act in OA, OB, the resultant R will pass
through C, provided

m = P/OA, n = Q/OB;

also

R = P·OC/OA + Q·OC/OB,

(3)

and

P · AC : Q·CB = OA : OB.

(4)

These formulae give a means of constructing the resultant
by means of any transversal AB cutting the lines of action.
If we now imagine the point O to recede to infinity, the forces
P, Q and the resultant R are parallel, and we have

R = P + Q,   P·AC = Q·CB.

(5)
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When P, Q have opposite signs the point C divides AB externally
on the side of the greater
force. The investigation fails
when P + Q = 0, since it leads to
an infinitely small resultant acting
in an infinitely distant line. A
combination of two equal, parallel,
but oppositely directed forces
cannot in fact be replaced by
anything simpler, and must
therefore be recognized as an
independent entity in statics. It
was called by L. Poinsot, who first systematically investigated
its properties, a couple.

We now restrict ourselves for the present to the systems
of forces in one plane. By successive applications of (ii) any

such coplanar system can in general be reduced to a single
resultant acting in a definite line. As exceptional cases the
system may reduce to a couple, or it may be in equilibrium.
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The moment of a force about a point O is the product of the
force into the perpendicular drawn to its line of action from
O, this perpendicular being reckoned
positive or negative according as O
lies on one side or other of the line
of action. If we mark off a segment
AB along the line of action so as to
represent the force completely, the
moment is represented as to magnitude
by twice the area of the triangle
OAB, and the usual convention as
to sign is that the area is to be reckoned positive or negative
according as the letters O, A, B, occur in “counter-clockwise”
or “clockwise” order.

The sum of the moments of two forces about any point O
is equal to the moment of their resultant (P. Varignon, 1687).
Let AB, AC (fig. 16) represent the two forces, AD their resultant;
we have to prove that the sum of the triangles OAB, OAC is
equal to the triangle OAD,
regard being had to signs. Since
the side OA is common, we have
to prove that the sum of the
perpendiculars from B and C on
OA is equal to the perpendicular
from D on OA, these perpendiculars
being reckoned positive
or negative according as they lie
to the right or left of AO.
Regarded as a statement concerning the orthogonal projections
of the vectors AB> and AC> (or BD), and of their sum AD>, on a
line perpendicular to AO, this is obvious.

It is now evident that in the process of reduction of a coplanar
system no change is made at any stage either in the sum of the
projections of the forces on any line or in the sum of their
moments about any point. It follows that the single resultant
to which the system in general reduces is uniquely determinate,
i.e. it acts in a definite line and has a definite magnitude and
sense. Again it is necessary and sufficient for equilibrium
that the sum of the projections of the forces on each of two
perpendicular directions should vanish, and (moreover) that
the sum of the moments about some one point should be zero.
The fact that three independent conditions must hold for equilibrium
is important. The conditions may of course be expressed
in different (but equivalent) forms; e.g. the sum of the moments
of the forces about each of the three points which are not collinear
must be zero.
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The particular case of three forces is of interest. If they
are not all parallel they must be concurrent, and their vector-sum
must be zero. Thus three forces acting perpendicular
to the sides of a triangle at the middle points will be in equilibrium
provided they are proportional to the respective sides,
and act all inwards or all outwards. This result is easily
extended to the case of a polygon of any number of sides; it
has an important application in hydrostatics.


Again, suppose we have a bar AB resting with its ends on two
smooth inclined planes which face each other. Let G be the centre
of gravity (§ 11), and let AG = a, GB = b. Let α, β be the inclinations
of the planes, and θ the angle which the bar makes with the
vertical. The position of equilibrium is determined by the consideration
that the reactions at A and B, which are by hypothesis normal to
the planes, must meet at a point J on the vertical through G. Hence

JG/a = sin (θ − α) / sin α,   JG/b = sin (θ + β) / sin β,

whence


	cot θ = 	a cot α − b cot β
	.

	a + b


(6)

If the bar is uniform we have a = b, and

cot θ = 1⁄2 (cot α − cot β).

(7)

The problem of a rod suspended by strings attached to two points
of it is virtually identical, the tensions of the strings taking the place
of the reactions of the planes.
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Just as a system of forces is in general equivalent to a single
force, so a given force can conversely be replaced by combinations
of other forces, in various ways. For instance, a given
force (and consequently a system of forces) can be replaced
in one and only one way by three forces acting in three assigned
straight lines, provided these lines be not concurrent or parallel.
Thus if the three lines form a triangle ABC, and if the given force
F meet BC in H, then F can be resolved into two components
acting in HA, BC, respectively. And the force in HA can
be resolved into two components acting in BC, CA, respectively.
A simple graphical construction is indicated in fig. 19, where
the dotted lines are parallel. As an example, any system of
forces acting on the lamina in fig. 9 is balanced by three
determinate tensions (or thrusts) in the three links, provided
the directions of the latter are not concurrent.
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If P, Q, R, be any three forces acting along BC, CA, AB, respectively,
the line of action of the resultant is determined by the consideration
that the sum of the moments about any point on it must
vanish. Hence in “trilinear” co-ordinates, with ABC as fundamental
triangle, its equation is Pα + Qβ + Rγ = 0. If P : Q : R =
a : b : c, where a, b, c are the lengths of the sides, this becomes the
“line at infinity,” and the forces reduce to a couple.
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The sum of the moments of the two forces of a couple is the
same about any point in the plane. Thus in the figure the sum
of the moments about O is P·OA − P·OB or P·AB, which is
independent of the position of
O. This sum is called the
moment of the couple; it must
of course have the proper sign
attributed to it. It easily
follows that any two couples
of the same moment are
equivalent, and that any
number of couples can be
replaced by a single couple
whose moment is the sum of their moments. Since a couple
is for our purposes sufficiently represented by its moment,
it has been proposed to substitute the name torque (or twisting
effort), as free from the suggestion of any special pair of
forces.

A system of forces represented completely by the sides of a
plane polygon taken in order is equivalent to a couple whose

moment is represented by twice the area of the polygon; this is
proved by taking moments about any point. If the polygon
intersects itself, care must be taken to attribute to the different
parts of the area their proper signs.
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Again, any coplanar system of forces can be replaced by a
single force R acting at any assigned point O, together with a
couple G. The force R is the geometric sum of the given forces,
and the moment (G) of the couple is equal to the sum of the
moments of the given forces about O. The value of G will in
general vary with the position of O, and will vanish when O
lies on the line of action of the single resultant.
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The formal analytical reduction of a system of coplanar forces
is as follows. Let (x1, y1), (x2, y2), ... be the rectangular co-ordinates
of any points A1, A2, ... on the lines of action of the respective
forces. The force at A1 may be replaced by its components
X1, Y1, parallel to the co-ordinate
axes; that at A2 by
its components X2, Y2, and
so on. Introducing at O two
equal and opposite forces
±X1 in Ox, we see that X1
at A1 may be replaced by an
equal and parallel force at
O together with a couple
−y1X1. Similarly the force
Y1 at A1 may be replaced by
a force Y1 at O together
with a couple x1Y1. The forces X1, Y1, at O can thus be
transferred to O provided we introduce a couple x1Y1 − y1X1.
Treating the remaining forces in the same way we get a force
X1 + X2 + ... or Σ(X) along Ox, a force Y1 + Y2 + ... or
Σ(Y) along Oy, and a couple (x1Y1 − y1X1) + (x2Y2 − y2X2) + ...
or Σ(xY − yX). The three conditions of equilibrium are
therefore

Σ(X) = 0,   Σ(Y) = 0,   Σ(xY − yX) = 0.

(8)

If O′ be a point whose co-ordinates are (ξ, η), the moment of
the couple when the forces are transferred to O′ as a new origin
will be Σ{(x − ξ) Y − (y − η) X}. This vanishes, i.e. the system
reduces to a single resultant through O′, provided

−ξ·Σ(Y) + η·Σ(X) + Σ(xY − yX) = 0.

(9)

If ξ, η be regarded as current co-ordinates, this is the equation
of the line of action of the single resultant to which the system
is in general reducible.

If the forces are all parallel, making say an angle θ with Ox,
we may write X1 = P1 cos θ, Y1 = P1 sin θ, X2 = P2 cos θ,
Y2 = P2 sin θ, .... The equation (9) then becomes

{Σ(xP) − ξ·Σ(P)} sin θ − {Σ(yP) − η·Σ(P)} cos θ = 0.

(10)

If the forces P1, P2, ... be turned in the same sense through
the same angle about the respective points A1, A2, ... so as to
remain parallel, the value of θ is alone altered, and the resultant
Σ(P) passes always through the point


	x = 	Σ(xP)
	,   y = 	Σ(yP)
	,

	Σ(P) 	Σ(P)


(11)

which is determined solely by the configuration of the points
A1, A2, ... and by the ratios P1 : P2 : ... of the forces acting at
them respectively. This point is called the centre of the given
system of parallel forces; it is finite and determinate unless
Σ(P) = 0. A geometrical proof of this theorem, which is not
restricted to a two-dimensional system, is given later (§ 11). It
contains the theory of the centre of gravity as ordinarily understood.
For if we have an assemblage of particles whose mutual
distances are small compared with the dimensions of the earth, the
forces of gravity on them constitute a system of sensibly parallel
forces, sensibly proportional to the respective masses. If now
the assemblage be brought into any other position relative to the
earth, without alteration of the mutual distances, this is equivalent
to a rotation of the directions of the forces relatively to the
assemblage, the ratios of the forces remaining unaltered. Hence
there is a certain point, fixed relatively to the assemblage,
through which the resultant of gravitational action always
passes; this resultant is moreover equal to the sum of the forces
on the several particles.
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The theorem that any coplanar system of forces can be reduced
to a force acting through any assigned point, together with a couple,
has an important illustration in the theory of the distribution of
shearing stress and bending moment in a horizontal beam, or other
structure, subject to vertical extraneous forces. If we consider
any vertical section P, the forces exerted across the section by the
portion of the structure on one side on the portion on the other
may be reduced to a vertical force F at P and a couple M. The
force measures the shearing stress, and the couple the bending
moment at P; we will reckon these quantities positive when the senses
are as indicated in the figure.

If the remaining forces acting on the portion of the structure on
either side of P are known, then resolving vertically we find F,
and taking moments about P we find M. Again if PQ be any segment
of the beam which is free from load, Q lying to the right of P,
we find

FP = FQ,   MP − MQ = −F·PQ;

(12)

hence F is constant between the loads, whilst M decreases as we
travel to the right, with a constant gradient −F. If PQ be a short
segment containing an isolated load W, we have

FQ − FP = −W, MQ = MP;

(13)


	

	Fig. 24.


hence F is discontinuous at a
concentrated load, diminishing by
an amount equal to the load as
we pass the loaded point to the
right, whilst M is continuous. Accordingly
the graph of F for any
system of isolated loads will consist
of a series of horizontal lines, whilst
that of M will be a continuous
polygon.

To pass to the case of continuous
loads, let x be measured horizontally
along the beam to the right. The
load on an element δx of the beam
may be represented by wδx, where
w is in general a function of x.
The equations (12) are now replaced
by

δF = −wδx,   δM = −Fδx,

whence

FQ − FP = − ∫QP w dx,   MQ − MP = − ∫QP F dx.

(14)
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The latter relation shows that the bending moment varies as the
area cut off by the ordinate in the graph of F. In the case of uniform
load we have

F = −wx + A,   M = 1⁄2wx2 − Ax + B,

(15)

where the arbitrary constants A,B are to be determined by the
conditions of the special problem,
e.g. the conditions at the ends
of the beam. The graph of F is a
straight line; that of M is a parabola
with vertical axis. In all cases the
graphs due to different distributions
of load may be superposed. The
figure shows the case of a uniform
heavy beam supported at its ends.
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§ 5. Graphical Statics.—A graphical
method of reducing a plane
system of forces was introduced
by C. Culmann (1864). It involves
the construction of two figures,
a force-diagram and a funicular
polygon. The force-diagram is constructed by placing end to
end a series of vectors representing the given forces in

magnitude and direction, and joining the vertices of the polygon
thus formed to an arbitrary pole O. The funicular or link
polygon has its vertices on the lines of action of the given forces,
and its sides respectively parallel to the lines drawn from O in
the force-diagram; in particular, the two sides meeting in any
vertex are respectively parallel to the lines drawn from O to the
ends of that side of the force-polygon which represents the corresponding
force. The relations will be understood from the annexed
diagram, where corresponding lines in the force-diagram
(to the right) and the funicular (to the left) are numbered similarly.
The sides of the force-polygon may in the first instance be
arranged in any order; the force-diagram can then be completed
in a doubly infinite number of ways, owing to the arbitrary
position of O; and for each force-diagram a simply infinite number
of funiculars can be drawn. The two diagrams being supposed
constructed, it is seen that each of the given systems of
forces can be replaced by two components acting in the sides of
the funicular which meet at the corresponding vertex, and that
the magnitudes of these components will be given by the corresponding
triangle of forces in the force-diagram; thus the force
1 in the figure is equivalent to two forces represented by 01 and
12. When this process of replacement is complete, each terminated
side of the funicular is the seat of two forces which
neutralize one another, and there remain only two uncompensated
forces, viz., those resident in the first and last sides of the
funicular. If these sides intersect, the resultant acts through
the intersection, and its magnitude and direction are given by
the line joining the first and last sides of the force-polygon
(see fig. 26, where the resultant of the four given forces is denoted
by R). As a special case it may happen that the force-polygon
is closed, i.e. its first and last points coincide; the first and last
sides of the funicular will then be parallel (unless they coincide),
and the two uncompensated forces form a couple. If, however,
the first and last sides of the funicular coincide, the two outstanding
forces neutralize one another, and we have equilibrium.
Hence the necessary and sufficient conditions of equilibrium are
that the force-polygon and the funicular should both be closed.
This is illustrated by fig. 26 if we imagine the force R, reversed,
to be included in the system of given forces.

It is evident that a system of jointed bars having the shape
of the funicular polygon would be in equilibrium under the action
of the given forces, supposed applied to the joints; moreover
any bar in which the stress is of the nature of a tension (as distinguished
from a thrust) might be replaced by a string. This
is the origin of the names “link-polygon” and “funicular”
(cf. § 2).


If funiculars be drawn for two positions O, O′ of the pole in the
force-diagram, their corresponding sides will intersect on a straight
line parallel to OO′. This is essentially a theorem of projective
geometry, but the following statical proof is interesting. Let AB
(fig. 27) be any side of the force-polygon, and construct the corresponding
portions of the two diagrams, first with O and then with
O′ as pole. The force corresponding to AB may be replaced by the
two components marked x, y; and a force corresponding to BA
may be represented by the two components marked x′, y′. Hence
the forces x, y, x′, y′ are in equilibrium. Now x, x′ have a resultant
through H, represented in magnitude and direction by OO′, whilst
y, y′ have a resultant through K represented in magnitude and
direction by O′O. Hence HK must be parallel to OO′. This
theorem enables us, when one funicular has been drawn, to construct
any other without further reference to the force-diagram.
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The complete figures obtained by drawing first the force-diagrams
of a system of forces in equilibrium with two distinct poles O, O′,
and secondly the corresponding funiculars, have various interesting
relations. In the first place, each of these figures may be conceived
as an orthogonal projection of a closed plane-faced polyhedron.
As regards the former figure this is evident at once; viz. the polyhedron
consists of two pyramids with vertices represented by O, O′,
and a common base whose perimeter is represented by the force-polygon
(only one of these is shown in fig. 28). As regards the
funicular diagram, let LM be the line on which the pairs of corresponding
sides of the two polygons meet, and through it draw any
two planes ω, ω′. Through the vertices A, B, C, ... and A′, B′, C′, ...
of the two funiculars draw normals to the plane of the diagram, to
meet ω and ω′ respectively. The points thus obtained are evidently
the vertices of a polyhedron with plane faces.
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To every line in either of the original figures corresponds of course
a parallel line in the other; moreover, it is seen that concurrent lines
in either figure correspond to lines forming a closed polygon in the
other. Two plane figures so related are called reciprocal, since the
properties of the first figure in relation to the second are the same as
those of the second with respect to the first. A still simpler instance
of reciprocal figures is supplied by the case of concurrent forces in
equilibrium (fig. 29). The theory of these reciprocal figures was
first studied by J. Clerk Maxwell, who showed amongst other things
that a reciprocal can always be drawn to any figure which is the
orthogonal projection of a plane-faced polyhedron. If in fact we
take the pole of each face of such a polyhedron with respect to a
paraboloid of revolution, these poles will be the vertices of a second
polyhedron whose edges are the “conjugate lines” of those of the
former. If we project both polyhedra orthogonally on a plane
perpendicular to the axis of the paraboloid, we obtain two figures
which are reciprocal, except that corresponding lines are orthogonal
instead of parallel. Another proof will be indicated later (§ 8) in
connexion with the properties of the linear complex. It is

convenient to have a notation which shall put in evidence the reciprocal
character. For this purpose we may designate the points in one
figure by letters A, B, C, ... and the corresponding polygons in
the other figure by the same letters; a line joining two points A, B
in one figure will then correspond to the side common to the two
polygons A, B in the other. This notation was employed by R. H.
Bow in connexion with the theory of frames (§ 6, and see also Applied
Mechanics below) where reciprocal diagrams are frequently of use
(cf. Diagram).

When the given forces are all parallel, the force-polygon consists
of a series of segments of a straight line. This case has important
practical applications; for instance we may use the method to find
the pressures on the supports of a beam loaded in any given manner.
Thus if AB, BC, CD represent the given loads, in the force-diagram,
we construct the sides corresponding to OA, OB, OC, OD in the
funicular; we then draw the closing line of the funicular polygon,
and a parallel OE to it in the force diagram. The segments DE, EA
then represent the upward pressures of the two supports on the
beam, which pressures together with the given loads constitute a
system of forces in equilibrium. The pressures of the beam on the
supports are of course represented by ED, AE. The two diagrams
are portions of reciprocal figures, so that Bow’s notation is applicable.
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A graphical method can also be applied to find the moment of a
force, or of a system of forces, about any assigned point P. Let F
be a force represented by AB in the force-diagram. Draw a parallel
through P to meet the sides of the funicular which correspond to
OA, OB in the points H, K. If R be the intersection of these sides,
the triangles OAB, RHK are similar, and if the perpendiculars
OM, RN be drawn we have

HK·OM = AB·RN = F·RN,

which is the moment of F about P. If the given forces are all
parallel (say vertical) OM is the same for all, and the moments of the
several forces about P are represented on a certain scale by the
lengths intercepted by the successive pairs of sides on the vertical
through P. Moreover, the moments are compounded by adding
(geometrically) the corresponding lengths HK. Hence if a system
of vertical forces be in equilibrium, so that the funicular polygon is
closed, the length which this polygon intercepts on the vertical
through any point P gives the sum of the moments about P of all
the forces on one side of this vertical. For instance, in the case of
a beam in equilibrium under any given loads and the reactions
at the supports, we get a graphical representation of the distribution
of bending moment over the beam. The construction in fig. 30
can easily be adjusted so that the closing line shall be horizontal;
and the figure then becomes identical with the bending-moment
diagram of § 4. If we wish to study the effects of a movable load,
or system of loads, in different positions on the beam, it is only necessary
to shift the lines of action of the pressures of the supports
relatively to the funicular, keeping them at the same, distance
apart; the only change is then in the position of the closing line of
the funicular. It may be remarked that since this line joins homologous
points of two “similar” rows it will envelope a parabola.



The “centre” (§ 4) of a system of parallel forces of given
magnitudes, acting at given points, is easily determined graphically.
We have only to construct the line of action of the resultant
for each of two arbitrary directions of the forces; the intersection
of the two lines gives the point required. The construction
is neatest if the two arbitrary directions are taken at right
angles to one another.

§ 6. Theory of Frames.—A frame is a structure made up of
pieces, or members, each of which has two joints connecting it
with other members. In a two-dimensional frame, each joint
may be conceived as consisting of a small cylindrical pin fitting
accurately and smoothly into holes drilled through the members
which it connects. This supposition is a somewhat ideal one,
and is often only roughly approximated to in practice. We shall
suppose, in the first instance, that extraneous forces act on the
frame at the joints only, i.e. on the pins.

On this assumption, the reactions on any member at its two
joints must be equal and opposite. This combination of equal
and opposite forces is called the stress in the member; it may be a
tension or a thrust. For diagrammatic purposes each member is
sufficiently represented by a straight line terminating at the two
joints; these lines will be referred to as the bars of the frame.
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In structural applications a frame must be stiff, or rigid, i.e.
it must be incapable of deformation without alteration of length
in at least one of its bars. It is said to be just rigid if it ceases
to be rigid when any one of its bars is removed. A frame
which has more bars than are essential for rigidity may be called
over-rigid; such a frame is in general self-stressed, i.e. it is in a
state of stress independently of the action of extraneous forces.
A plane frame of n joints which is just rigid (as regards deformation
in its own plane) has 2n − 3 bars, for if one bar be held fixed
the 2(n − 2) co-ordinates of the remaining n − 2 joints must just
be determined by the lengths of the remaining bars. The total
number of bars is therefore 2(n − 2) + 1. When a plane frame
which is just rigid is subject to a given system of equilibrating
extraneous forces (in its own plane) acting on the joints, the
stresses in the bars are in general uniquely determinate. For
the conditions of equilibrium of the forces on each pin furnish
2n equations, viz. two for each point, which are linear in respect
of the stresses and the extraneous forces. This system of
equations must involve the three conditions of equilibrium of
the extraneous forces which are already identically satisfied, by
hypothesis; there remain therefore 2n − 3 independent relations
to determine the 2n − 3 unknown stresses. A frame of n joints
and 2n − 3 bars may of course fail to be rigid owing to some parts
being over-stiff whilst others are deformable; in such a case it
will be found that the statical equations, apart from the three
identical relations imposed by the equilibrium of the extraneous
forces, are not all independent but are equivalent to less than
2n − 3 relations. Another exceptional case, known as the
critical case, will be noticed later (§ 9).

A plane frame which can be built up from a single bar by successive
steps, at each of which a new joint is introduced by two

new bars meeting there, is called a simple frame; it is obviously
just rigid. The stresses produced by extraneous forces in a
simple frame can be found by considering the equilibrium of the
various joints in a proper succession; and if the graphical method
be employed the various polygons of force can be combined into
a single force-diagram. This procedure was introduced by
W. J. M. Rankine and J. Clerk Maxwell (1864). It may be
noticed that if we take an arbitrary pole in the force-diagram,
and draw a corresponding funicular in the skeleton diagram
which represents the frame together with the lines of action
of the extraneous forces, we obtain two complete reciprocal
figures, in Maxwell’s sense. It is accordingly convenient to
use Bow’s notation (§ 5), and to distinguish the several compartments
of the frame-diagram by letters. See fig. 33, where the
successive triangles in the diagram of forces may be constructed
in the order XYZ, ZXA, AZB. The class of “simple” frames
includes many of the frameworks used in the construction of
roofs, lattice girders and suspension bridges; a number of examples
will be found in the article Bridges. By examining the
senses in which the respective forces act at each joint we can ascertain
which members are in tension and which are in thrust; in
fig. 33 this is indicated by the directions of the arrowheads.
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When a frame, though just rigid, is not “simple” in the above
sense, the preceding method must be replaced, or supplemented,
by one or other of various artifices. In some cases the method
of sections is sufficient for the purpose. If an ideal section be
drawn across the frame, the extraneous forces on either side must
be in equilibrium with the forces in the bars cut across; and if
the section can be drawn so
as to cut only three bars,
the forces in these can be
found, since the problem
reduces to that of resolving
a given force into three
components acting in three
given lines (§ 4). The “critical
case” where the directions
of the three bars are
concurrent is of course excluded.
Another method, always available, will be explained
under “Work” (§ 9).


When extraneous forces act on the bars themselves the stress in
each bar no longer consists of a simple longitudinal tension or thrust.
To find the reactions at the joints we may proceed as follows.
Each extraneous force W acting on a bar may be replaced (in an
infinite number of ways) by two components P, Q in lines through
the centres of the pins at the extremities. In practice the forces W
are usually vertical, and the components P, Q are then conveniently
taken to be vertical also. We first alter the problem by transferring
the forces P, Q to the pins. The stresses in the bars, in the problem
as thus modified, may be supposed found by the preceding methods;
it remains to infer from the results thus obtained the reactions in the
original form of the problem. To find the pressure exerted by a bar
AB on the pin A we compound with the force in AB given by the
diagram a force equal to P. Conversely, to find the pressure of
the pin A on the bar AB we must compound with the force given
by the diagram a force equal and opposite to P. This question
arises in practice in the theory of “three-jointed” structures; for
the purpose in hand such a structure is sufficiently represented by
two bars AB, BC. The right-hand figure represents a portion of the
force-diagram; in particular ZX> represents the pressure of AB on B
in the modified problem where the loads W1 and W2 on the two bars
are replaced by loads P1, Q1, and P2, Q2 respectively, acting on the
pins. Compounding with this XV>, which represents Q1, we get
the actual pressure ZV> exerted by AB on B. The directions and
magnitudes of the reactions at A and C are then easily ascertained.
On account of its practical importance several other graphical
solutions of this problem have been devised.




	

	Fig. 35.


§ 7. Three-dimensional Kinematics of a Rigid Body.—The
position of a rigid body is determined when we know the positions
of three points A, B, C of it which are not collinear, for the position
of any other point P is then determined by the three distances
PA, PB, PC. The nine co-ordinates (Cartesian or other)
of A, B, C are subject to the three relations which express the
invariability of the distances BC, CA, AB, and are therefore
equivalent to six independent quantities. Hence a rigid body
not constrained in any way is said to have six degrees of freedom.
Conversely, any six geometrical relations restrict the body in
general to one or other of a series of definite positions, none of
which can be departed from without violating the conditions in
question. For instance, the position of a theodolite is fixed by
the fact that its rounded feet rest in contact with six given plane
surfaces. Again, a rigid three-dimensional frame can be rigidly
fixed relatively to the earth by means of six links.


	

	Fig. 36.
	Fig. 37.



The six independent quantities, or “co-ordinates,” which serve
to specify the position of a rigid body in space may of course
be chosen in an endless variety of ways. We may, for instance,
employ the three Cartesian co-ordinates of a particular point O of
the body, and three angular co-ordinates which express the orientation
of the body with respect to O. Thus in fig. 36, if OA, OB, OC
be three mutually perpendicular lines in the solid, we may denote by
θ the angle which OC makes with a fixed direction OZ, by ψ the
azimuth of the plane ZOC measured from some fixed plane through
OZ, and by φ the inclination of the plane COA to the plane ZOC.
In fig. 36 these various lines and planes are represented by their
intersections with a unit sphere having O as centre. This very
useful, although unsymmetrical, system of angular co-ordinates was
introduced by L. Euler. It is exemplified in “Cardan’s suspension,”
as used in connexion with a compass-bowl or a gyroscope. Thus
in the gyroscope the “flywheel” (represented by the globe in fig. 37)
can turn about a diameter OC of a ring which is itself free to turn
about a diametral axis OX at right angles to the former; this axis
is carried by a second ring which is free to turn about a fixed diameter
OZ, which is at right angles to OX.




	

	Fig. 10.

	

	Fig. 38.

	

	Fig. 39.


We proceed to sketch the theory of the finite displacements of a
rigid body. It was shown by Euler (1776) that any displacement

in which one point O of the body is fixed is equivalent to a pure
rotation about some axis through O. Imagine two spheres of
equal radius with O as their common centre, one fixed in the body
and moving with it, the other fixed in space. In any displacement
about O as a fixed point, the former sphere slides over the
latter, as in a “ball-and-socket” joint. Suppose that as the
result of the displacement a point of the moving sphere is brought
from A to B, whilst the point which
was at B is brought to C (cf. fig. 10).
Let J be the pole of the circle ABC
(usually a “small circle” of the fixed
sphere), and join JA, JB, JC, AB, BC
by great-circle arcs. The spherical
isosceles triangles AJB, BJC are congruent,
and we see that AB can be
brought into the position BC by a
rotation about the axis OJ through an
angle AJB.

It is convenient to distinguish the two
senses in which rotation may take place about an axis OA by
opposite signs. We shall reckon a rotation as positive when it
is related to the direction from O to A as the direction of
rotation is related to that of translation in a right-handed
screw. Thus a negative rotation about OA may be regarded
as a positive rotation about OA′, the prolongation
of AO. Now suppose that a body receives first a positive
rotation α about OA, and secondly a positive rotation β
about OB; and let A, B be the intersections of these axes
with a sphere described about
O as centre. If we construct
the spherical triangles ABC,
ABC′ (fig. 38), having in each
case the angles at A and B
equal to 1⁄2α and 1⁄2β respectively,
it is evident that the first
rotation will bring a point
from C to C′ and that the
second will bring it back to C; the result is therefore equivalent
to a rotation about OC. We note also that if the given
rotations had been effected in the inverse order, the axis of the
resultant rotation would have been OC′, so that finite rotations
do not obey the “commutative law.” To find the angle of
the equivalent rotation, in the actual case, suppose that the
second rotation (about OB) brings a point from A to A′. The
spherical triangles ABC, A′BC
(fig. 39) are “symmetrically
equal,” and the angle of the
resultant rotation, viz. ACA′, is
2π − 2C. This is equivalent to
a negative rotation 2C about
OC, whence the theorem that
the effect of three successive
positive rotations 2A, 2B, 2C
about OA, OB, OC, respectively, is to leave the body in its
original position, provided the circuit ABC is left-handed as
seen from O. This theorem is due to O. Rodrigues (1840).
The composition of finite rotations about parallel axes is a
particular case of the preceding; the radius of the sphere is now
infinite, and the triangles are plane.

In any continuous motion of a solid about a fixed point O,
the limiting position of the axis of the rotation by which the body
can be brought from any one of its positions to a consecutive one
is called the instantaneous axis. This axis traces out a certain
cone in the body, and a certain cone in space, and the continuous
motion in question may be represented as consisting in a rolling
of the former cone on the latter. The proof is similar to that of
the corresponding theorem of plane kinematics (§ 3).

It follows from Euler’s theorem that the most general displacement
of a rigid body may be effected by a pure translation which
brings any one point of it to its final position O, followed by a
pure rotation about some axis through O. Those planes in the
body which are perpendicular to this axis obviously remain
parallel to their original positions. Hence, if σ, σ′ denote the
initial and final positions of any figure in one of these planes,
the displacement could evidently have been effected by (1) a
translation perpendicular to the planes in question, bringing σ
into some position σ″ in the plane of σ′, and (2) a rotation about
a normal to the planes, bringing σ″ into coincidence with σ (§ 3).
In other words, the most general displacement is equivalent to a
translation parallel to a certain axis combined with a rotation
about that axis; i.e. it may be described as a twist about a certain
screw. In particular cases, of course, the translation, or the rotation,
may vanish.


The preceding theorem, which is due to Michel Chasles (1830),
may be proved in various other interesting ways. Thus if a point
of the body be displaced from A to B, whilst the point which was
at B is displaced to C, and that which was at C to D, the four points
A, B, C, D lie on a helix whose axis is the common perpendicular
to the bisectors of the angles ABC, BCD. This is the axis of the
required screw; the amount of the translation is measured by the
projection of AB or BC or CD on the axis; and the angle of rotation
is given by the inclination of the aforesaid bisectors. This construction
was given by M. W. Crofton. Again, H. Wiener and W.
Burnside have employed the half-turn (i.e. a rotation through two
right angles) as the fundamental operation. This has the advantage
that it is completely specified by the axis of the rotation, the sense
being immaterial. Successive half-turns about parallel axes a, b
are equivalent to a translation measured by double the distance
between these axes in the direction from a to b. Successive half-turns
about intersecting axes a, b are equivalent to a rotation
about the common perpendicular to a, b at their intersection, of
amount equal to twice the acute angle between them, in the direction
from a to b. Successive half-turns about two skew axes a, b are
equivalent to a twist about a screw whose axis is the common
perpendicular to a, b, the translation being double the shortest
distance, and the angle of rotation being twice the acute angle
between a, b, in the direction from a to b. It is easily shown that
any displacement whatever is equivalent to two half-turns and
therefore to a screw.




	

	Fig. 16.


In mechanics we are specially concerned with the theory of
infinitesimal displacements. This is included in the preceding,
but it is simpler in that the various operations are commutative.
An infinitely small rotation about any axis is conveniently
represented geometrically by a length AB measures along the
axis and proportional to the angle of rotation, with the convention
that the direction from A to B shall be related to the rotation
as is the direction of translation to that of rotation in a right-handed
screw. The consequent displacement of any point P
will then be at right angles to the plane PAB, its amount will be
represented by double the area of the triangle PAB, and its sense
will depend on the cyclical order of the letters P, A, B. If AB,
AC represent infinitesimal rotations about intersecting axes, the
consequent displacement of any point O in the plane BAC will
be at right angles to this plane, and will be represented by twice
the sum of the areas OAB, OAC, taken with proper signs. It
follows by analogy with the theory of moments (§ 4) that the
resultant rotation will be represented by AD, the vector-sum of
AB, AC (see fig. 16). It is easily inferred as a limiting case, or
proved directly, that two infinitesimal
rotations α, β about
parallel axes are equivalent to a
rotation α + β about a parallel
axis in the same plane with the
two former, and dividing a common
perpendicular AB in a point
C so that AC/CB = β/α. If the
rotations are equal and opposite,
so that α + β = 0, the point C is
at infinity, and the effect is a translation perpendicular to the
plane of the two given axes, of amount α·AB. It thus appears
that an infinitesimal rotation is of the nature of a “localized
vector,” and is subject in all respects to the same mathematical
laws as a force, conceived as acting on a rigid body. Moreover,
that an infinitesimal translation is analogous to a couple and
follows the same laws.  These results are due to Poinsot.

The analytical treatment of small displacements is as follows.
We first suppose that one point O of the body is fixed, and take
this as the origin of a “right-handed” system of rectangular

co-ordinates; i.e. the positive directions of the axes are assumed
to be so arranged that a positive rotation of 90° about Ox would
bring Oy into the position of Oz, and so on. The displacement
will consist of an infinitesimal rotation ε about some axis through
O, whose direction-cosines are, say, l, m, n. From the equivalence
of a small rotation to a localized vector it follows that the
rotation ε will be equivalent to rotations ξ, η, ζ about Ox, Oy, Oz,
respectively, provided

ξ = lε,   η = mε,   ζ = nε,

(1)

and we note that

ξ2 + η2 + ζ2 = ε2.

(2)


Thus in the case of fig. 36 it may be required to connect the
infinitesimal rotations ξ, η, ζ about OA, OB, OC with the variations
of the angular co-ordinates θ, ψ, φ. The displacement of the point
C of the body is made up of δθ tangential to the meridian ZC and
sin θ δψ perpendicular to the plane of this meridian. Hence, resolving
along the tangents to the arcs BC, CA, respectively, we
have

ξ = δθ sin φ − sin θ δψ cos φ,   η = δθ cos φ + sin θ δψ sin φ.

(3)


	

	Fig. 40.


Again, consider the point of the solid which was initially at A′ in
the figure. This is displaced relatively to A′ through a space δψ
perpendicular to the plane of the
meridian, whilst A′ itself is displaced
through a space cos θ δψ in the same
direction. Hence

ζ = δφ + cos θ δψ.

(4)


To find the component displacements
of a point P of the body,
whose co-ordinates are x, y, z, we
draw PL normal to the plane yOz,
and LH, LK perpendicular to Oy,
Oz, respectively. The displacement
of P parallel to Ox is the same
as that of L, which is made up of
ηz and −ζy. In this way we
obtain the formulae

δx = ηz − ζy,   δy = ζx − ξz,   δz = ξy − ηx.

(5)

The most general case is derived from this by adding the component
displacements λ, μ, ν (say) of the point which was at O;
thus

	 
δx = λ + ηz − ζy,

δy = μ + ζx − ξz,

δz = ν + ξy − ηx.


 


(6)

The displacement is thus expressed in terms of the six independent
quantities ξ, η, ζ, λ, μ, ν. The points whose displacements
are in the direction of the resultant axis of rotation are
determined by δx : δy : δz = ξ : η : ζ, or

(λ + ηz − ζy)/ξ = (μ + ζx − ξz)/η = (ν + ξy − ηx)/ζ.

(7)

These are the equations of a straight line, and the displacement
is in fact equivalent to a twist about a screw having this line as
axis.  The translation parallel to this axis is

lδx + mδy + nδz = (λξ + μη + νζ)/ε.

(8)

The linear magnitude which measures the ratio of translation
to rotation in a screw is called the pitch. In the present case the
pitch is

(λξ + μη + νζ) / (ξ2 + η2 + ζ2).

(9)

Since ξ2 + η2 + ζ2, or ε2, is necessarily an absolute invariant for
all transformations of the (rectangular) co-ordinate axes, we
infer that λξ + μη + νζ is also an absolute invariant. When
the latter invariant, but not the former, vanishes, the displacement
is equivalent to a pure rotation.


If the small displacements of a rigid body be subject to one
constraint, e.g. if a point of the body be restricted to lie on a given
surface, the mathematical expression of this fact leads to a homogeneous
linear equation between the infinitesimals ξ, η, ζ, λ, μ, ν, say

Aξ + Bη + Cζ + Fλ + Gμ + Hν = 0.

(10)

The quantities ξ, η, ζ, λ, μ, ν are no longer independent, and the
body has now only five degrees of freedom. Every additional
constraint introduces an additional equation of the type (10) and
reduces the number of degrees of freedom by one. In Sir R. S.
Ball’s Theory of Screws an analysis is made of the possible displacements
of a body which has respectively two, three, four, five degrees
of freedom. We will briefly notice the case of two degrees,
which involves an interesting generalization of the method (already
explained) of compounding rotations about intersecting axes.
We assume that the body receives arbitrary twists about two
given screws, and it is required to determine the character of the
resultant displacement. We examine first the case where the
axes of the two screws are at right angles and intersect. We take
these as axes of x and y; then if ξ, η be the component rotations
about them, we have

λ = hξ,   μ = kη,   ν = 0,

(11)

where h, k, are the pitches of the two given screws. The equations
(7) of the axis of the resultant screw then reduce to

x/ξ = y/η,   z(ξ2 + η2) = (k − h) ξη.

(12)

Hence, whatever the ratio ξ : η, the axis of the resultant screw lies
on the conoidal surface

z (x2 + y2) = cxy,

(13)

where c = 1⁄2(k − h). The co-ordinates of any point on (13) may be
written

x = r cos θ,   y = r sin θ,   z = c sin 2θ;

(14)

hence if we imagine a curve of sines to be traced on a circular cylinder
so that the circumference just includes two complete undulations,
a straight line cutting the axis of the cylinder at right angles and
meeting this curve will generate the surface. This is called a
cylindroid. Again, the pitch of the resultant screw is

p = (λξ + μη) / (ξ2 + η2) = h cos2 θ + k sin2 θ.

(15)


	

	From Sir Robert S. Ball’s Theory of Screws.

	Fig. 41.


The distribution of pitch among the various screws has therefore
a simple relation to the pitch-conic

hx2 + ky2 = const;

(16)

viz. the pitch of any screw varies inversely as the square of that
diameter of the conic which is parallel to its axis. It is to be noticed
that the parameter c of the cylindroid is unaltered if the two pitches
h, k be increased by equal amounts; the only change is that all the
pitches are increased by the same amount. It remains to show that
a system of screws of the above type can be constructed so as to
contain any two given screws whatever. In the first place, a
cylindroid can be constructed so as to have its axis coincident
with the common perpendicular to the axes of the two given screws
and to satisfy three other conditions, for the position of the centre,
the parameter, and the orientation about the axis are still at our
disposal. Hence we can adjust these so that the surface shall
contain the axes of the two given screws as generators, and that
the difference of the corresponding pitches shall have the proper
value. It follows that when a body has two degrees of freedom it
can twist about any one of a singly infinite system of screws whose
axes lie on a certain cylindroid. In particular cases the cylindroid
may degenerate into a plane, the pitches being then all equal.



§ 8. Three-dimensional Statics.—A system of parallel forces
can be combined two and two until they are replaced by a single
resultant equal to their sum, acting in a certain line. As special
cases, the system may reduce to a couple, or it may be in equilibrium.

In general, however, a three-dimensional system of forces
cannot be replaced by a single resultant force. But it may be
reduced to simpler elements in a variety of ways. For example,
it may be reduced to two forces in perpendicular skew lines.
For consider any plane, and let each force, at its intersection
with the plane, be resolved into two components, one (P) normal
to the plane, the other (Q) in the plane. The assemblage of
parallel forces P can be replaced in general by a single force, and
the coplanar system of forces Q by another single force.



If the plane in question be chosen perpendicular to the direction
of the vector-sum of the given forces, the vector-sum of the
components Q is zero, and these components are therefore
equivalent to a couple (§ 4). Hence any three-dimensional
system can be reduced to a single force R acting in a certain line,
together with a couple G in a plane perpendicular to the line.
This theorem was first given by L. Poinsot, and the line of action
of R was called by him the central axis of the system. The combination
of a force and a couple in a perpendicular plane is termed
by Sir R. S. Ball a wrench. Its type, as distinguished from its
absolute magnitude, may be specified by a screw whose axis is
the line of action of R, and whose pitch is the ratio G/R.
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The case of two forces may be specially noticed. Let AB be
the shortest distance between the lines of action, and let AA′, BB′
(fig. 42) represent the forces.
Let α, β be the angles which
AA′, BB′ make with the
direction of the vector-sum,
on opposite sides. Divide AB
in O, so that

AA′ · cos α · AO = BB′ · cos β · OB,

(1)

and draw OC parallel to the
vector-sum. Resolving AA′,
BB′ each into two components
parallel and perpendicular
to OC, we see that the former
components have a single resultant in OC, of amount

R = AA′ cos α + BB′ cos β,

(2)

whilst the latter components form a couple of moment

G = AA′ · AB · sin α = BB′ · AB · sin β.

(3)

Conversely it is seen that any wrench can be replaced in an infinite
number of ways by two forces, and that the line of action of one of
these may be chosen quite arbitrarily. Also, we find from (2) and
(3) that

G · R = AA′ · BB′ · AB · sin (α + β).

(4)

The right-hand expression is six times the volume of the tetrahedron
of which the lines AA′, BB′ representing the forces are opposite
edges; and we infer that, in whatever way the wrench be resolved
into two forces, the volume of this tetrahedron is invariable.



To define the moment of a force about an axis HK, we project
the force orthogonally on a plane perpendicular to HK and take
the moment of the projection about the intersection of HK with
the plane (see § 4). Some convention as to sign is necessary; we
shall reckon the moment to be positive when the tendency of the
force is right-handed as regards the direction from H to K. Since
two concurrent forces and their resultant obviously project into
two concurrent forces and their resultant, we see that the sum
of the moments of two concurrent forces about any axis HK is
equal to the moment of their resultant. Parallel forces may be
included in this statement as a limiting case. Hence, in whatever
way one system of forces is by successive steps replaced by another,
no change is made in the sum of the moments about any
assigned axis. By means of this theorem we can show that the
previous reduction of any system to a wrench is unique.

From the analogy of couples to translations which was pointed
out in § 7, we may infer that a couple is sufficiently represented
by a “free” (or non-localized) vector perpendicular to its plane.
The length of the vector must be proportional to the moment of
the couple, and its sense must be such that the sum of the moments
of the two forces of the couple about it is positive. In
particular, we infer that couples of the same moment in parallel
planes are equivalent; and that couples in any two planes may
be compounded by geometrical addition of the corresponding
vectors. Independent statical proofs are of course easily given.
Thus, let the plane of the paper be perpendicular to the planes
of two couples, and therefore perpendicular to the line of intersection
of these planes. By § 4, each couple can be replaced by
two forces ±P (fig. 43) perpendicular to the plane of the paper,
and so that one force of each couple is in the line of intersection
(B); the arms (AB, BC) will then be proportional to the respective
moments. The two forces at B will cancel, and we are left with
a couple of moment P·AC in the plane AC. If we draw three
vectors to represent these three couples, they will be perpendicular
and proportional to the respective sides of the triangle ABC;
hence the third vector is the geometric sum of the other two.
Since, in this proof the magnitude of P is arbitrary, It follows
incidentally that couples of the same moment in parallel planes,
e.g. planes parallel to AC, are equivalent.


	

	Fig. 43.



	

	Fig. 44.


Hence a couple of moment G, whose axis has the direction
(l, m, n) relative to a right-handed system of rectangular axes,
is equivalent to three couples lG, mG, nG in the co-ordinate
planes. The analytical reduction of a three-dimensional system
can now be conducted as follows. Let (x1, y1, z1) be the co-ordinates
of a point P1 on the
line of action of one of
the forces, whose components
are (say) X1, Y1,
Z1. Draw P1H normal to
the plane zOx, and HK
perpendicular to Oz. In
KH introduce two equal
and opposite forces ±X1.
The force X1 at P1 with
−X1 in KH forms a couple
about Oz, of moment
−y1X1. Next, introduce
along Ox two equal and opposite forces ±X1. The force X1
in KH with −X1 in Ox forms a couple about Oy, of moment
z1X1. Hence the force X1 can be transferred from P1 to O,
provided we introduce couples of moments z1X1 about Oy and
−y1X1, about Oz. Dealing in the same way with the forces Y1,
Z1 at P1, we find that all three components of the force at P1
can be transferred to O, provided we introduce three couples
L1, M1, N1 about Ox, Oy, Oz respectively, viz.

L1 = y1Z1 − z1Y1,   M1 = z1X1 − x1Z1,   N1 = x1Y1 − y1X1.

(5)

It is seen that L1, M1, N1 are the moments of the original force at
P1 about the co-ordinate axes. Summing up for all the forces of
the given system, we obtain a force R at O, whose components are

X = Σ(Xr),   Y = Σ(Yr),   Z = Σ(Zr),

(6)

and a couple G whose components are

L = Σ(Lr),   M = Σ(Mr),   N = Σ(Nr),

(7)

where r = 1, 2, 3 ... Since R2 = X2 + Y2 + Z2, G2 = L2 + M2 + N2,
it is necessary and sufficient for equilibrium that the six quantities
X, Y, Z, L, M, N, should all vanish. In words: the sum of
the projections of the forces on each of the co-ordinate axes must
vanish; and, the sum of the moments of the forces about each
of these axes must vanish.

If any other point O′, whose co-ordinates are x, y, z, be chosen
in place of O, as the point to which the forces are transferred, we
have to write x1 − x, y1 − y, z1 − z for x1, y1, z1, and so on, in
the preceding process. The components of the resultant force
R are unaltered, but the new components of couple are found
to be

	 
L′ = L − yZ + zY,

M′ = M − zX + xZ,

N′ = N − xY + yX.


 


(8)

By properly choosing O′ we can make the plane of the couple
perpendicular to the resultant force. The conditions for this
are L′ : M′ : N′ = X : Y : Z, or


	L − yZ + zY
	= 	M − zX + xZ
	= 	N − xY + yX


	X 	Y
	Z


(9)



These are the equations of the central axis. Since the moment
of the resultant couple is now


	G′ = 	X
	L′ + 	Y
	M′ + 	Z
	N′ = 	LX + MY + NZ
	,

	R 	R
	R 	R


(10)

the pitch of the equivalent wrench is

(LX + MY + NZ) / (X2 + Y2 + Z2).

It appears that X2 + Y2 + Z2 and LX + MY + NZ are absolute
invariants (cf. § 7). When the latter invariant, but not the
former, vanishes, the system reduces to a single force.

The analogy between the mathematical relations of infinitely
small displacements on the one hand and those of force-systems
on the other enables us immediately to convert any theorem in
the one subject into a theorem in the other. For example, we
can assert without further proof that any infinitely small displacement
may be resolved into two rotations, and that the axis
of one of these can be chosen arbitrarily. Again, that wrenches
of arbitrary amounts about two given screws compound into a
wrench the locus of whose axis is a cylindroid.


The mathematical properties of a twist or of a wrench have been
the subject of many remarkable investigations, which are, however,
of secondary importance from a physical point of view. In the
“Null-System” of A. F. Möbius (1790-1868), a line such that the
moment of a given wrench about it is zero is called a null-line.
The triply infinite system of null-lines form what is called in line-geometry
a “complex.” As regards the configuration of this
complex, consider a line whose shortest distance from the central
axis is r, and whose inclination to the central axis is θ. The moment
of the resultant force R of the wrench about this line is − Rr sin θ,
and that of the couple G is G cos θ. Hence the line will be a null-line
provided

tan θ = k/r,

(11)

where k is the pitch of the wrench. The null-lines which are at
a given distance r from a point O of the central axis will therefore
form one system of generators of a hyperboloid of revolution; and
by varying r we get a series of such hyperboloids with a common
centre and axis. By moving O along the central axis we obtain
the whole complex of null-lines. It appears also from (11) that
the null-lines whose distance from the central axis is r are tangent
lines to a system of helices of slope tan−1 (r/k); and it is to be noticed
that these helices are left-handed if the given wrench is right-handed,
and vice versa.

Since the given wrench can be replaced by a force acting through
any assigned point P, and a couple, the locus of the null-lines
through P is a plane, viz. a plane perpendicular to the vector
which represents the couple. The complex is therefore of the
type called “linear” (in relation to the degree of this locus). The
plane in question is called the null-plane of P. If the null-plane
of P pass through Q, the null-plane of Q will pass through P, since
PQ is a null-line. Again, any plane ω is the locus of a system of
null-lines meeting in a point, called the null-point of ω. If a plane
revolve about a fixed straight line p in it, its null-point describes
another straight line p′, which is called the conjugate line of p.
We have seen that the wrench may be replaced by two forces,
one of which may act in any arbitrary line p. It is now evident
that the second force must act in the conjugate line p′, since every
line meeting p, p′ is a null-line. Again, since the shortest distance
between any two conjugate lines cuts the central axis at right
angles, the orthogonal projections of two conjugate lines on a plane
perpendicular to the central axis will be parallel (fig. 42). This
property was employed by L. Cremona to prove the existence
under certain conditions of “reciprocal figures” in a plane (§ 5).
If we take any polyhedron with plane faces, the null-planes of its
vertices with respect to a given wrench will form another polyhedron,
and the edges of the latter will be conjugate (in the above
sense) to those of the former. Projecting orthogonally on a plane
perpendicular to the central axis we obtain two reciprocal figures.

In the analogous theory of infinitely small displacements of a
solid, a “null-line” is a line such that the lengthwise displacement
of any point on it is zero.

Since a wrench is defined by six independent quantities, it can in
general be replaced by any system of forces which involves six
adjustable elements. For instance, it can in general be replaced
by six forces acting in six given lines, e.g. in the six edges of a given
tetrahedron. An exception to the general statement occurs when
the six lines are such that they are possible lines of action of a system
of six forces in equilibrium; they are then said to be in involution.
The theory of forces in involution has been studied by A. Cayley,
J. J. Sylvester and others. We have seen that a rigid structure
may in general be rigidly connected with the earth by six links,
and it now appears that any system of forces acting on the structure
can in general be balanced by six determinate forces exerted by the
links. If, however, the links are in involution, these forces become
infinite or indeterminate. There is a corresponding kinematic
peculiarity, in that the connexion is now not strictly rigid, an
infinitely small relative displacement being possible. See § 9.



When parallel forces of given magnitudes act at given points,
the resultant acts through a definite point, or centre of parallel
forces, which is independent of the special direction of the forces.
If Pr be the force at (xr, yr, zr), acting in the direction (l, m, n), the
formulae (6) and (7) reduce to

X = Σ(P)·l,   Y = Σ(P)·m,   Z = Σ(P)·n,

(12)

and

L = Σ(P)·(ny − mz),   M = Σ(P)·(lz − nx),   N = Σ(P)·(mx − ly),

(13)

provided


	x = 	Σ(Px)
	,   y = 	Σ(Py)
	,   z = 	Σ(Pz)
	.

	Σ(P) 	Σ(P)
	Σ(P)


(14)

These are the same as if we had a single force Σ(P) acting at
the point (x, y, z), which is the same for all directions (l, m, n).
We can hence derive the theory of the centre of gravity, as in § 4.
An exceptional case occurs when Σ(P) = 0.


If we imagine a rigid body to be acted on at given points by forces
of given magnitudes in directions (not all parallel) which are fixed
in space, then as the body is turned about the resultant wrench
will assume different configurations in the body, and will in certain
positions reduce to a single force. The investigation of such
questions forms the subject of “Astatics,” which has been cultivated
by Möbius, Minding, G. Darboux and others. As it has no physical
bearing it is passed over here.




	

	Fig. 45.


§ 9. Work.—The work done by a force acting on a particle, in
any infinitely small displacement, is defined as the product of
the force into the orthogonal projection of the displacement on
the direction of the force; i.e. it is equal to F·δs cos θ, where F is
the force, δs the displacement, and θ is the angle between the
directions of F and δs. In the language of vector analysis (q.v.)
it is the “scalar product” of the vector representing the force
and the displacement. In the same way, the work done by a
force acting on a rigid body in any infinitely small displacement
of the body is the scalar product of the force into the displacement
of any point on the line of action. This product is the
same whatever point on the line of action be taken, since the
lengthwise components of the displacements of any two points
A, B on a line AB are equal, to the first order of small quantities.
To see this, let A′, B′ be the displaced positions of A, B, and let
φ be the infinitely small angle between AB and A′B′. Then if
α, β be the orthogonal projections of A′, B′ on AB, we have

Aα − Bβ = AB − αβ = AB (1 − cos φ) = 1⁄2AB·φ2,

ultimately. Since this is of the second order, the products
F·Aα and F·Bβ are ultimately equal.
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The total work done by two concurrent forces acting on a
particle, or on a rigid body, in any infinitely small displacement,
is equal to the work of their resultant. Let AB, AC (fig. 46)
represent the forces, AD their resultant, and let AH be the
direction of the displacement δs of the point A. The proposition
follows at once from the fact that the sum of orthogonal
projections of AB>, AC> on AH is equal to the projection of AD>.
It is to be noticed that AH need not be in the same plane
with AB, AC.

It follows from the preceding statements that any two systems

of forces which are statically equivalent, according to the principles
of §§ 4, 8, will (to the first order of small quantities) do the
same amount of work in any infinitely small displacement of a
rigid body to which they may be applied. It is also evident that
the total work done in two or more successive infinitely small
displacements is equal to the work done in the resultant displacement.

The work of a couple in any infinitely small rotation of a
rigid body about an axis perpendicular to the plane of the
couple is equal to the product of the moment of the couple
into the angle of rotation, proper conventions as to sign being
observed. Let the couple consist of two forces P, P (fig. 47) in
the plane of the paper, and let J be the point where this plane
is met by the axis of rotation. Draw JBA perpendicular to the
lines of action, and let ε be the angle of rotation. The work of
the couple is

P·JA·ε − P·JB·ε = P·AB·ε = Gε,

if G be the moment of the couple.

The analytical calculation of the work done by a system of
forces in any infinitesimal displacement is as follows. For a
two-dimensional system we have, in the notation of §§ 3, 4,


	Σ(Xδx + Yδy) 	= Σ{X(λ − yε) + Y(μ + xε)}

	  	= Σ(X)·λ + Σ(Y)·μ + Σ(xY − yX) ε

	  	= Xλ + Yμ + Nε.



(1)

Again, for a three-dimensional system, in the notation of §§ 7, 8,


	Σ(Xδx + Yδy + Zδz)

	= Σ{(X(λ + ηz − ζy) + Y(μ + ζx − ξx) + Z(ν + ξy − ηx)}

	= Σ(X)·λ + Σ(Y)·μ + Σ(Z)·ν + Σ(yZ − zY)·ξ + Σ(zX − xZ)·η + Σ(xY − yX)·ζ

	= Xλ + Yμ + Zν + Lξ + Mη + Nζ.



(2)

This expression gives the work done by a given wrench when
the body receives a given infinitely small twist; it must of course
be an absolute invariant for all transformations of rectangular
axes. The first three terms express the work done by the components
of a force (X, Y, Z) acting at O, and the remaining
three terms express the work of a couple (L, M, N).


	

	Fig. 48.



The work done by a wrench about a given screw, when the body
twists about a second given screw, may be calculated directly as
follows. In fig. 48 let R, G be the force and couple of the wrench,
ε,τ the rotation and translation in the twist. Let the axes of the
wrench and the twist be inclined at an angle θ, and let h be the
shortest distance between them. The displacement of the point
H in the figure, resolved in the direction of R, is τ cos θ − εh sin θ.
The work is therefore

R (τ cos θ − εh sin θ) + G cos θ

  = Rε {(p + p′) cos θ − h sin θ},

(3)

if G = pR, τ = p′ε, i.e. p, p′ are the pitches of the two screws. The
factor (p + p′) cos θ − h sin θ is called the virtual coefficient of the two
screws which define the types of the wrench and twist, respectively.

A screw is determined by its axis and its pitch, and therefore
involves five Independent elements. These may be, for instance,
the five ratios ξ : η : ζ : λ : μ : ν of the six quantities which specify an
infinitesimal twist about the screw. If the twist is a pure rotation,
these quantities are subject to the relation

λξ + μη + νζ = 0.

(4)

In the analytical investigations of line geometry, these six quantities,
supposed subject to the relation (4), are used to specify a line, and
are called the six “co-ordinates” of the line; they are of course
equivalent to only four independent quantities. If a line is a
null-line with respect to the wrench (X, Y, Z, L, M, N), the work
done in an infinitely small rotation about it is zero, and its co-ordinates
are accordingly subject to the further relation

Lξ + Mη + Nζ + Xλ + Yμ + Zν = 0,

(5)

where the coefficients are constant. This is the equation of a
“linear complex” (cf. § 8).

Two screws are reciprocal when a wrench about one does no work
on a body which twists about the other. The condition for this is

λξ′ + μη′ + νζ′ + λ′ξ + μ′η + ν′ζ = 0,

(6)

if the screws be defined by the ratios ξ : η : ζ : λ : μ : ν and ξ′ : η′ : ζ′ : λ′ : μ′ : ν′,
respectively. The theory of the screw-systems which are reciprocal
to one, two, three, four given screws respectively has been investigated
by Sir R. S. Ball.



Considering a rigid body in any given position, we may contemplate
the whole group of infinitesimal displacements which
might be given to it. If the extraneous forces are in equilibrium
the total work which they would perform in any such displacement
would be zero, since they reduce to a zero force and a zero
couple. This is (in part) the celebrated principle of virtual
velocities, now often described as the principle of virtual work,
enunciated by John Bernoulli (1667-1748). The word “virtual”
is used because the displacements in question are not
regarded as actually taking place, the body being in fact at
rest. The “velocities” referred to are the velocities of the
various points of the body in any imagined motion of the body
through the position in question; they obviously bear to one
another the same ratios as the corresponding infinitesimal displacements.
Conversely, we can show that if the virtual work
of the extraneous forces be zero for every infinitesimal displacement
of the body as rigid, these forces must be in equilibrium.
For by giving the body (in imagination) a displacement of translation
we learn that the sum of the resolved parts of the forces
in any assigned direction is zero, and by giving it a displacement
of pure rotation we learn that the sum of the moments about any
assigned axis is zero. The same thing follows of course from the
analytical expression (2) for the virtual work. If this vanishes
for all values of λ, μ, ν, ξ, η, ζ we must have X, Y, Z, L, M, N = 0,
which are the conditions of equilibrium.

The principle can of course be extended to any system of
particles or rigid bodies, connected together in any way, provided
we take into account the internal stresses, or reactions,
between the various parts. Each such reaction consists of two
equal and opposite forces, both of which may contribute to the
equation of virtual work.

The proper significance of the principle of virtual work, and
of its converse, will appear more clearly when we come to kinetics
(§ 16); for the present it may be regarded merely as a compact
and (for many purposes) highly convenient summary of the laws
of equilibrium. Its special value lies in this, that by a suitable
adjustment of the hypothetical displacements we are often
enabled to eliminate unknown reactions. For example, in the
case of a particle lying on a smooth curve, or on a smooth
surface, if it be displaced along the curve, or on the surface, the
virtual work of the normal component of the pressure may be
ignored, since it is of the second order. Again, if two bodies
are connected by a string or rod, and if the hypothetical displacements
be adjusted so that the distance between the points of
attachment is unaltered, the corresponding stress may be ignored.
This is evident from fig. 45; if AB, A′B′ represent the two positions
of a string, and T be the tension, the virtual work of the
two forces ±T at A, B is T(Aα − Bβ), which was shown to be
of the second order. Again, the normal pressure between two
surfaces disappears from the equation, provided the displacements
be such that one of these surfaces merely slides relatively
to the other. It is evident, in the first place, that in any displacement
common to the two surfaces, the work of the two equal
and opposite normal pressures will cancel; moreover if, one of
the surfaces being fixed, an infinitely small displacement shifts
the point of contact from A to B, and if A′ be the new position
of that point of the sliding body which was at A, the projection
of AA′ on the normal at A is of the second order. It is to be
noticed, in this case, that the tangential reaction (if any) between
the two surfaces is not eliminated. Again, if the displacements
be such that one curved surface rolls without sliding on another,
the reaction, whether normal or tangential, at the point of contact
may be ignored. For the virtual work of two equal and
opposite forces will cancel in any displacement which is common
to the two surfaces; whilst, if one surface be fixed, the displacement
of that point of the rolling surface which was in contact
with the other is of the second order. We are thus able to
imagine a great variety of mechanical systems to which the
principle of virtual work can be applied without any regard to

the internal stresses, provided the hypothetical displacements
be such that none of the connexions of the system are violated.

If the system be subject to gravity, the corresponding part
of the virtual work can be calculated from the displacement of
the centre of gravity. If W1, W2, ... be the weights of a
system of particles, whose depths below a fixed horizontal plane
of reference are z1, z2, ..., respectively, the virtual work of
gravity is

W1δ·z1 + W2δz2 + ... = δ(W1z1 + W2z2 + ...) = (W1 + W2 + ...) δz,

where z is the depth of the centre of gravity (see § 8 (14) and
§ 11 (6)). This expression is the same as if the whole mass
were concentrated at the centre of gravity, and displaced with
this point. An important conclusion is that in any displacement
of a system of bodies in equilibrium, such that the virtual
work of all forces except gravity may be ignored, the depth
of the centre of gravity is “stationary.”

The question as to stability of equilibrium belongs essentially
to kinetics; but we may state by anticipation that in cases
where gravity is the only force which does work, the equilibrium
of a body or system of bodies is stable only if the depth of the
centre of gravity be a maximum.


Consider, for instance, the case of a bar resting with its ends on
two smooth inclines (fig. 18). If the bar be displaced in a vertical
plane so that its ends slide on the two inclines, the instantaneous
centre is at the point J. The displacement of G is at right angles
to JG; this shows that for equilibrium JG must be vertical. Again,
the locus of G is an arc of an ellipse whose centre is in the intersection
of the planes; since this arc is convex upwards the equilibrium is
unstable. A general criterion for the case of a rigid body movable
in two dimensions, with one degree of freedom, can be obtained as
follows. We have seen (§ 3) that the sequence of possible positions
is obtained if we imagine the “body-centrode” to roll on the “space-centrode.”
For equilibrium, the altitude of the centre of gravity
G must be stationary; hence G must lie in the same vertical line
with the point of contact J of the two curves. Further, it is known
from the theory of “roulettes” that the locus of G will be concave
or convex upwards according as


	cos φ
	= 	1
	+ 	1
	,

	h 	ρ
	ρ′


(8)


	

	Fig. 49.


where ρ, ρ′ are the radii of curvature of the two curves at J, φ is the
inclination of the common tangent at J to the horizontal, and h is
the height of G above J. The signs of ρ, ρ′ are to be taken positive
when the curvatures are as in the
standard case shown in fig. 49. Hence
for stability the upper sign must obtain
in (8). The same criterion may be
arrived at in a more intuitive manner as
follows. If the body be supposed to roll
(say to the right) until the curves touch
at J′, and if JJ′ = δs, the angle through
which the upper figure rotates is
δs/ρ + δs/ρ′, and the horizontal displacement
of G is equal to the product of
this expression into h. If this displacement
be less than the horizontal projection
of JJ′, viz. δs cosφ, the vertical through
the new position of G will fall to the left
of J′ and gravity will tend to restore the
body to its former position. It is here
assumed that the remaining forces acting
on the body in its displaced position have
zero moment about J′; this is evidently
the case, for instance, in the problem of “rocking stones.”



The principle of virtual work is specially convenient in the
theory of frames (§ 6), since the reactions at smooth joints and
the stresses in inextensible bars may be left out of account.
In particular, in the case of a frame which is just rigid, the
principle enables us to find the stress in any one bar independently
of the rest. If we imagine the bar in question to be
removed, equilibrium will still persist if we introduce two
equal and opposite forces S, of suitable magnitude, at the
joints which it connected. In any infinitely small deformation
of the frame as thus modified, the virtual work of the forces
S, together with that of the original extraneous forces, must
vanish; this determines S.


As a simple example, take the case of a light frame, whose bars
form the slides of a rhombus ABCD with the diagonal BD, suspended
from A and carrying a weight W at C; and let it be required to find
the stress in BD. If we remove the bar BD, and apply two equal
and opposite forces S at B and D, the equation is
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W·δ(2l cosθ) + 2S·δ (l sin θ) = 0,

where l is the length of a side of the
rhombus, and θ its inclination to the
vertical. Hence

S = W tan θ = W · BD/AC.

(8)

The method is specially appropriate
when the frame, although just rigid, is
not “simple” in the sense of § 6, and
when accordingly the method of reciprocal
figures is not immediately available. To
avoid the intricate trigonometrical calculations
which would often be necessary,
graphical devices have been introduced by
H. Müller-Breslau and others. For this
purpose the infinitesimal displacements of
the various joints are replaced by finite
lengths proportional to them, and therefore
proportional to the velocities of the
joints in some imagined motion of the deformable frame through its
actual configuration; this is really (it may be remarked) a reversion to
the original notion of “virtual velocities.” Let J be the instantaneous
centre for any bar CD (fig. 12), and let s1, s2 represent the virtual
velocities of C, D. If these lines be turned through a right angle
in the same sense, they take up positions such as CC′, DD′, where
C′, D′ are on JC, JD, respectively, and C′D′ is parallel to CD.
Further, if F1 (fig. 51) be any force acting on the joint C, its virtual
work will be equal to the moment of F1 about C′; the equation of
virtual work is thus transformed into an equation of moments.
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	Fig. 52.


Consider, for example, a frame whose sides form the six sides of
a hexagon ABCDEF and the three diagonals AD, BE, CF; and suppose
that it is required to find the stress in CF due to a given system
of extraneous forces in equilibrium, acting on the joints. Imagine
the bar CF to be removed, and consider a deformation in which AB
is fixed. The instantaneous centre of CD will be at the intersection
of AD, BC, and if C′D′ be drawn parallel to CD, the lines CC′, DD′
may be taken to represent the virtual
velocities of C, D turned each through
a right angle. Moreover, if we draw
D′E′ parallel to DE, and E′F′
parallel to EF, the lines CC′, DD′,
EE′, FF′ will represent on the same
scale the virtual velocities of the
points C, D, E, F, respectively,
turned each through a right angle.
The equation of virtual work is then
formed by taking moments about C′,
D′, E′, F′ of the extraneous forces
which act at C, D, E, F, respectively.
Amongst these forces we must include the two equal and opposite
forces S which take the place of the stress in the removed bar FC.

The above method lends itself naturally to the investigation of
the critical forms of a frame whose general structure is given. We
have seen that the stresses produced by an equilibrating system of
extraneous forces in a frame which is just rigid, according to the
criterion of § 6, are in general uniquely determinate; in particular,
when there are no extraneous forces the bars are in general free from
stress. It may however happen that owing to some special relation
between the lengths of the bars the frame admits of an infinitesimal
deformation. The simplest case is that of a frame of three bars,
when the three joints A, B, C fall into a straight line; a small displacement
of the joint B at right angles to AC would involve changes
in the lengths of AB, BC which are only of the second order of small
quantities. Another example is shown in fig. 53. The graphical
method leads at once to the detection of such cases. Thus in the
hexagonal frame of fig. 52, if an infinitesimal deformation is possible
without removing the bar CF, the instantaneous centre of CF (when
AB is fixed) will be at the intersection of AF and BC, and since CC′,
FF′ represent the virtual velocities of the points C, F, turned each
through a right angle, C′F′ must be parallel to CF. Conversely, if
this condition be satisfied, an infinitesimal deformation is possible.
The result may be generalized into the statement that a frame has
a critical form whenever a frame of the same structure can be designed

with corresponding bars parallel, but without complete geometric
similarity. In the case of fig. 52 it may be shown that an equivalent
condition is that the six points A, B, C, D, E, F should lie on a conic
(M. W. Crofton). This is fulfilled when the opposite sides of the
hexagon are parallel, and (as a still more special case) when the
hexagon is regular.
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When a frame has a critical form it may be in a state of stress
independently of the action of extraneous forces; moreover, the
stresses due to extraneous forces are
indeterminate, and may be infinite.
For suppose as before that one of the
bars is removed. If there are no extraneous
forces the equation of virtual work
reduces to S·δs = 0, where S is the stress
in the removed bar, and δs is the change
in the distance between the joints which
it connected. In a critical form we
have δs = 0, and the equation is satisfied
by an arbitrary value of S; a consistent
system of stresses in the remaining bars
can then be found by preceding rules. Again, when extraneous
forces P act on the joints, the equation is

Σ(P·δp) + S·δs = 0,

where δp is the displacement of any joint in the direction of the
corresponding force P. If Σ(P·δp) = 0, the stresses are merely
indeterminate as before; but if Σ (P·δp) does not vanish, the equation
cannot be satisfied by any finite value of S, since δs = 0. This means
that, if the material of the frame were absolutely unyielding, no
finite stresses in the bars would enable it to withstand the extraneous
forces. With actual materials, the frame would yield elastically,
until its configuration is no longer “critical.” The stresses in the
bars would then be comparatively very great, although finite. The
use of frames which approximate to a critical form is of course to
be avoided in practice.

A brief reference must suffice to the theory of three dimensional
frames. This is important from a technical point of view, since all
structures are practically three-dimensional. We may note that
a frame of n joints which is just rigid must have 3n − 6 bars; and
that the stresses produced in such a frame by a given system of
extraneous forces in equilibrium are statically determinate, subject
to the exception of “critical forms.”



§ 10. Statics of Inextensible Chains.—The theory of bodies
or structures which are deformable in their smallest parts
belongs properly to elasticity (q.v.). The case of inextensible
strings or chains is, however, so simple that it is generally
included in expositions of pure statics.

It is assumed that the form can be sufficiently represented by
a plane curve, that the stress (tension) at any point P of the
curve, between the two portions which meet there, is in the
direction of the tangent at P, and that the forces on any linear
element δs must satisfy the conditions of equilibrium laid
down in § 1. It follows that the forces on any finite portion
will satisfy the conditions of equilibrium which apply to the
case of a rigid body (§ 4).
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We will suppose in the first instance that the curve is plane.
It is often convenient to resolve the forces on an element PQ
(= δs) in the directions of the
tangent and normal respectively.
If T, T + δT be the tensions at
P, Q, and δψ be the angle between
the directions of the curve at
these points, the components
of the tensions along the tangent
at P give (T + δT) cos ψ − T,
or δT, ultimately; whilst for the
component along the normal at
P we have (T + δT) sin δψ, or
Tδψ, or Tδs/ρ, where ρ is the radius of curvature.

Suppose, for example, that we have a light string stretched
over a smooth curve; and let Rδs denote the normal pressure
(outwards from the centre of curvature) on δs. The two resolutions
give δT = 0, Tδψ = Rδs, or

T = const.,   R = T/ρ.

(1)

The tension is constant, and the pressure per unit length varies
as the curvature.

Next suppose that the curve is “rough”; and let Fδs be
the tangential force of friction on δs. We have δT ± Fδs = 0,
Tδψ = Rδs, where the upper or lower sign is to be taken
according to the sense in which F acts. We assume that in
limiting equilibrium we have F = μR, everywhere, where μ is
the coefficient of friction. If the string be on the point of
slipping in the direction in which ψ increases, the lower sign
is to be taken; hence δT = Fδs = μTδψ, whence

T = T0 eμψ,

(2)

if T0 be the tension corresponding to ψ = 0. This illustrates
the resistance to dragging of a rope coiled round a post; e.g.
if we put μ = .3, ψ = 2π, we find for the change of tension in
one turn T/T0 = 6.5. In two turns this ratio is squared, and
so on.

Again, take the case of a string under gravity, in contact
with a smooth curve in a vertical plane. Let ψ denote the
inclination to the horizontal, and wδs the weight of an
element δs. The tangential and normal components of wδs
are −s sinψ and −wδs cosψ. Hence

δT = wδs sin ψ,   Tδψ = wδs cos ψ + Rδs.

(3)

If we take rectangular axes Ox, Oy, of which Oy is drawn
vertically upwards, we have δy = sin ψ δs, whence δT = wδy.
If the string be uniform, w is constant, and

T = wy + const. = w (y − y0),

(4)

say; hence the tension varies as the height above some fixed
level (y0). The pressure is then given by the formula


	R = T 	dψ
	−w cos ψ.

	ds


(5)

In the case of a chain hanging freely under gravity it is usually
convenient to formulate the conditions of equilibrium of a
finite portion PQ. The forces on this reduce to three, viz.
the weight of PQ and the tensions at P, Q. Hence these three
forces will be concurrent, and their ratios will be given by a
triangle of forces. In particular, if we consider a length AP
beginning at the lowest point A, then resolving horizontally
and vertically we have

T cos ψ = T0,   T sinψ = W,

(6)

where T0 is the tension at A, and W is the weight of PA.
The former equation expresses that the horizontal tension is
constant.


	

	Fig. 55.


If the chain be uniform we have W = ws, where s is the arc
AP: hence ws = T0 tan ψ. If we write T0 = wa, so that a is
the length of a portion of the chain whose weight would equal
the horizontal tension, this becomes

s = a tan ψ.

(7)

This is the “intrinsic” equation of the curve. If the axes
of x and y be taken horizontal and vertical (upwards), we derive

x = a log (sec ψ + tan ψ),   y = a sec ψ.

(8)

Eliminating ψ we obtain the Cartesian equation


	y = a cosh 	x


	a


(9)

of the common catenary, as it is called (fig. 56). The omission
of the additive arbitrary constants of integration in (8) is
equivalent to a special choice of the origin O of co-ordinates;
viz. O is at a distance a vertically below the lowest point
(ψ = 0) of the curve. The horizontal line through O is called
the directrix. The relations


	s = a sinh 	x
	,   y2 = a2 + s2,   T = T0 sec ψ = wy,

	a


(10)
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which are involved in the preceding formulae are also noteworthy.
It is a classical problem in the calculus of variations
to deduce the equation (9) from
the condition that the depth
of the centre of gravity of a
chain of given length hanging
between fixed points must be
stationary (§ 9). The length
a is called the parameter of the
catenary; it determines the
scale of the curve, all catenaries
being geometrically similar.
If weights be suspended
from various points of a hanging
chain, the intervening portions
will form arcs of equal
catenaries, since the horizontal
tension (wa) is the same for all.
Again, if a chain pass over a
perfectly smooth peg, the catenaries
in which it hangs on the two sides, though usually of
different parameters, will have the same directrix, since by
(10) y is the same for both at the peg.


As an example of the use of the formulae we may determine the
maximum span for a wire of given material. The condition is that
the tension must not exceed the weight of a certain length λ of the
wire. At the ends we shall have y = λ, or


	λ = a cosh 	x
	,

	a


(11)

and the problem is to make x a maximum for variations of a. Differentiating
(11) we find that, if dx/da = 0,


	x
	tanh 	x
	= 1.

	a 	a


(12)

It is easily seen graphically, or from a table of hyperbolic tangents,
that the equation u tanh u = 1 has only one positive root (u = 1.200);
the span is therefore

2x = 2au = 2λ/sinh u = 1.326 λ,

and the length of wire is

2s = 2λ/u = 1.667 λ.

The tangents at the ends meet on the directrix, and their inclination
to the horizontal is 56° 30′.


	

	Fig. 57.


The relation between the sag, the tension, and the span of a wire
(e.g. a telegraph wire) stretched nearly straight between two points
A, B at the same level is determined most simply from first principles.
If T be the tension, W the total weight, k the sag in the middle, and
ψ the inclination to the horizontal at A or B, we have 2Tψ = W,
AB = 2ρψ, approximately, where ρ is the radius of curvature. Since
2kρ = (1⁄2AB)2, ultimately, we have

k = 1⁄8W · AB/T.

(13)

The same formula applies if A, B be at different levels, provided k be
the sag, measured vertically, half way between A and B.



In relation to the theory of suspension bridges the case where
the weight of any portion of the chain varies as its horizontal
projection is of interest. The vertical through the centre of
gravity of the arc AP (see fig. 55) will then bisect its horizontal
projection AN; hence if PS be the tangent at P we shall have
AS = SN. This property is characteristic of a parabola whose
axis is vertical. If we take A as origin and AN as axis of x,
the weight of AP may be denoted by wx, where w is the weight
per unit length at A. Since PNS is a triangle of forces for
the portion AP of the chain, we have wx/T0 = PN/NS, or

y = w · x2/2T0,

(14)

which is the equation of the parabola in question. The result
might of course have been inferred from the theory of the
parabolic funicular in § 2.


Finally, we may refer to the catenary of uniform strength, where
the cross-section of the wire (or cable) is supposed to vary as the
tension. Hence w, the weight per foot, varies as T, and we may
write T = wλ, where λ is a constant length. Resolving along the
normal the forces on an element δs, we find Tδψ = wδs cos ψ, whence


	ρ = 	ds
	= λ sec ψ.

	dψ


(15)

From this we derive


	x = λψ,   y = λ log sec 	x
	,

	λ


(16)

where the directions of x and y are horizontal and vertical, and the
origin is taken at the lowest point. The curve (fig. 58) has two
vertical asymptotes x = ± 1⁄2πλ; this shows that however the thickness
of a cable be adjusted there is a limit πλ to the horizontal span,
where λ depends on the tensile strength of the material. For a
uniform catenary the limit was found above to be 1.326λ.




	

	Fig. 58.


For investigations relating to the equilibrium of a string in
three dimensions we must refer to the textbooks. In the case
of a string stretched over a smooth surface, but in other respects
free from extraneous force, the tensions at the ends of a small
element δs must be balanced by the normal reaction of the
surface. It follows that the osculating plane of the curve
formed by the string must contain the normal to the surface,
i.e. the curve must be a “geodesic,” and that the normal pressure
per unit length must vary as the principal curvature of the
curve.

§ 11. Theory of Mass-Systems.—This is a purely geometrical
subject. We consider a system of points P1, P2 ..., Pn,
with which are associated certain coefficients m1, m2, ... mn,
respectively. In the application to mechanics these coefficients
are the masses of particles situate at the respective points,
and are therefore all positive. We shall make this supposition
in what follows, but it should be remarked that hardly any
difference is made in the theory if some of the coefficients have
a different sign from the rest, except in the special case where
Σ(m) = 0. This has a certain interest in magnetism.

In a given mass-system there exists one and only one point
G such that

Σ(m·GP>) = 0.      

(1)

For, take any point O, and construct the vector


	OG> = 	Σ(m·OP>)
	.

	Σ(m)


(2)

Then

Σ(m·GP>) = Σ {m(GO> + OP>)} = Σ(m)·GO> + Σ(m)·OP> = 0.

(3)

Also there cannot be a distinct point G′ such that Σ(m·G′P) = 0,
for we should have, by subtraction,

Σ {m(GP> + PG>′)} = 0,   or Σ(m)·GG′ = 0;

(4)

i.e. G′ must coincide with G. The point G determined by (1)
is called the mass-centre or centre of inertia of the given system.
It is easily seen that, in the process of determining the mass-centre,
any group of particles may be replaced by a single
particle whose mass is equal to that of the group, situate at the
mass-centre of the group.

If through P1, P2, ... Pn we draw any system of parallel
planes meeting a straight line OX in the points M1, M2 ...
Mn, the collinear vectors OM>1, OM>2 ... OM>n may be called
the “projections” of OP>1, OP>2, ... OP>n on OX. Let these
projections be denoted algebraically by x1, x2, ... xn, the
sign being positive or negative according as the direction is
that of OX or the reverse. Since the projection of a vector-sum

is the sum of the projections of the several vectors, the
equation (2) gives


	x = 	Σ(mx)
	,

	Σ(m)


(5)

if x be the projection of OG>. Hence if the Cartesian co-ordinates
of P1, P2, ... Pn relative to any axes, rectangular or oblique
be (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn), the mass-centre
(x, y, z) is determined by the formulae


	x = 	Σ(mx)
	,   y = 	Σ(my)
	,   z = 	Σ(mz)
	.

	Σ(m) 	Σ(m)
	Σ(m)


(6)

If we write x = x + ξ, y = y + η, z = z + ζ, so that ξ, η, ζ denote
co-ordinates relative to the mass-centre G, we have from (6)

Σ(mξ) = 0,   Σ(mη) = 0,   Σ(mζ) = 0.

(7)


One or two special cases may be noticed. If three masses α, β, γ
be situate at the vertices of a triangle ABC, the mass-centre of β
and γ is at a point A′ in BC, such that β·BA′ = γ·A′C. The mass-centre
(G) of α, β, γ will then divide AA′ so that α·AG = (β + γ) GA′.
It is easily proved that

α : β : γ = ΔBGA : ΔGCA : ΔGAB;

also, by giving suitable values (positive or negative) to the ratios
α : β : γ we can make G assume any assigned position in the plane ABC.
We have here the origin of the “barycentric co-ordinates” of Möbius,
now usually known as “areal” co-ordinates. If α + β + γ = 0, G is
at infinity; if α = β = γ, G is at the intersection of the median lines
of the triangle; if α : β : γ = a : b : c, G is at the centre of the inscribed
circle. Again, if G be the mass-centre of four particles α, β, γ, δ
situate at the vertices of a tetrahedron ABCD, we find

α : β : γ : δ = tetn GBCD : tetn GCDA : tetn GDAB : tetn GABC,

and by suitable determination of the ratios on the left hand we can
make G assume any assigned position in space. If α + β + γ + δ = O,
G is at infinity; if α = β = γ = δ, G bisects the lines joining the middle
points of opposite edges of the tetrahedron ABCD; if α : β : γ : δ =
ΔBCD : ΔCDA : ΔDAB : ΔABC, G is at the centre of the inscribed
sphere.

If we have a continuous distribution of matter, instead of a system
of discrete particles, the summations in (6) are to be replaced by
integrations. Examples will be found in textbooks of the calculus
and of analytical statics. As particular cases: the mass-centre
of a uniform thin triangular plate coincides with that of three
equal particles at the corners; and that of a uniform solid tetrahedron
coincides with that of four equal particles at the vertices.
Again, the mass-centre of a uniform solid right circular cone divides
the axis in the ratio 3 : 1; that of a uniform solid hemisphere divides
the axial radius in the ratio 3 : 5.

It is easily seen from (6) that if the configuration of a system of
particles be altered by “homogeneous strain” (see Elasticity)
the new position of the mass-centre will be at that point of the
strained figure which corresponds to the original mass-centre.



The formula (2) shows that a system of concurrent forces
represented by m1·OP>1, m2·OP>2, ... mn·OP>n will have a
resultant represented hy Σ(m)·OG>. If we imagine O to recede to
infinity in any direction we learn that a system of parallel forces
proportional to m1, m2,... mn, acting at P1, P2 ... Pn have
a resultant proportional to Σ(m) which acts always through
a point G fixed relatively to the given mass-system. This
contains the theory of the “centre of gravity” (§§ 4, 9). We
may note also that if P1, P2, ... Pn, and P1′, P2′, ... Pn′
represent two configurations of the series of particles, then

Σ(m·PP>′) = Sigma(m)·GG>′,

(8)

where G, G′ are the two positions of the mass-centre. The
forces m1·P>1P1′, m2·P>2P2′, ... mn·P>nPn′, considered as localized
vectors, do not, however, as a rule reduce to a single
resultant.

We proceed to the theory of the plane, axial and polar
quadratic moments of the system. The axial moments have
alone a dynamical significance, but the others are useful as
subsidiary conceptions. If h1, h2, ... hn be the perpendicular
distances of the particles from any fixed plane, the sum Σ(mh2)
is the quadratic moment with respect to the plane. If p1,
p2, ... pn be the perpendicular distances from any given
axis, the sum Σ(mp2) is the quadratic moment with respect to
the axis; it is also called the moment of inertia about the axis.
If r1, r2, ... rn be the distances from a fixed point, the sum
Σ(mr2) is the quadratic moment with respect to that point
(or pole). If we divide any of the above quadratic moments
by the total mass Σ(m), the result is called the mean square
of the distances of the particles from the respective plane,
axis or pole. In the case of an axial moment, the square root
of the resulting mean square is called the radius of gyration of
the system about the axis in question. If we take rectangular
axes through any point O, the quadratic moments with respect
to the co-ordinate planes are

Ix = Σ(mx2),   Iy = Σ(my2),   Iz = Σ(mz2);

(9)

those with respect to the co-ordinate axes are

Iyz = Σ {m (y2 + z2)},   Izx = Σ {m (z2 + x2)},  
Ixy = Σ {m (x2 + y2)};

(10)

whilst the polar quadratic moment with respect to O is

I0 = Σ {m (x2 + y2 + z2)}.

(11)

We note that

Iyz = Iy + Iz,   Izx = Iz + Ix,   Ixy = Ix + Iy,

(12)

and

I0 = Ix + Iy + Iz = 1⁄2 (Iyz + Izx + Ixy).

(13)


In the case of continuous distributions of matter the summations
in (9), (10), (11) are of course to be replaced by integrations. For
a uniform thin circular plate, we find, taking the origin at its centre,
and the axis of z normal to its plane, I0 = 1⁄2Ma2, where M is the mass
and a the radius. Since Ix = Iy, Iz = 0, we deduce Izx = 1⁄2Ma2,
Ixy = 1⁄2Ma2; hence the value of the squared radius of gyration is for a
diameter 1⁄4a2, and for the axis of symmetry 1⁄2a2. Again, for a uniform
solid sphere having its centre at the origin we find I0 = 3⁄5Ma2,
Ix = Iy = Iz = 1⁄5Ma2, Iyz = Izx = lxy = 3⁄5Ma2; i.e. the square of the
radius of gyration with respect to a diameter is 2⁄5a2. The method of
homogeneous strain can be applied to deduce the corresponding
results for an ellipsoid of semi-axes a, b, c. If the co-ordinate axes
coincide with the principal axes, we find Ix = 1⁄5Ma2, Iy = 1⁄5Mb2,
Iz = 1⁄5Mc2, whence Iyz = 1⁄5M (b2 + c2), &c.



If φ(x, y, z) be any homogeneous quadratic function of x, y, z,
we have

Σ {mφ (x, y, z)} = Σ {mφ (x + ξ, y + η, z + ζ) }

= Σ {mφ (x, y, z)} + Σ {mφ (ξ, η, ζ)},

(14)

since the terms which are bilinear in respect to x, y, z, and
ξ, η, ζ vanish, in virtue of the relations (7). Thus

Ix = Iξ + Σ(m)x2,

(15)

Iyz = Iηζ + Σ(m) · (y2 + z2),

(16)

with similar relations, and

IO = IG + Σ(m) · OG2.

(17)

The formula (16) expresses that the squared radius of gyration
about any axis (Ox) exceeds the squared radius of gyration
about a parallel axis through G by the square of the distance
between the two axes. The formula (17) is due to J. L. Lagrange;
it may be written


	Σ(m · OP2)
	= 	Σ(m · GP2)
	+ OG2,

	Σ(m) 	Σ(m)


(18)

and expresses that the mean square of the distances of the
particles from O exceeds the mean square of the distances from
G by OG2. The mass-centre is accordingly that point the mean
square of whose distances from the several particles is least.
If in (18) we make O coincide with P1, P2, ... Pn in succession,
we obtain


	   0  	+ m2·P1P22 	+   ... 	+ mn·P1Pn2 	= Σ(m · GP2) + Σ(m) · GP12,

	m1·P2P12 	+   0 	+   ... 	+ mn·P2Pn2 	= Σ(m · GP2) + Σ(m) · GP22,

	.........

	m1·PnP12 	+ m2·PnP22 	+   ... 	+   0 	= Σ(m · GP2) + Σ(m) · GPn2.



(19)

If we multiply these equations by m1, m2 ... mn, respectively,
and add, we find

ΣΣ (mrms · PrPs2) = Σ (m) · Σ (m · GP2),

(20)

provided the summation ΣΣ on the left hand be understood to
include each pair of particles once only. This theorem, also
due to Lagrange, enables us to express the mean square of the
distances of the particles from the centre of mass in terms of
the masses and mutual distances. For instance, considering
four equal particles at the vertices of a regular tetrahedron,
we can infer that the radius R of the circumscribing sphere is
given by R2 = 3⁄8a2, if a be the length of an edge.

Another type of quadratic moment is supplied by the deviation-moments,
or products of inertia of a distribution of matter.
Thus the sum Σ(m·yz) is called the “product of inertia” with
respect to the planes y = 0, z = 0. This may be expressed In
terms of the product of inertia with respect to parallel planes
through G by means of the formula (14); viz.:—

Σ (m · yz) = Σ (m · ηζ) + Σ (m) · yz

(21)



The quadratic moments with respect to different planes
through a fixed point O are related to one another as follows.
The moment with respect to the plane

λx + μy + νz = 0,

(22)

where λ, μ, ν are direction-cosines, is

Σ {m (λx + μy + νz)2} = Σ (mx2)·λ2 + Σ (my2)·μ2 + Σ (mz2)·ν2
                                 + 2Σ (myz)·μν + 2Σ (mzx)·νλ + 2Σ (mxy)·λμ,

(23)

and therefore varies as the square of the perpendicular drawn
from O to a tangent plane of a certain quadric surface, the tangent
plane in question being parallel to (22). If the co-ordinate axes
coincide with the principal axes of this quadric, we shall have

Σ(myz) = 0,   Σ(mzx) = 0,   Σ(mxy) = 0;

(24)

and if we write

Σ(mx2) = Ma2,   Σ(my2) = Mb2,   Σ(mz2) = Mc2,

(25)

where M = Σ(m), the quadratic moment becomes M(a2λ2 + b2μ2 + c2ν2),
or Mp2, where p is the distance of the origin from that
tangent plane of the ellipsoid


	x2
	+ 	y2
	+ 	z2
	= 1,

	a2 	b2
	c2


(26)

which is parallel to (22). It appears from (24) that through any
assigned point O three rectangular axes can be drawn such that
the product of inertia with respect to each pair of co-ordinate
planes vanishes; these are called the principal axes of inertia at O.
The ellipsoid (26) was first employed by J. Binet (1811), and may
be called “Binet’s Ellipsoid” for the point O. Evidently the
quadratic moment for a variable plane through O will have a
“stationary” value when, and only when, the plane coincides
with a principal plane of (26). It may further be shown that if
Binet’s ellipsoid be referred to any system of conjugate diameters
as co-ordinate axes, its equation will be


	x′2
	+ 	y′2
	+ 	z′2
	= 1,

	a′2 	b′2
	c′2


(27)

provided

Σ(mx′2) = Ma′2,   Σ(my′2) Mb′2,   Σ(mz′2) = Mc′2;

also that

Σ(my′z′) = 0,   Σ(mz′x′) = 0,   Σ(mx′y′) = 0.

(28)

Let us now take as co-ordinate axes the principal axes of inertia
at the mass-centre G. If a, b, c be the semi-axes of the Binet’s
ellipsoid of G, the quadratic moment with respect to the plane
λx + μy + νz = 0 will be M(a2λ2 + b2μ2 + c2ν2), and that with
respect to a parallel plane

λx + μy + νz = p

(29)

will be M (a2λ2 + b2μ2 + c2ν2 + p2), by (15). This will have a
given value Mk2, provided

p2 = (k2 − a2) λ2 + (k2 − b2) μ2 + (k2 − c2) ν2.

(30)

Hence the planes of constant quadratic moment Mk2 will envelop
the quadric


	x2
	+ 	y2
	+ 	z2
	=  1,

	k2 − a2 	k2 − b2
	k2 − c2


(31)

and the quadrics corresponding to different values of k2 will be
confocal. If we write

k2 = a2 + b2 + c2 + θ,

b2 + c2 = α2,   c2 + a2 = β2,   a2 + b2 = γ2

(32)

the equation (31) becomes


	x2
	+ 	y2
	+ 	z2
	=  1;

	α2 + θ 	β2 + θ
	γ2 + θ


(33)

for different values of θ this represents a system of quadrics
confocal with the ellipsoid


	x2
	+ 	y2
	+ 	z2
	=  1,

	α2 	β2
	γ2


(34)

which we shall meet with presently as the “ellipsoid of gyration”
at G. Now consider the tangent plane ω at any point P of a
confocal, the tangent plane ω′ at an adjacent point N′, and a
plane ω″ through P parallel to ω′. The distance between the
planes ω′ and ω″ will be of the second order of small quantities,
and the quadratic moments with respect to ω′ and ω″ will therefore
be equal, to the first order. Since the quadratic moments
with respect to ω and ω′ are equal, it follows that ω is a plane of
stationary quadratic moment at P, and therefore a principal
plane of inertia at P. In other words, the principal axes of
inertia at P arc the normals to the three confocals of the system
(33) which pass through P. Moreover if x, y, z be the co-ordinates
of P, (33) is an equation to find the corresponding values of θ;
and if θ1, θ2, θ3 be the roots we find

θ1 + θ2 + θ3 = r2 − α2 − β2 − γ2,

(35)

where r2 = x2 + y2 + z2. The squares of the radii of gyration
about the principal axes at P may be denoted by k22 + k32,
k32 + k12, k12 + k22; hence by (32) and (35) they are r2 −θ1,
r2 − θ2, r2 − θ3, respectively.

To find the relations between the moments of inertia about
different axes through any assigned point O, we take O as origin.
Since the square of the distance of a point (x, y, z) from the
axis


	x
	= 	y
	= 	z


	λ 	μ
	ν


(36)

is x2 + y2 + z2 − (λx + μy + νz)2, the moment of inertia about
this axis is

I = Σ [m { (λ2 + μ2 + ν2) (x2 + y2 + z2) − (λx + μy + νz)2} ]

  = Aλ2 + Bμ2 + Cν2 − 2Fμν − 2Gνλ − 2Hλμ,

(37)

provided

A = Σ {m (y2 + z2)},   B = Σ {m (z2 + x2)},   C = Σ {m (x2 + y2)},

            F = Σ (myz),   G = Σ (mzx),   H = Σ (mxy);

(38)

i.e. A, B, C are the moments of inertia about the co-ordinate
axes, and F, G, H are the products of inertia with respect to the
pairs of co-ordinate planes. If we construct the quadric

Ax2 + By2 + Cz2 − 2Fyz − 2Gzx − 2Hxy = Mε4

(39)

where ε is an arbitrary linear magnitude, the intercept r which it
makes on a radius drawn in the direction λ, μ, ν is found by
putting x, y, z = λr, μr, νr. Hence, by comparison with (37),

I = Mε4 / r2.

(40)

The moment of inertia about any radius of the quadric (39) therefore
varies inversely as the square of the length of this radius.
When referred to its principal axes, the equation of the quadric
takes the form

Ax2 + By2 + Cz2 = Mε4.

(41)

The directions of these axes are determined by the property (24),
and therefore coincide with those of the principal axes of inertia
at O, as already defined in connexion with the theory of plane
quadratic moments. The new A, B, C are called the principal
moments of inertia at O. Since they are essentially positive the
quadric is an ellipsoid; it is called the momental ellipsoid at O.
Since, by (12), B + C > A, &c., the sum of the two lesser principal
moments must exceed the greatest principal moment. A limitation
is thus imposed on the possible forms of the momental
ellipsoid; e.g. in the case of symmetry about an axis it appears
that the ratio of the polar to the equatorial diameter of the
ellipsoid cannot be less than 1/√2.

If we write A = Mα2, B = Mβ2, C = Mγ2, the formula (37),
when referred to the principal axes at O, becomes

I = M (α2λ2 + β2μ2 + γ2ν2) = Mp2,

(42)

if p denotes the perpendicular drawn from O in the direction
(λ, μ, ν) to a tangent plane of the ellipsoid


	x2
	+ 	y2
	+ 	z2
	=  1

	α2 	β2
	γ2


(43)

This is called the ellipsoid of gyration at O; it was introduced into
the theory by J. MacCullagh. The ellipsoids (41) and (43) are
reciprocal polars with respect to a sphere having O as centre.

If A = B = C, the momental ellipsoid becomes a sphere; all
axes through O are then principal axes, and the moment of
inertia is the same for each. The mass-system is then said to
possess kinetic symmetry about O.


If all the masses lie in a plane (z = 0) we have, in the notation of
(25), c2 = 0, and therefore A = Mb2, B = Ma2, C = M(a2 + b2), so that
the equation of the momental ellipsoid takes the form

b2x2 + a2y2 + (a2 + b2) z2 = ε4.

(44)

The section of this by the plane z = 0 is similar to


	x2
	+ 	y2
	 =  1,

	a2 	b2


(45)

which may be called the momental ellipse at O. It possesses the
property that the radius of gyration about any diameter is half the
distance between the two tangents which are parallel to that diameter.
In the case of a uniform triangular plate it may be shown that the
momental ellipse at G is concentric, similar and similarly situated

to the ellipse which touches the sides of the triangle at their middle
points.


	

	Fig. 59.


The graphical methods of determining the moment of inertia of
a plane system of particles with respect to any line in its plane may
be briefly noticed. It appears from § 5 (fig. 31) that the linear moment
of each particle about the line may be found by means of a funicular
polygon. If we replace the mass of each particle by its moment,
as thus found, we can in like manner obtain the quadratic moment
of the system with respect to the line. For if the line in question
be the axis of y, the first process gives us the values of mx, and the
second the value of Σ(mx·x) or Σ(mx2). The construction of a
second funicular may be dispensed with by the employment of a
planimeter, as follows. In fig. 59 p is the line with respect to
which moments are to be taken, and the masses of the respective
particles are indicated by the
corresponding segments of a
line in the force-diagram,
drawn parallel to p. The
funicular ZABCD ... corresponding
to any pole O is
constructed for a system of
forces acting parallel to p
through the positions of the
particles and proportional to
the respective masses; and its
successive sides are produced
to meet p in the points H, K,
L, M, ... As explained in § 5,
the moment of the first particle
is represented on a certain
scale by HK, that of the
second by KL, and so on.
The quadratic moment of the
first particle will then be
represented by twice the area
AHK, that of the second by
twice the area BKL, and so
on. The quadratic moment of the whole system is therefore
represented by twice the area AHEDCBA. Since a quadratic
moment is essentially positive, the various areas are to taken
positive in all cases. If k be the radius of gyration about p we find

k2 = 2 × area AHEDCBA × ON ÷ αβ,


	

	Fig. 60.


where αβ is the line in the force-diagram which represents the sum
of the masses, and ON is the distance of the pole O from this line.
If some of the particles lie on one side of p and some on the other,
the quadratic moment of each set may be found, and the results
added. This is illustrated in fig. 60, where the total quadratic
moment is represented by the sum of the shaded areas. It is seen
that for a given direction of p this moment is least when p passes
through the intersection X of the first and last sides of the funicular;
i.e. when p goes through the mass-centre of the given system;
cf. equation (15).



Part II.—Kinetics

§ 12. Rectilinear Motion.—Let x denote the distance OP of a
moving point P at time t from a fixed origin O on the line of
motion, this distance being reckoned positive or negative according
as it lies to one side or the other of O. At time t + δt let the
point be at Q, and let OQ = x + δx. The mean velocity of the
point in the interval δt is δx/δt. The limiting value of this when
δt is infinitely small, viz. dx/dt, is adopted as the definition of the
velocity at the instant t. Again, let u be the velocity at time t,
u + δu that at time t + δt. The mean rate of increase of velocity,
or the mean acceleration, in the interval δt is then δu/δt. The
limiting value of this when δt is infinitely small, viz., du/dt, is
adopted as the definition of the acceleration at the instant t.
Since u = dx/dt, the acceleration is also denoted by d2x/dt2. It is
often convenient to use the “fluxional” notation for differential
coefficients with respect to time; thus the velocity may be
represented by ẋ and the acceleration by u̇ or ẍ. There is another
formula for the acceleration, in which u is regarded as a function
of the position; thus du/dt = (du/dx) (dx/dt) = u(du/dx). The relation between
x and t in any particular case may be illustrated by means of a
curve constructed with t as abscissa and x as ordinate. This is
called the curve of positions or space-time curve; its gradient
represents the velocity. Such curves are often traced mechanically
in acoustical and other experiments. A, curve with t as
abscissa and u as ordinate is called the curve of velocities or
velocity-time curve. Its gradient represents the acceleration, and
the area (∫u dt) included between any two ordinates represents
the space described in the interval between the corresponding
instants (see fig. 62).

So far nothing has been said about the measurement of time.
From the purely kinematic point of view, the t of our formulae
may be any continuous independent variable, suggested (it
may be) by some physical process. But from the dynamical
standpoint it is obvious that equations which represent the facts
correctly on one system of time-measurement might become
seriously defective on another. It is found that for almost all
purposes a system of measurement based ultimately on the
earth’s rotation is perfectly adequate. It is only when we come
to consider such delicate questions as the influence of tidal
friction that other standards become necessary.

The most important conception in kinetics is that of “inertia.”
It is a matter of ordinary observation that different bodies acted
on by the same force, or what is judged to be the same force,
undergo different changes of velocity in equal times. In our
ideal representation of natural phenomena this is allowed for by
endowing each material particle with a suitable mass or inertia-coefficient
m. The product mu of the mass into the velocity is
called the momentum or (in Newton’s phrase) the quantity of
motion. On the Newtonian system the motion of a particle
entirely uninfluenced by other bodies, when referred to a suitable
base, would be rectilinear, with constant velocity. If the
velocity changes, this is attributed to the action of force; and if
we agree to measure the force (X) by the rate of change of
momentum which it produces, we have the equation


	d
	(mu) = X.

	dt


(1)

From this point of view the equation is a mere truism, its real
importance resting on the fact that by attributing suitable
values to the masses m, and by making simple assumptions as
to the value of X in each case, we are able to frame adequate
representations of whole classes of phenomena as they actually
occur. The question remains, of course, as to how far the
measurement of force here implied is practically consistent with
the gravitational method usually adopted in statics; this will be
referred to presently.

The practical unit or standard of mass must, from the nature
of the case, be the mass of some particular body, e.g. the imperial
pound, or the kilogramme. In the “C.G.S.” system a subdivision
of the latter, viz. the gramme, is adopted, and is associated
with the centimetre as the unit of length, and the mean
solar second as the unit of time. The unit of force implied in (1)
is that which produces unit momentum in unit time. On the
C.G.S. system it is that force which acting on one gramme for
one second produces a velocity of one centimetre per second;
this unit is known as the dyne. Units of this kind are called
absolute on account of their fundamental and invariable character
as contrasted with gravitational units, which (as we shall see
presently) vary somewhat with the locality at which the measurements
are supposed to be made.

If we integrate the equation (1) with respect to t between the
limits t, t′ we obtain

mu′ − mu = ∫t′t X dt.

(2)

The time-integral on the right hand is called the impulse of the
force on the interval t′ − t. The statement that the increase of

momentum is equal to the impulse is (it maybe remarked) equivalent
to Newton’s own formulation of his Second Law. The form
(1) is deduced from it by putting t′ − t = δt, and taking δt to be
infinitely small. In problems of impact we have to deal with
cases of practically instantaneous impulse, where a very great
and rapidly varying force produces an appreciable change of
momentum in an exceedingly minute interval of time.

In the case of a constant force, the acceleration u̇ or ẍ is,
according to (1), constant, and we have


	d2x
	= α,

	dt2


(3)

say, the general solution of which is

x = 1⁄2 αt2 + At + B.

(4)

The “arbitrary constants” A, B enable us to represent the circumstances
of any particular case; thus if the velocity ẋ and the
position x be given for any one value of t, we have two conditions
to determine A, B. The curve of positions corresponding to (4)
is a parabola, and that of velocities is a straight line. We may
take it as an experimental result, although the best evidence is
indirect, that a particle falling freely under gravity experiences
a constant acceleration which at the same place is the same
for all bodies. This acceleration is denoted by g; its value at
Greenwich is about 981 centimetre-second units, or 32.2 feet per
second. It increases somewhat with the latitude, the extreme
variation from the equator to the pole being about 1⁄2%. We infer
that on our reckoning the force of gravity on a mass m is to be
measured by mg, the momentum produced per second when this
force acts alone. Since this is proportional to the mass, the
relative masses to be attributed to various bodies can be determined
practically by means of the balance. We learn also that
on account of the variation of g with the locality a gravitational
system of force-measurement is inapplicable when more than a
moderate degree of accuracy is desired.

We take next the case of a particle attracted towards a fixed
point O in the line of motion with a force varying as the distance
from that point. If μ be the acceleration at unit distance, the
equation of motion becomes


	d2x
	= −μx,

	dt2


(5)

the solution of which may be written in either of the forms

x = A cos σt + B sin σt,  x = a cos (σt + ε),

(6)


	

	Fig. 61.


where σ= √μ, and the two constants A, B or a, ε are arbitrary.
The particle oscillates between the two positions x = ±a, and
the same point is passed through in the same direction with
the same velocity at equal intervals of time 2π/σ. The type of
motion represented by (6) is of fundamental importance in
the theory of vibrations (§ 23); it is
called a simple-harmonic or (shortly) a
simple vibration. If we imagine a
point Q to describe a circle of radius a
with the angular velocity σ, its
orthogonal projection P on a fixed
diameter AA′ will execute a vibration
of this character. The angle σt + ε (or
AOQ) is called the phase; the arbitrary
elements a, ε are called the amplitude
and epoch (or initial phase), respectively.
In the case of very rapid vibrations it is usual to
specify, not the period (2π/σ), but its reciprocal the frequency,
i.e. the number of complete vibrations per unit time.
Fig. 62 shows the curves of position and velocity; they
both have the form of the “curve of sines.” The numbers
correspond to an amplitude of 10 centimetres and a period of
two seconds.

The vertical oscillations of a weight which hangs from a fixed
point by a spiral spring come under this case. If M be the mass,
and x the vertical displacement from the position of equilibrium,
the equation of motion is of the form


	M 	d2x
	= − Kx,

	dt2


(7)

provided the inertia of the spring itself be neglected. This
becomes identical with (5) if we put μ = K/M; and the period is
therefore 2π√(M/K), the same for all amplitudes. The period
is increased by an increase of the mass M, and diminished by an
increase in the stiffness (K) of the spring. If c be the statical
increase of length which is produced by the gravity of the mass M,
we have Kc = Mg, and the period is 2π√(c/g).


	

	Fig. 62.


The small oscillations of a simple pendulum in a vertical plane
also come under equation (5). According to the principles of
§ 13, the horizontal motion of the bob is affected only by the
horizontal component of the force acting upon it. If the inclination
of the string to the vertical does not exceed a few degrees,
the vertical displacement of the particle is of the second order, so
that the vertical acceleration may be neglected, and the tension
of the string may be equated to the gravity mg of the particle.
Hence if l be the length of the string, and x the horizontal
displacement of the bob from the equilibrium position, the
horizontal component of gravity is mgx/l, whence


	d2x
	= − 	gx
	,

	dt2 	l


(8)

The motion is therefore simple-harmonic, of period τ = 2π√(l/g).
This indicates an experimental method of determining g with
considerable accuracy, using the formula g = 4π2l/τ2.


In the case of a repulsive force varying as the distance from the
origin, the equation of motion is of the type


	d2x
	= μx,

	dt2


(9)

the solution of which is

x = Aent + Be−nt,

(10)

where n = √μ. Unless the initial conditions be adjusted so as to
make A = 0 exactly, x will ultimately increase indefinitely with t.
The position x = 0 is one of equilibrium, but it is unstable. This
applies to the inverted pendulum, with μ = g/l, but the equation (9)
is then only approximate, and the solution therefore only serves
to represent the initial stages of a motion in the neighbourhood of
the position of unstable equilibrium.



In acoustics we meet with the case where a body is urged
towards a fixed point by a force varying as the distance, and
is also acted upon by an “extraneous” or “disturbing” force
which is a given function of the time. The most important case
is where this function is simple-harmonic, so that the equation
(5) is replaced by


	d2x
	+ μx  =  ƒ cos (σ1t + α),

	dt2


(11)

where σ1 is prescribed. A particular solution is


	x = 	ƒ
	cos (σ1t + α).

	μ − σ12


(12)

This represents a forced oscillation whose period 2π/σ1, coincides
with that of the disturbing force; and the phase agrees with that
of the force, or is opposed to it, according as σ12 < or > μ; i.e.
according as the imposed period is greater or less than the natural
period 2π/√μ. The solution fails when the two periods agree
exactly; the formula (12) is then replaced by


	x  = 	ƒt
	sin (σ1t + α),

	2σ1


(13)

which represents a vibration of continually increasing amplitude.
Since the equation (12) is in practice generally only an approximation
(as in the case of the pendulum), this solution can only

be accepted as a representation of the initial stages of the forced
oscillation. To obtain the complete solution of (11) we must of
course superpose the free vibration (6) with its arbitrary constants
in order to obtain a complete representation of the most
general motion consequent on arbitrary initial conditions.


A simple mechanical illustration is afforded by the pendulum.
If the point of suspension have an imposed simple vibration ξ =
a cos σt in a horizontal line, the equation of small motion of the
bob is


	mẍ = −mg 	x − ξ
	,

	l


or


	ẍ + 	gx
	= g 	ξ
	.

	l 	l


(14)


	

	Fig. 63.


This is the same as if the point of suspension were fixed, and a
horizontal disturbing force mgξ/l were to act on the bob. The
difference of phase of the
forced vibration in the
two cases is illustrated
and explained in the annexed
fig. 63, where the
pendulum virtually oscillates
about C as a fixed
point of suspension. This
illustration was given by
T. Young in connexion
with the kinetic theory
of the tides, where the
same point arises.

We may notice also the
case of an attractive force
varying inversely as the
square of the distance
from the origin. If μ be
the acceleration at unit distance, we have


	u 	du
	= − 	μ


	dx 	x2


(15)

whence


	u2 = 	2μ
	+ C.

	x


(16)

In the case of a particle falling directly towards the earth from rest
at a very great distance we have C = 0 and, by Newton’s Law of
Gravitation, μ/a2 = g, where a is the earth’s radius. The deviation
of the earth’s figure from sphericity, and the variation of g with
latitude, are here ignored. We find that the velocity with which
the particle would arrive at the earth’s surface (x = a) is √(2ga).
If we take as rough values a = 21 × 106 feet, g = 32 foot-second units,
we get a velocity of 36,500 feet, or about seven miles, per second.
If the particles start from rest at a finite distance c, we have in
(16), C = − 2μ/c, and therefore


	dx
	= u = − √ { 	2μ (c − x)
	},

	dt 	cx


(17)

the minus sign indicating motion towards the origin. If we put
x = c cos2 1⁄2φ, we find


	t = 	c3/2
	(φ + sin φ),

	√(8μ)


(18)

no additive constant being necessary if t be reckoned from the instant
of starting, when φ = 0. The time t of reaching the origin (φ = π) is


	t1 = 	π c3/2
	.

	√(8μ)


(19)

This may be compared with the period of revolution in a circular
orbit of radius c about the same centre of force, viz. 2πc3/2 / √μ (§ 14).
We learn that if the orbital motion of a planet, or a satellite, were
arrested, the body would fall into the sun, or into its primary, in
the fraction 0.1768 of its actual periodic time. Thus the moon
would reach the earth in about five days. It may be noticed that
if the scales of x and t be properly adjusted, the curve of positions
in the present problem is the portion of a cycloid extending from
a vertex to a cusp.



In any case of rectilinear motion, if we integrate both sides
of the equation


	mu 	du
	= X,

	dx


(20)

which is equivalent to (1), with respect to x between the limits
x0, x1, we obtain

1⁄2 mu12 − 1⁄2 mu02 = ∫x1x0 X dx.

(21)

We recognize the right-hand member as the work done by
the force X on the particle as the latter moves from the position
x0 to the position x1. If we construct a curve with x as abscissa
and X as ordinate, this work is represented, as in J. Watt’s
“indicator-diagram,” by the area cut off by the ordinates
x = x0, x = x1. The product 1⁄2mu2 is called the kinetic energy
of the particle, and the equation (21) is therefore equivalent
to the statement that the increment of the kinetic energy is
equal to the work done on the particle. If the force X be
always the same in the same position, the particle may be
regarded as moving in a certain invariable “field of force.”
The work which would have to be supplied by other forces,
extraneous to the field, in order to bring the particle from rest
in some standard position P0 to rest in any assigned position
P, will depend only on the position of P; it is called the statical
or potential energy of the particle with respect to the field, in
the position P. Denoting this by V, we have δV − Xδx = 0,
whence


	X = − 	dV
	.

	dx


(22)

The equation (21) may now be written

1⁄2 mu12 + V1 = 1⁄2 mu02 + V0,

(23)

which asserts that when no extraneous forces act the sum of
the kinetic and potential energies is constant. Thus in the
case of a weight hanging by a spiral spring the work required
to increase the length by x is V = ∫x0 Kx dx = 1⁄2Kx2, whence
1⁄2Mu2 + 1⁄2Kx2 = const., as is easily verified from preceding
results. It is easily seen that the effect of extraneous forces
will be to increase the sum of the kinetic and potential energies
by an amount equal to the work done by them. If this amount
be negative the sum in question is diminished by a corresponding
amount. It appears then that this sum is a measure of the
total capacity for doing work against extraneous resistances
which the particle possesses in virtue of its motion and its
position; this is in fact the origin of the term “energy.” The
product mv2 had been called by G. W. Leibnitz the “vis viva”;
the name “energy” was substituted by T. Young; finally
the name “actual energy” was appropriated to the expression
1⁄2mv2 by W. J. M. Rankine.


The laws which regulate the resistance of a medium such as air
to the motion of bodies through it are only imperfectly known. We
may briefly notice the case of resistance varying as the square of
the velocity, which is mathematically simple. If the positive
direction of x be downwards, the equation of motion of a falling
particle will be of the form


	du
	= g − ku2;

	dt


(24)

this shows that the velocity u will send asymptotically to a certain
limit V (called the terminal velocity) such that kV2 = g. The solution
is


	u = V tanh 	gt
	,   x = 	V2
	log cosh 	gt
	,

	V 	g
	V


(25)

if the particle start from rest in the position x = 0 at the instant
t = 0. In the case of a particle projected vertically upwards we
have


	du
	= −g − ku2,

	dt


(26)

the positive direction being now upwards. This leads to


	tan−1 	u
	= tan−1 	u0
	− 	gt
	,   x = 	V2
	log 	V2 + u02
	,

	V 	V
	V 	2g
	V2 + u2


(27)

where u0 is the velocity of projection. The particle comes to rest
when


	t = 	V
	tan−1 	u0
	,   x = 	V2
	log ( 1 + 	u02
	).

	g 	V
	2g 	V2


(28)

For small velocities the resistance of the air is more nearly proportional
to the first power of the velocity. The effect of forces
of this type on small vibratory motions may be investigated as
follows. The equation (5) when modified by the introduction of
a frictional term becomes

ẍ = −μx − kẋ.

(29)

If k2 < 4μ the solution is

x = a e−t/τ cos (σt + ε),

(30)

where

τ = 2/k,   σ = √(μ − 1⁄4k2),

(31)

and the constants a, ε are arbitrary. This may be described as a
simple harmonic oscillation whose amplitude diminishes asymptotically
to zero according to the law e−t/τ. The constant τ is called
the modulus of decay of the oscillations; if it is large compared with
2π/σ the effect of friction on the period is of the second order of
small quantities and may in general be ignored. We have seen that

a true simple-harmonic vibration may be regarded as the orthogonal
projection of uniform circular motion; it was pointed out by P. G.
Tait that a similar representation of the type (30) is obtained if we
replace the circle by an equiangular spiral described, with a constant
angular velocity about the pole, in the direction of diminishing radius
vector. When k2 > 4μ, the solution of (29) is, in real form,

x = a1e−t/τ1 + a2e−t/τ2,

(32)

where

1/τ1, 1/τ2 = 1⁄2k ± √(1⁄4k2 − μ).

(33)

The body now passes once (at most) through its equilibrium position,
and the vibration is therefore styled aperiodic.

To find the forced oscillation due to a periodic force we have

ẍ + kẋ + μx = ƒ cos (σ1t + ε).

(34)

The solution is


	x = 	ƒ
	cos (σ1t + ε − ε1),

	R


(35)

provided


	R = { (μ − σ12)2 + k2σ12}1/2,   tan ε1 = 	kσ1
	.

	μ − σ12


(36)

Hence the phase of the vibration lags behind that of the force by
the amount ε1, which lies between 0 and 1⁄2π or between 1⁄2π and π,
according as σ12 ≶ μ. If the friction be comparatively slight the
amplitude is greatest when the imposed period coincides with the
free period, being then equal to ƒ/kσ1, and therefore very great
compared with that due to a slowly varying force of the same average
intensity. We have here, in principle, the explanation of the
phenomenon of “resonance” in acoustics. The abnormal amplitude
is greater, and is restricted to a narrower range of frequency, the
smaller the friction. For a complete solution of (34) we must of
course superpose the free vibration (30); but owing to the factor e−t/τ
the influence of the initial conditions gradually disappears.



For purposes of mathematical treatment a force which
produces a finite change of velocity in a time too short to be
appreciated is regarded as infinitely great, and the time of
action as infinitely short. The whole effect is summed up in
the value of the instantaneous impulse, which is the time-integral
of the force. Thus if an instantaneous impulse ξ
changes the velocity of a mass m from u to u′ we have

mu′ − mu = ξ.

(37)

The effect of ordinary finite forces during the infinitely short
duration of this impulse is of course ignored.

We may apply this to the theory of impact. If two masses
m1, m2 moving in the same straight line impinge, with the
result that the velocities are changed from u1, u2, to u1′, u2′,
then, since the impulses on the two bodies must be equal and
opposite, the total momentum is unchanged, i.e.

m1u1′ + m2u2′ = m1u1 + m2u2.

(38)

The complete determination of the result of a collision under
given circumstances is not a matter of abstract dynamics alone,
but requires some auxiliary assumption. If we assume that
there is no loss of apparent kinetic energy we have also

m1u1′2 + m2u2′2 = m1u12 + m2u22.

(39)

Hence, and from (38),

u2′ − u1′ = −(u2 − u1),

(40)

i.e. the relative velocity of the two bodies is reversed in direction,
but unaltered in magnitude. This appears to be the case
very approximately with steel or glass balls; generally, however,
there is some appreciable loss of apparent energy; this is accounted
for by vibrations produced in the balls and imperfect
elasticity of the materials. The usual empirical assumption
is that

u2′ − u1′ = −e (u2 − u1),

(41)

where e is a proper fraction which is constant for the same two
bodies. It follows from the formula § 15 (10) for the internal
kinetic energy of a system of particles that as a result of the
impact this energy is diminished by the amount


	1⁄2 (1 − e2) 	m1m2
	(u1 − u2)2.

	m1 + m2


(42)

The further theoretical discussion of the subject belongs to
Elasticity.

This is perhaps the most suitable place for a few remarks on
the theory of “dimensions.” (See also Units, Dimensions
of.) In any absolute system of dynamical measurement
the fundamental units are those of mass, length and time;
we may denote them by the symbols M, L, T, respectively.
They may be chosen quite arbitrarily, e.g. on the C.G.S. system
they are the gramme, centimetre and second. All other units
are derived from these. Thus the unit of velocity is that of a
point describing the unit of length in the unit of time; it may
be denoted by LT−1, this symbol indicating that the magnitude
of the unit in question varies directly as the unit of length and
inversely as the unit of time. The unit of acceleration is the
acceleration of a point which gains unit velocity in unit time; it is
accordingly denoted by LT−2. The unit of momentum is MLT−1;
the unit force generates unit momentum in unit time and is therefore
denoted by MLT−2. The unit of work on the same principles
is ML2T−2, and it is to be noticed that this is identical with the
unit of kinetic energy. Some of these derivative units have
special names assigned to them; thus on the C.G.S. system
the unit of force is called the dyne, and the unit of work or
energy the erg. The number which expresses a physical quantity
of any particular kind will of course vary inversely as the
magnitude of the corresponding unit. In any general dynamical
equation the dimensions of each term in the fundamental
units must be the same, for a change of units would otherwise
alter the various terms in different ratios. This principle is
often useful as a check on the accuracy of an equation.


The theory of dimensions often enables us to forecast, to some
extent, the manner in which the magnitudes involved in any particular
problem will enter into the result. Thus, assuming that the
period of a small oscillation of a given pendulum at a given place
is a definite quantity, we see that it must vary as √(l/g). For it
can only depend on the mass m of the bob, the length l of the string,
and the value of g at the place in question; and the above expression
is the only combination of these symbols whose dimensions are those
of a time, simply. Again, the time of falling from a distance a into
a given centre of force varying inversely as the square of the distance
will depend only on a and on the constant μ of equation (15). The
dimensions of μ/x2 are those of an acceleration; hence the dimensions
of μ are L3T−2. Assuming that the time in question varies as axμy,
whose dimensions are Lx+3yT−2y, we must have x + 3y = 0, −2y = 1,
so that the time of falling will vary as a3/2/√μ, in agreement with (19).

The argument appears in a more demonstrative form in the theory
of “similar” systems, or (more precisely) of the similar motion of
similar systems. Thus, considering the equations


	d2x
	= − 	μ
	,    	d2x′
	= − 	μ′
	,

	dt2 	x2
	dt′2 	x′2


(43)

which refer to two particles falling independently into two distinct
centres of force, it is obvious that it is possible to have x in a constant
ratio to x′, and t in a constant ratio to t′, provided that


	x
	: 	x′
	= 	μ
	: 	μ′
	,

	t2 	t′2
	x2 	x′2


(44)

and that there is a suitable correspondence between the initial
conditions. The relation (44) is equivalent to


	t : t′ = 	 x3/2
	: 	 x′3/2
	,

	μ1/2 	μ′1/2


(45)

where x, x′ are any two corresponding distances; e.g. they may be
the initial distances, both particles being supposed to start from rest.
The consideration of dimensions was introduced by J. B. Fourier
(1822) in connexion with the conduction of heat.




	

	Fig. 64.


§ 13. General Motion of a Particle.—Let P, Q be the positions
of a moving point at times t, t + δt respectively. A vector
OU> drawn parallel to PQ, of length proportional to PQ/δt
on any convenient scale, will represent the mean velocity in the
interval δt, i.e. a point moving with a constant velocity having
the magnitude and direction indicated by this vector would
experience the same resultant displacement PQ> in the same
time. As δt is indefinitely diminished, the vector OU> will
tend to a definite limit OV>; this is adopted as the definition

of the velocity of the moving point at the instant t. Obviously
OV> is parallel to the tangent to the path at P, and its magnitude
is ds/dt, where s is the arc. If we project OV> on the co-ordinate
axes (rectangular or oblique) in the usual manner, the projections
u, v, w are called the component velocities parallel to
the axes. If x, y, z be the co-ordinates of P it is easily proved
that


	u = 	dx
	,   v = 	dy
	,   w = 	dz
	.

	dt 	dt
	dt


(1)

The momentum of a particle is the vector obtained by multiplying
the velocity by the mass m. The impulse of a force
in any infinitely small interval of time δt is the product of the
force into δt; it is to be regarded as a vector. The total impulse
in any finite interval of time is the integral of the impulses
corresponding to the infinitesimal elements δt into which the
interval may be subdivided; the summation of which the
integral is the limit is of course to be understood in the vectorial
sense.

Newton’s Second Law asserts that change of momentum is
equal to the impulse; this is a statement as to equality of vectors
and so implies identity of direction as well as of magnitude.
If X, Y, Z are the components of force, then considering the
changes in an infinitely short time δt we have, by projection
on the co-ordinate axes, δ(mu) = Xδt, and so on, or


	m 	du
	= X,   m 	dv
	= Y,   m 	dw
	= Z.

	dt 	dt
	dt


(2)

For example, the path of a particle projected anyhow under
gravity will obviously be confined to the vertical plane through
the initial direction of motion. Taking this as the plane xy,
with the axis of x drawn horizontally, and that of y vertically
upwards, we have X = 0, Y = −mg; so that


	d2x
	= 0,    	d2y
	= −g.

	dt2 	dt2


(3)

The solution is

x = At + B,   y = −1⁄2gt2 + Ct + D.

(4)

If the initial values of x, y, ẋ, ẏ are given, we have four conditions
to determine the four arbitrary constants A, B, C, D. Thus if
the particle start at time t = 0 from the origin, with the component
velocities u0, v0, we have

x = u0t,   y = v0t − 1⁄2gt2.

(5)

Eliminating t we have the equation of the path, viz.


	y = 	v0
	x − 	gx2
	.

	u0 	2u2


(6)

This is a parabola with vertical axis, of latus-rectum 2u02/g.
The range on a horizontal plane through O is got by putting
y = 0, viz. it is 2u0v0/g. we denote the resultant velocity
at any instant by ṡ we have

ṡ2 = ẋ2 + ẏ2 = ṡ02 − 2gy.

(7)

Another important example is that of a particle subject
to an acceleration which is directed always towards a fixed
point O and is proportional to the distance from O. The motion
will evidently be in one plane, which we take as the plane z = 0.
If μ be the acceleration at unit distance, the component accelerations
parallel to axes of x and y through O as origin will be
−μx, −μy, whence


	d2x
	= −μx,    	d2y
	= − μy.

	dt2 	dt2


(8)

The solution is

x = A cos nt + B sin nt,   y = C cos nt + D sin nt,

(9)

where n = √μ. If P be the initial position of the particle, we
may conveniently take OP as axis of x, and draw Oy parallel
to the direction of motion at P. If OP = a, and ṡ0 be the velocity
at P, we have, initially, x = a, y = 0, ẋ = 0, ẏ = ṡ0 whence

x = a cos nt,   y = b sin nt,

(10)

if b = ṡ0/n. The path is therefore an ellipse of which a, b are
conjugate semi-diameters, and is described in the period 2π/√μ;
moreover, the velocity at any point P is equal to √μ·OD,
where OD is the semi-diameter conjugate to OP. This type of
motion is called elliptic harmonic. If the co-ordinate axes are the
principal axes of the ellipse, the angle nt in (10) is identical

with the “excentric angle.” The motion of the bob of a “spherical
pendulum,” i.e. a simple pendulum whose oscillations are
not confined to one vertical plane, is of this character, provided
the extreme inclination of the string to the vertical be small.
The acceleration is towards the vertical through the point of
suspension, and is equal to gr/l, approximately, if r denote
distance from this vertical. Hence the path is approximately
an ellipse, and the period is 2π √(l/g).
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The above problem is identical with that of the oscillation of a
particle in a smooth spherical bowl, in the
neighbourhood of the lowest point. If the
bowl has any other shape, the axes Ox, Oy may
be taken tangential to the lines of curvature
at the lowest point O; the equations of small
motion then are


	d2x
	= −g 	x
	,    	d2y
	= −g 	y
	,

	dt2 	ρ1
	dt2 	ρ2


(11)

where ρ1, ρ2, are the principal radii of curvature
at O. The motion is therefore the resultant of
two simple vibrations in perpendicular directions,
of periods 2π √(ρ1/g), 2π √(ρ2/g). The
circumstances are realized in “Blackburn’s
pendulum,” which consists of a weight P
hanging from a point C of a string ACB whose
ends A, B are fixed. If E be the point in which the line of the
string meets AB, we have ρ1 = CP, ρ2 = EP. Many contrivances
for actually drawing the resulting curves have been devised.



It is sometimes convenient to resolve the accelerations in
directions having a more intrinsic relation to the path. Thus,
in a plane path, let P, Q be two consecutive
positions, corresponding to the
times t, t + δt; and let the normals at
P, Q meet in C, making an angle δψ.
Let v (= ṡ) be the velocity at P,
v + δv that at Q. In the time δt
the velocity parallel to the tangent at
P changes from v to v + δv, ultimately,
and the tangential acceleration
at P is therefore dv/dt or s̈. Again, the velocity parallel
to the normal at P changes from 0 to vδψ, ultimately, so that
the normal acceleration is v dψ/dt. Since


	dv
	= 	dv
	  	ds
	= v 	dv
	,   v 	dψ
	= v 	dψ
	  	ds
	= 	v2
	,

	dt 	ds
	dt 	ds
	dt 	ds
	dt 	ρ


(12)

where ρ is the radius of curvature of the path at P, the tangential
and normal accelerations are also expressed by v dv/ds and v2/ρ,
respectively. Take, for example, the case of a particle moving
on a smooth curve in a vertical plane, under the action
of gravity and the pressure R of the curve. If the axes of
x and y be drawn horizontal and vertical (upwards), and if ψ
be the inclination of the tangent to the horizontal, we have


	mv 	dv
	= − mg sin ψ = − mg 	dy
	,    	mv2
	= − mg cos ψ + R.

	ds 	ds
	ρ


(13)

The former equation gives

v2 = C − 2gy,

(14)

and the latter then determines R.


In the case of the pendulum the tension of the string takes the
place of the pressure of the curve. If l be the length of the string,
ψ its inclination to the downward vertical, we have δs = lδψ, so that
v = ldψ/dt. The tangential resolution then gives


	l 	d2ψ
	= − g sin ψ.

	dt2


(15)

If we multiply by 2dψ/dt and integrate, we obtain


	( 	dψ
	)2 = 	2g
	cos ψ + const.,

	dt 	l


(16)

which is seen to be equivalent to (14). If the pendulum oscillate
between the limits ψ = ±α, we have


	( 	δψ
	)2 = 	2g
	(cos ψ − cos α) = 	4g
	(sin2 1⁄2α − sin2 1⁄2ψ);

	dt 	l
	l


(17)

and, putting sin 1⁄2ψ = sin 1⁄2α. sin φ, we find for the period (τ) of a
complete oscillation


	τ = 4 ∫1⁄2π0 	dt
	dφ = 4√ 	l
	· ∫1⁄2π0 	dφ


	dφ 	g
	√(1 − sin2 1⁄2α · sin2 φ)



	= 4√ 	l
	· F1 (sin 1⁄2α),

	g


(18)



in the notation of elliptic integrals. The function F1 (sin β) was
tabulated by A. M. Legendre for values of β ranging from 0° to 90°.
The following table gives the period, for various amplitudes α, in
terms of that of oscillation in an infinitely small arc [viz. 2π√(l/g)]
as unit.


	α/π 	τ 	α/π 	τ

	.1 	1.0062 	 .6 	1.2817

	.2 	1.0253 	 .7 	1.4283

	.3 	1.0585 	 .8 	1.6551

	.4 	1.1087 	 .9 	2.0724

	.5 	1.1804 	1.0 	∞



The value of τ can also be obtained as an infinite series, by expanding
the integrand in (18) by the binomial theorem, and integrating term
by term. Thus


	τ = 2π √ 	l
	· { 1 + 	12
	sin2 1⁄2α + 	12 · 32
	sin4 1⁄2α + ... }.

	g 	22
	22 · 42


(19)

If α be small, an approximation (usually sufficient) is

τ = 2π √(l/g) · (1 + 1⁄16α2).

In the extreme case of α = π, the equation (17) is immediately
integrable; thus the time from the lowest position is

t = √(l/g) · log tan (1⁄4π + 1⁄4ψ).

(20)

This becomes infinite for ψ = π, showing that the pendulum only
tends asymptotically to the highest position.

The variation of period with amplitude was at one time a hindrance
to the accurate performance of pendulum clocks, since the errors
produced are cumulative. It was therefore sought to replace the
circular pendulum by some other contrivance free from this defect.
The equation of motion of a particle in any smooth path is


	d2s
	= −g sin ψ,

	dt2


(21)

where ψ is the inclination of the tangent to the horizontal. If
sin ψ were accurately and not merely approximately proportional
to the arc s, say

s = k sin ψ,

(22)
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the equation (21) would assume the same form as § 12 (5). The
motion along the arc would then be accurately simple-harmonic,
and the period 2π √(k/g) would be the same for all amplitudes.
Now equation (22) is the intrinsic equation of a cycloid; viz. the
curve is that traced by a point on
the circumference of a circle of
radius 1⁄4k which rolls on the under
side of a horizontal straight line.
Since the evolute of a cycloid is an
equal cycloid the object is attained
by means of two metal cheeks,
having the form of the evolute
near the cusp, on which the string
wraps itself alternately as the pendulum
swings. The device has
long been abandoned, the difficulty
being met in other ways, but the
problem, originally investigated by C. Huygens, is important in the
history of mathematics.



The component accelerations of a point describing a tortuous
curve, in the directions of the tangent, the principal normal,
and the binormal, respectively, are found as follows. If OV>,
OV′> be vectors representing the velocities at two consecutive
points P, P′ of the path, the plane VOV′ is ultimately parallel
to the osculating plane of the path at P; the resultant acceleration
is therefore in the osculating plane. Also, the projections
of VV′> on OV and on a perpendicular to OV in the plane VOV′
are δv and vδε, where δε is the angle between the directions
of the tangents at P, P′. Since δε = δs/ρ, where δs = PP′ = vδt
and ρ is the radius of principal curvature at P, the component
accelerations along the tangent and principal normal are dv/dt
and vdε/dt, respectively, or vdv/ds and v2/ρ. For example,
if a particle moves on a smooth surface, under no forces except
the reaction of the surface, v is constant, and the principal
normal to the path will coincide with the normal to the surface.
Hence the path is a “geodesic” on the surface.

If we resolve along the tangent to the path (whether plane
or tortuous), the equation of motion of a particle may be written


	mv 	dv
	= T,

	ds


(23)

where T is the tangential component of the force. Integrating
with respect to s we find

1⁄2mv12 − 1⁄2mv02 = ∫s1s0 T ds;

(24)

i.e. the increase of kinetic energy between any two positions
is equal to the work done by the forces. The result follows
also from the Cartesian equations (2); viz. we have

m (ẋẍ + ẏÿ + żz̈) = Xẋ + Yẏ + Zż,

(25)

whence, on integration with respect to t,


	1⁄2m (ẋ2 + ẏ2 + ż2) 	= ∫ (Xẋ + Yẏ + Zż) dt + const.

	  	= ∫ (X dx + Y dy + Z dz) + const.



(26)

If the axes be rectangular, this has the same interpretation as
(24).

Suppose now that we have a constant field of force; i.e. the
force acting on the particle is always the same at the same place.
The work which must be done by forces extraneous to the
field in order to bring the particle from rest in some standard
position A to rest in any other position P will not necessarily
be the same for all paths between A and P. If it is different
for different paths, then by bringing the particle from A to P
by one path, and back again from P to A by another, we might
secure a gain of work, and the process could be repeated indefinitely.
If the work required is the same for all paths between
A and P, and therefore zero for a closed circuit, the field is
said to be conservative. In this case the work required to bring
the particle from rest at A to rest at P is called the potential
energy of the particle in the position P; we denote it by V. If
PP′ be a linear element δs drawn in any direction from P,
and S be the force due to the field, resolved in the direction
PP′, we have δV = −Sδs or


	S = − 	∂V
	.

	∂s


(27)

In particular, by taking PP′ parallel to each of the (rectangular)
co-ordinate axes in succession, we find


	X = − 	∂V
	,   Y = − 	∂V
	,   Z = − 	∂V
	.

	∂x 	∂y
	∂z


(28)

The equation (24) or (26) now gives

1⁄2mv12 + V1 = 1⁄2mv02 + V0;

(29)

i.e. the sum of the kinetic and potential energies is constant
when no work is done by extraneous forces. For example,
if the field be that due to gravity we have V = ƒmg dy = mgy +
const., if the axis of y be drawn vertically upwards; hence

1⁄2mv2 + mgy = const.

(30)

This applies to motion on a smooth curve, as well as to the
free motion of a projectile; cf. (7), (14). Again, in the case
of a force Kr towards O, where r denotes distance from O
we have V = ∫ Kr dr = 1⁄2Kr2 + const., whence

1⁄2mv2 + 1⁄2Kr2 = const.

(31)

It has been seen that the orbit is in this case an ellipse; also
that if we put μ = K/m the velocity at any point P is v =
√μ. OD, where OD is the semi-diameter conjugate to OP.
Hence (31) is consistent with the known property of the ellipse
that OP2 + OD2 is constant.


The forms assumed by the dynamical equations when the axes of
reference are themselves in motion will be considered in § 21. At
present we take only the case where the rectangular axes Ox, Oy
rotate in their own plane, with angular velocity ω about Oz, which
is fixed. In the interval δt the projections of the line joining the
origin to any point (x, y, z) on the directions of the co-ordinate axes
at time t are changed from x, y, z to (x + δx) cos ω δt − (y + δy) sin ωδt,
(x + δx) sin ω δt + (y + δy) cos ω δt, z respectively. Hence the component
velocities parallel to the instantaneous positions of the
co-ordinate axes at time t are

u = ẋ − ωy,   v = ẏ + ωz,   ω = ż.

(32)

In the same way we find that the component accelerations are

u̇ − ωv,   v̇ + ωu,   ω̇

(33)

Hence if ω be constant the equations of motion take the forms

m (ẍ − 2ωẏ − ω2ẋ) = X,   m (ÿ + 2ωẋ − ω2y) = Y,   mz̈ = Z.

(34)

These become identical with the equations of motion relative to
fixed axes provided we introduce a fictitious force mω2r acting outwards
from the axis of z, where r = √(x2 + y2), and a second fictitious
force 2mωv at right angles to the path, where v is the component
of the relative velocity parallel to the plane xy. The former force
is called by French writers the force centrifuge ordinaire, and the
latter the force centrifuge composée, or force de Coriolis. As an application
of (34) we may take the case of a symmetrical Blackburn’s
pendulum hanging from a horizontal bar which is made to rotate

about a vertical axis half-way between the points of attachment of
the upper string. The equations of small motion are then of the
type

ẍ − 2ωẏ − ω2x = −p2x,   ÿ + 2ωẋ − ω2y = −q2y.

(35)

This is satisfied by

ẍ = A cos (σt + ε),   y = B sin (σt + ε),

(36)

provided


	(σ2 + ω2 − p2) A + 2σωB = 0,

	2σωA + (σ2 + ω2 − q2) B = 0.



(37)

Eliminating the ratio A : B we have

(σ2 + ω2 − p2) (σ2 + ω2 − q2) − 4σ2ω2 = 0.

(38)

It is easily proved that the roots of this quadratic in σ2 are always
real, and that they are moreover both positive unless ω2 lies between
p2 and q2. The ratio B/A is determined in each case by either of
the equations (37); hence each root of the quadratic gives a solution
of the type (36), with two arbitrary constants A, ε. Since the equations
(35) are linear, these two solutions are to be superposed. If
the quadratic (38) has a negative root, the trigonometrical functions
in (36) are to be replaced by real exponentials, and the position
x = 0, y = 0 is unstable. This occurs only when the period (2π/ω)
of revolution of the arm lies between the two periods (2π/p, 2π/q)
of oscillation when the arm is fixed.



§ 14. Central Forces. Hodograph.—The motion of a particle
subject to a force which passes always through a fixed point O
is necessarily in a plane orbit. For its investigation we require
two equations; these may be obtained in a variety of forms.

Since the impulse of the force in any element of time δt has
zero moment about O, the same will be true of the additional
momentum generated. Hence the moment of the momentum
(considered as a localized vector) about O will be constant. In
symbols, if v be the velocity and p the perpendicular from O to
the tangent to the path,

pv = h,

(1)

where h is a constant. If δs be an element of the path, pδs is
twice the area enclosed by δs and the radii drawn to its extremities
from O. Hence if δA be this area, we have δA = 1⁄2 pδs =
1⁄2 hδt, or


	dA
	= 1⁄2h

	dt


(2)

Hence equal areas are swept over by the radius vector in equal
times.

If P be the acceleration towards O, we have


	v 	dv
	= −P 	dr
	

	ds 	ds


(3)

since dr/ds is the cosine of the angle between the directions of r
and δs. We will suppose that P is a function of r only; then
integrating (3) we find

1⁄2v2 = − ∫ P dr + const.,

(4)

which is recognized as the equation of energy. Combining this
with (1) we have


	h2
	= C − 2 ∫ P dr,

	p2


(5)

which completely determines the path except as to its orientation
with respect to O.

If the law of attraction be that of the inverse square of the
distance, we have P = μ/r2, and


	h2
	= C + 	2μ
	.

	p2 	τ


(6)

Now in a conic whose focus is at O we have


	l
	= 	2
	± 	1
	,

	p2 	r
	a


(7)

where l is half the latus-rectum, a is half the major axis, and the
upper or lower sign is to be taken according as the conic is an
ellipse or hyperbola. In the intermediate case of the parabola
we have a = ∞ and the last term disappears. The equations
(6) and (7) are identified by putting

l = h2/μ,   a = ± μ/C.

(8)

Since


	v2 = 	h2
	= μ ( 	2
	± 	1
	),

	p2 	r
	a


(9)

it appears that the orbit is an ellipse, parabola or hyperbola,
according as v2 is less than, equal to, or greater than 2μ/r. Now
it appears from (6) that 2μ/r is the square of the velocity which
would be acquired by a particle falling from rest at infinity to
the distance r. Hence the character of the orbit depends on
whether the velocity at any point is less than, equal to, or
greater than the velocity from infinity, as it is called. In an
elliptic orbit the area πab is swept over in the time


	r = 	πab
	= 	2πa3/2
	,

	1⁄2h 	√μ


(10)

since h = μ1/2l1/2 = μ1/2ba−1/2 by (8).


The converse problem, to determine the law of force under which
a given orbit can be described about a given pole, is solved by differentiating
(5) with respect to r; thus


	P = 	h2 dp
	.

	p3 dr


(11)

In the case of an ellipse described about the centre as pole we have


	a2b2
	= a2 + b2 − r2;

	p2


(12)

hence P = μr, if μ = h2/a2b2. This merely shows that a particular
ellipse may be described under the law of the direct distance provided
the circumstances of projection be suitably adjusted. But since
an ellipse can always be constructed with a given centre so as to
touch a given line at a given point, and to have a given value of
ab (= h/√μ) we infer that the orbit will be elliptic whatever the initial
circumstances. Also the period is 2πab/h = 2π/√μ, as previously
found.
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Again, in the equiangular spiral we have p = r sinα, and therefore
P = μ/r3, if μ = h2/sin2 α. But since an equiangular spiral having
a given pole is completely determined by a given point and a given
tangent, this type of orbit is not a general one for the law of the
inverse cube. In order that the spiral may be described it is necessary
that the velocity of projection should be adjusted to make
h = √μ·sinα. Similarly, in the case of a circle with the pole on the
circumference we have p2 = r2/2a, P = μ/r5, if μ = 8h2a2; but this
orbit is not a general one for the law of the inverse fifth power.



In astronomical and other investigations relating to central
forces it is often convenient to use polar co-ordinates with
the centre of force as pole.
Let P, Q be the positions of a
moving point at times t, t + δt,
and write OP = r, OQ = r + δr,
∠POQ = δθ, O being any fixed
origin. If u, v be the component
velocities at P along
and perpendicular to OP (in
the direction of θ increasing),
we have


	u = lim. 	δr
	= 	dr
	,   v = lim. 	r δθ
	= r 	dθ
	.

	δt 	dt
	δt 	dt


(13)

Again, the velocities parallel and perpendicular to OP change
in the time δt from u, v to u − v δθ, v + u δθ, ultimately. The
component accelerations at P in these directions are therefore


	du
	− v 	dθ
	= 	d2r
	− r ( 	dθ
	)2,

	dt 	dt
	dt2 	dt



	dv
	+ u 	dθ
	= 	1
	  	d
	( r2 	dθ
	),

	dt 	dt
	r 	dt
	dt


(14)

respectively.

In the case of a central force, with O as pole, the transverse
acceleration vanishes, so that

r2 dθ / dt = h,

(15)

where h is constant; this shows (again) that the radius vector
sweeps over equal areas in equal times. The radial resolution
gives


	d2r
	− r ( 	dθ
	)2 = −P,

	dt2 	dt


(16)

where P, as before, denotes the acceleration towards O. If in
this we put r = 1/u, and eliminate t by means of (15), we obtain
the general differential equation of central orbits, viz.


	d2u
	+ u = 	P
	.

	dθ2 	h2u2


(17)


If, for example, the law be that of the inverse square, we have
P = μu2, and the solution is of the form


	u = 	μ
	{1 + e cos (θ − α)},

	h2


(18)

where e, α are arbitrary constants. This is recognized as the polar
equation of a conic referred to the focus, the half latus-rectum being
h2/μ.



The law of the inverse cube P = μu3 is interesting by way of
contrast. The orbits may be divided into two classes according as
h2 ≷ μ, i.e. according as the transverse velocity (hu) is greater or
less than the velocity √μ·u appropriate to a circular orbit at the same
distance. In the former case the equation (17) takes the form


	d2u
	+ m2u = 0,

	dθ2


(19)

the solution of which is

au = sin m (θ − α).

(20)

The orbit has therefore two asymptotes, inclined at an angle π/m.
In the latter case the differential equation is of the form


	d2u
	= m2u,

	dθ2


(21)

so that

u = Aemθ + Be−mθ

(22)

If A, B have the same sign, this is equivalent to

au = cosh mθ,

(23)

if the origin of θ be suitably adjusted; hence r has a maximum
value α, and the particle ultimately approaches the pole asymptotically
by an infinite number of convolutions. If A, B have opposite
signs the form is

au = sinh mθ,

(24)

this has an asymptote parallel to θ = 0, but the path near the origin
has the same general form as in the case of (23). If A or B vanish
we have an equiangular spiral, and the velocity at infinity is zero.
In the critical case of h2 = μ, we have d2u/dθ2 = 0, and

u = Aθ + B;

(25)

the orbit is therefore a “reciprocal spiral,” except in the special
case of A = 0, when it is a circle. It will be seen that unless the
conditions be exactly adjusted for a circular orbit the particle will
either recede to infinity or approach the pole asymptotically. This
problem was investigated by R. Cotes (1682-1716), and the various
curves obtained arc known as Coles’s spirals.



A point on a central orbit where the radial velocity (dr/dt)
vanishes is called an apse, and the corresponding radius is called
an apse-line. If the force is always the same at the same distance
any apse-line will divide the orbit symmetrically, as is seen by
imagining the velocity at the apse to be reversed. It follows
that the angle between successive apse-lines is constant; it is
called the apsidal angle of the orbit.

If in a central orbit the velocity is equal to the velocity from
infinity, we have, from (5),


	h2
	= 2 ∫∞r P dr;

	p2


(26)

this determines the form of the critical orbit, as it is called. If
P = μ/rn, its polar equation is

rm cos mθ = am,

(27)

where m = 1⁄2(3 − n), except in the case n = 3, when the orbit is an
equiangular spiral. The case n = 2 gives the parabola as before.


If we eliminate dθ/dt between (15) and (16) we obtain


	d2r
	− 	h2
	= −P = −ƒ(r),

	dt2 	r3


say. We may apply this to the investigation of the stability of a
circular orbit. Assuming that r = a + x, where x is small, we have,
approximately,


	d2x
	− 	h2
	( 1 − 	3x
	) = −ƒ(a) − xƒ′(a).

	dt2 	a3
	a


Hence if h and a be connected by the relation h2 = a3ƒ(a) proper to a
circular orbit, we have


	d2x
	+ { ƒ′(a) + 	3
	ƒ(a) } x = 0

	dt2 	a


(28)

If the coefficient of x be positive the variations of x are simple-harmonic,
and x can remain permanently small; the circular orbit
is then said to be stable. The condition for this may be written


	d
	{ a3ƒ(a) } > 0,

	da


(29)

i.e. the intensity of the force in the region for which r = a, nearly,
must diminish with increasing distance less rapidly than according
to the law of the inverse cube. Again, the half-period of x is
π / √{ƒ′(a) + 3−1ƒ(a)}, and since the angular velocity in the orbit is
h/a2, approximately, the apsidal angle is, ultimately,


	π √{ 	ƒ(a)
	},

	aƒ′(a) + 3ƒ(a)


(30)

or, in the case of ƒ(a) = μ/rn, π/√(3 − n). This is in agreement with
the known results for n = 2, n = −1.

We have seen that under the law of the inverse square all finite
orbits are elliptical. The question presents itself whether there
then is any other law of force, giving a finite velocity from infinity,
under which all finite orbits are necessarily closed curves. If this
is the case, the apsidal angle must evidently be commensurable with
π, and since it cannot vary discontinuously the apsidal angle in a
nearly circular orbit must be constant. Equating the expression
(30) to π/m, we find that ƒ(a) = C/an, where n = 3 − m2. The force
must therefore vary as a power of the distance, and n must be less
than 3. Moreover, the case n = 2 is the only one in which the critical
orbit (27) can be regarded as the limiting form of a closed curve.
Hence the only law of force which satisfies the conditions is that of
the inverse square.



At the beginning of § 13 the velocity of a moving point P was
represented by a vector OV> drawn from a fixed origin O. The
locus of the point V is called the hodograph (q.v.); and it appears
that the velocity of the point V along the hodograph represents
in magnitude and in direction the acceleration in the original
orbit. Thus in the case of a plane orbit, if v be the velocity of
P, ψ the inclination of the direction of motion to some fixed
direction, the polar co-ordinates of V may be taken to be v, ψ;
hence the velocities of V along and perpendicular to OV will be
dv/dt and v dψ/dt. These expressions therefore give the tangential
and normal accelerations of P; cf. § 13 (12).
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In the motion of a projectile under gravity the hodograph is a
vertical line described with constant velocity. In elliptic harmonic
motion the velocity of P is parallel
and proportional to the semi-diameter CD
which is conjugate to the radius CP; the
hodograph is therefore an ellipse similar to
the actual orbit. In the case of a central
orbit described under the law of the inverse
square we have v = h/SY = h. SZ/b2, where
S is the centre of force, SY is the perpendicular
to the tangent at P, and Z is the
point where YS meets the auxiliary circle
again. Hence the hodograph is similar and
similarly situated to the locus of Z (the
auxiliary circle) turned about S through a
right angle. This applies to an elliptic or hyperbolic orbit; the case of
the parabolic orbit may be examined separately or treated as a limiting
case. The annexed fig. 70 exhibits the various cases, with the
hodograph in its proper orientation. The pole O of the hodograph is
inside on or outside the circle, according as the orbit is an ellipse,
parabola or hyperbola. In any case of a central orbit the hodograph
(when turned through a right angle) is similar and similarly situated to
the “reciprocal polar” of the orbit with respect to the centre of force.
Thus for a circular orbit with the centre of force at an excentric
point, the hodograph is a conic with the pole as focus. In the case
of a particle oscillating under gravity on a smooth cycloid from rest
at the cusp the hodograph is a circle through the pole, described
with constant velocity.



§ 15. Kinetics of a System of Discrete Particles.—The momenta
of the several particles constitute a system of localized vectors
which, for purposes of resolving and taking moments, may be
reduced like a system of forces in statics (§ 8). Thus taking any
point O as base, we have first a linear momentum whose components
referred to rectangular axes through O are

Σ(mẋ),   Σ(mẏ),   Σ(mż);

(1)

its representative vector is the same whatever point O be chosen.
Secondly, we have an angular momentum whose components
are

Σ {m (yż − zẏ) },   Σ {m (zẋ − xż) },   Σ {m (xẏ − yẋ) },

(2)

these being the sums of the moments of the momenta of the
several particles about the respective axes. This is subject to
the same relations as a couple in statics; it may be represented
by a vector which will, however, in general vary with the
position of O.

The linear momentum is the same as if the whole mass were
concentrated at the centre of mass G, and endowed with the
velocity of this point. This follows at once from equation (8)
of § 11, if we imagine the two configurations of the system there
referred to to be those corresponding to the instants t, t + δt.
Thus


	Σ ( m· 	PP>
	) = Σ(m)· 	GG′>
	.

	δt 	δt


(3)

Analytically we have


	Σ(mẋ) = 	d
	Σ(mx) = Σ(m)· 	dx
	,

	dt 	dt


(4)

with two similar formulae.
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Again, if the instantaneous position of G be taken as base,
the angular momentum of the absolute motion is the same as
the angular momentum of the motion relative to G. For the
velocity of a particle m at P may be replaced by two components
one of which (v) is identical in magnitude and direction with the
velocity of G, whilst the other (v) is the velocity relative to G.
The aggregate of the components mv of momentum is equivalent
to a single localized vector Σ(m)·v in a line through G, and has
therefore zero moment about any axis through G; hence in
taking moments about such an axis we need only regard the
velocities relative to G. In symbols, we have


	Σ { m(yż − zẏ) } = Σ(m)· ( y 	dz
	− z 	dy
	) + Σ { m (ηζ − ζ̇η̇) }.

	dt 	dt


(5)
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since Σ(mξ) = 0, Σ(mξ̇) = 0, and so on, the notation being as in
§ 11. This expresses that the moment of momentum about any
fixed axis (e.g. Ox) is equal to the moment of momentum of the
motion relative to G about a parallel axis through G, together
with the moment of momentum of the whole mass supposed
concentrated at G and moving with
this point. If in (5) we make O
coincide with the instantaneous position
of G, we have x, z, z = 0, and
the theorem follows.

Finally, the rates of change of the
components of the angular momentum
of the motion relative to G
referred to G as a moving base, are equal to the rates of change
of the corresponding components of angular momentum relative
to a fixed base coincident with the instantaneous position of G.
For let G′ be a consecutive position of G. At the instant t + δt
the momenta of the system are equivalent to a linear momentum
represented by a localized vector Σ(m)·(v + δv) in a line
through G′ tangential to the path of G′, together with a
certain angular momentum. Now the moment of this localized
vector with respect to any axis through G is zero, to the
first order of δt, since the perpendicular distance of G from the
tangent line at G′ is of the order (δt)2. Analytically we have
from (5),


	d
	Σ { m (yż − zẏ) } = Σ(m)· ( y 	dz2
	− z 	d2y
	) + 	d
	Σ { m(ηζ − ζη̇) }

	dt 	dt2
	dt2 	dt


(6)

If we put x, y, z = 0, the theorem is proved as regards axes
parallel to Ox.

Next consider the kinetic energy of the system. If from a
fixed point O we draw vectors OV1>, OV2> to represent the
velocities of the several particles m1, m2 ..., and if we construct
the vector


	OK>  = 	Σ ( m·OV> )


	Σ(m)


(7)

this will represent the velocity of the mass-centre, by (3). We
find, exactly as in the proof of Lagrange’s First Theorem (§ 11),
that

1⁄2Σ (m·OV2) = 1⁄2Σ (m)·OK2 + 1⁄2Σ (m·KV2);

(8)

i.e. the total kinetic energy is equal to the kinetic energy of the
whole mass supposed concentrated at G and moving with this
point, together with the kinetic energy of the motion relative to
G. The latter may be called the internal kinetic energy of the
system. Analytically we have


	1⁄2Σ { m (ẋ2 + ẏ2 + ż2) } = 1⁄2Σ(m)· { ( 	dx
	)2 + ( 	dy
	)2 + ( 	dz
	)2 } + 1⁄2Σ{ m(ζ2 + η̇2 + ζ̇2) }.

	dt 	dt
	dt


(9)

There is also an analogue to Lagrange’s Second Theorem, viz.


	1⁄2Σ (m·KV2) = 1⁄2 	ΣΣ (mpmq · VpVq2)
	,

	Σm


(10)

which expresses the internal kinetic energy in terms of the relative
velocities of the several pairs of particles. This formula is
due to Möbius.

The preceding theorems are purely kinematical. We have now
to consider the effect of the forces acting on the particles. These
may be divided into two categories; we have first, the extraneous
forces exerted on the various particles from without, and,
secondly, the mutual or internal forces between the various pairs
of particles. It is assumed that these latter are subject to the
law of equality of action and reaction. If the equations of
motion of each particle be formed separately, each such internal
force will appear twice over, with opposite signs for its components,
viz. as affecting the motion of each of the two particles
between which it acts. The full working out is in general
difficult, the comparatively simple problem of “three bodies,”
for instance, in gravitational astronomy being still unsolved, but
some general theorems can be formulated.

The first of these may be called the Principle of Linear Momentum.
If there are no extraneous forces, the resultant linear
momentum is constant in every respect. For consider any two
particles at P and Q, acting on one another with equal and opposite
forces in the line PQ. In the time δt a certain impulse is
given to the first particle in the direction (say) from P to Q,
whilst an equal and opposite impulse is given to the second in
the direction from Q to P. Since these impulses produce equal
and opposite momenta in the two particles, the resultant linear
momentum of the system is unaltered. If extraneous forces act,
it is seen in like manner that the resultant linear momentum of
the system is in any given time modified by the geometric addition
of the total impulse of the extraneous forces. It follows, by
the preceding kinematic theory, that the mass-centre G of the
system will move exactly as if the whole mass were concentrated
there and were acted on by the extraneous forces applied parallel
to their original directions. For example, the mass-centre of a
system free from extraneous force will describe a straight line
with constant velocity. Again, the mass-centre of a chain of

particles connected by strings, projected anyhow under gravity,
will describe a parabola.

The second general result is the Principle of Angular Momentum.
If there are no extraneous forces, the moment of momentum
about any fixed axis is constant. For in time δt the mutual
action between two particles at P and Q produces equal and
opposite momenta in the line PQ, and these will have equal and
opposite moments about the fixed axis. If extraneous forces
act, the total angular momentum about any fixed axis is in time
δt increased by the total extraneous impulse about that axis.
The kinematical relations above explained now lead to the conclusion
that in calculating the effect of extraneous forces in an
infinitely short time δt we may take moments about an axis
passing through the instantaneous position of G exactly as if G
were fixed; moreover, the result will be the same whether in
this process we employ the true velocities of the particles or
merely their velocities relative to G. If there are no extraneous
forces, or if the extraneous forces have zero moment about any
axis through G, the vector which represents the resultant angular
momentum relative to G is constant in every respect. A plane
through G perpendicular to this vector has a fixed direction in
space, and is called the invariable plane; it may sometimes be
conveniently used as a plane of reference.


For example, if we have two particles connected by a string, the
invariable plane passes through the string, and if ω be the angular
velocity in this plane, the angular momentum relative to G is

m1ω1r1·r1 + m2ωr2·r2 = (m1r12 + m2r22) ω,

where r1, r2 are the distances of m1, m2 from their mass-centre G.
Hence if the extraneous forces (e.g. gravity) have zero moment about
G, ω will be constant. Again, the tension R of the string is given by


	R = m1ω2r1 = 	m1m2
	ω2a,

	m1 + m2


where a = r1 + r2. Also by (10) the internal kinetic energy is


	1⁄2 	 m1m2
	ω2a2

	m1 + m2




The increase of the kinetic energy of the system in any interval
of time will of course be equal to the total work done by all the
forces acting on the particles. In many questions relating to
systems of discrete particles the internal force Rpq (which we will
reckon positive when attractive) between any two particles
mp, mq is a function only of the distance rpq between them. In
this case the work done by the internal forces will be represented
by

−Σ ∫ Rpg drpq,

when the summation includes every pair of particles, and each
integral is to be taken between the proper limits. If we write

V = Σ ∫ Rpq drpq,

(11)

when rpq ranges from its value in some standard configuration
A of the system to its value in any other configuration P, it is
plain that V represents the work which would have to be done in
order to bring the system from rest in the configuration A to rest
in the configuration P. Hence V is a definite function of the
configuration P; it is called the internal potential energy. If T
denote the kinetic energy, we may say then that the sum T + V
is in any interval of time increased by an amount equal to the
work done by the extraneous forces. In particular, if there are
no extraneous forces T + V is constant. Again, if some of the
extraneous forces are due to a conservative field of force, the
work which they do may be reckoned as a diminution of the
potential energy relative to the field as in § 13.

§ 16. Kinetics of a Rigid Body. Fundamental Principles.—When
we pass from the consideration of discrete particles to that
of continuous distributions of matter, we require some physical
postulate over and above what is contained in the Laws of
Motion, in their original formulation. This additional postulate
may be introduced under various forms. One plan is to assume
that any body whatever may be treated as if it were composed
of material particles, i.e. mathematical points endowed with
inertia coefficients, separated by finite intervals, and acting on
one another with forces in the lines joining them subject to the
law of equality of action and reaction. In the case of a rigid
body we must suppose that those forces adjust themselves so
as to preserve the mutual distances of the various particles
unaltered. On this basis we can predicate the principles of linear
and angular momentum, as in § 15.

An alternative procedure is to adopt the principle first formally
enunciated by J. Le R. d’Alembert and since known by his
name. If x, y, z be the rectangular co-ordinates of a mass-element
m, the expressions mẍ, mÿ, mz̈ must be equal to the
components of the total force on m, these forces being partly
extraneous and partly forces exerted on m by other mass-elements
of the system. Hence (mẍ, mÿ, mz̈) is called the actual
or effective force on m. According to d’Alembert’s formulation,
the extraneous forces together with the effective forces reversed
fulfil the statical conditions of equilibrium. In other words,
the whole assemblage of effective forces is statically equivalent
to the extraneous forces. This leads, by the principles of § 8,
to the equations

Σ(mẍ) = X,   Σ(mÿ) = Y,   Σ(mz̈) = Z,

Σ {m (yz̈ − zÿ) } = L,   Σ {m (zẍ − xz̈) } = M,   Σ{m (xÿ − yẍ) } = N,

(1)

where (X, Y, Z) and (L, M, N) are the force—and couple—constituents
of the system of extraneous forces, referred to O as base,
and the summations extend over all the mass-elements of the
system. These equations may be written


	d
	Σ(mẋ) = X,   	d
	Σ(mẏ) = Y,   	d
	Σ(mż) = Z,

	dt 	dt
	dt



	d
	Σ {m (yż − zẏ) } = L,   	d
	Σ {m (zẋ − xż) } = M,   	d
	Σ {m (xẏ − yẋ) } = N,

	dt 	dt
	dt


(2)

and so express that the rate of change of the linear momentum
in any fixed direction (e.g. that of Ox) is equal to the total
extraneous force in that direction, and that the rate of change
of the angular momentum about any fixed axis is equal to the
moment of the extraneous forces about that axis. If we integrate
with respect to t between fixed limits, we obtain the principles
of linear and angular momentum in the form previously given.
Hence, whichever form of postulate we adopt, we are led to
the principles of linear and angular momentum, which form in
fact the basis of all our subsequent work. It is to be noticed
that the preceding statements are not intended to be restricted
to rigid bodies; they are assumed to hold for all material systems
whatever. The peculiar status of rigid bodies is that the principles
in question are in most cases sufficient for the complete
determination of the motion, the dynamical equations (1 or 2)
being equal in number to the degrees of freedom (six) of a rigid
solid, whereas in cases where the freedom is greater we have to
invoke the aid of other supplementary physical hypotheses
(cf. Elasticity; Hydromechanics).

The increase of the kinetic energy of a rigid body in any
interval of time is equal to the work done by the extraneous
forces acting on the body. This is an immediate consequence
of the fundamental postulate, in either of the forms above
stated, since the internal forces do on the whole no work.
The statement may be extended to a system of rigid bodies,
provided the mutual reactions consist of the stresses in inextensible
links, or the pressures between smooth surfaces, or
the reactions at rolling contacts (§ 9).

§ 17. Two-dimensional Problems.—In the case of rotation
about a fixed axis, the principles take a very simple form. The
position of the body is specified by a single co-ordinate, viz.
the angle θ through which some plane passing through the
axis and fixed in the body has turned from a standard position
in space. Then dθ/dt, = ω say, is the angular velocity of the
body. The angular momentum of a particle m at a distance
r from the axis is mωr·r, and the total angular momentum is
Σ(mr2)·ω, or Iω, if I denote the moment of inertia (§ 11) about
the axis. Hence if N be the moment of the extraneous forces
about the axis, we have


	d
	(Iω) = N.

	dt


(1)

This may be compared with the equation of rectilinear motion
of a particle, viz. d/dt·(Mu) = X; it shows that I measures
the inertia of the body as regards rotation, just as M measures
its inertia as regards translation. If N = 0, ω is constant.
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As a first example, suppose we have a flywheel free to rotate about
a horizontal axis, and that a weight m hangs by a vertical string
from the circumferences of an axle of radius b (fig. 72). Neglecting
frictional resistance we have, if R be the tension of the string,

Iω̇ = Rb, mu̇ = mg − R,

whence


	bω̇ = 	mb2
	g.

	1 + mb2


(2)

This gives the acceleration of m as modified by the inertia of the
wheel.

A “compound pendulum” is a body of any form which is free to
rotate about a fixed horizontal axis, the only extraneous force
(other than the pressures of the axis) being that of gravity. If M
be the total mass, k the radius of gyration (§ 11) about the axis, we
have


	d
	( Mk2 	dθ
	) = −Mgh sin θ,

	dt 	dt


(3)

where θ is the angle which the plane containing the axis and the
centre of gravity G makes with the vertical, and h is the distance of
G from the axis. This coincides with the equation of motion of a
simple pendulum [§ 13 (15)] of length l, provided l = k2/h. The plane
of the diagram (fig. 73) is supposed to be a plane through G perpendicular
to the axis, which it meets in O. If we produce OG to P,
making OP = l, the point P is called the centre of oscillation; the
bob of a simple pendulum of length OP suspended from O will keep
step with the motion of P, if properly started. If κ be the radius of
gyration about a parallel axis through G, we have k2 = κ2 + h2 by § 11
(16), and therefore l = h + κ2/h, whence

GO · GP = κ2.

(4)

This shows that if the body were swung from a parallel axis through
P the new centre of oscillation would be at O. For different parallel
axes, the period of a small oscillation varies as √l, or √(GO + OP);
this is least, subject to the condition (4), when GO = GP = κ. The
reciprocal relation between the centres of suspension and oscillation
is the basis of Kater’s method of determining g experimentally.
A pendulum is constructed with two parallel knife-edges as nearly as
possible in the same plane with G, the position of one of them being
adjustable. If it could be arranged that the period of a small oscillation
should be exactly the same about either edge, the two knife-edges
would in general occupy the positions of conjugate centres
of suspension and oscillation; and the distances between them would
be the length l of the equivalent simple pendulum. For if h1 + κ2/h1 = h2 + κ2/h2,
then unless h1 = h2, we must have κ2 = h1h2, l = h1 + h2.
Exact equality of the two observed periods (τ1, τ2, say) cannot of
course be secured in practice, and a modification is necessary. If
we write l1 = h1 + κ2/h1, l2 = h2 + κ2/h2, we find, on elimination of κ,


	1⁄2 	l1 + l2
	+ 1⁄2 	l1 − l2
	=  1,

	h1 + h2 	h1 − h2


whence


	4π2
	= 	1⁄2 (τ12 + τ22)
	+ 	1⁄2 (τ12 − τ22)
	.

	g 	h1 + h2
	h1 − h2


(5)

The distance h1 + h2, which occurs in the first term on the right hand
can be measured directly. For the second term we require the values
of h1, h2 separately, but if τ1, τ2 are nearly equal whilst h1, h2 are
distinctly unequal this term will be relatively small, so that an
approximate knowledge of h1, h2 is sufficient.

As a final example we may note the arrangement, often employed
in physical measurements, where a body performs small oscillations
about a vertical axis through its mass-centre G, under the influence
of a couple whose moment varies as the angle of rotation from the
equilibrium position. The equation of motion is of the type

I θ̈ = −Kθ,

(6)

and the period is therefore τ = 2π√(I/K). If by the attachment of
another body of known moment of inertia I′, the period is altered
from τ to τ′, we have τ′ = 2π√{ (I + I′)/K }. We are thus enabled
to determine both I and K, viz.

I / I′ = τ2 / (τ′2 − τ2),   K = 4π2τ2I / (τ′2 − τ2).

(7)

The couple may be due to the earth’s magnetism, or to the torsion
of a suspending wire, or to a “bifilar” suspension. In the latter
case, the body hangs by two vertical threads of equal length l in a
plane through G. The motion being assumed to be small, the
tensions of the two strings may be taken to have their statical values
Mgb/(a + b), Mga/(a + b), where a, b are the distances of G from the
two threads. When the body is twisted through an angle θ the
threads make angles aθ/l, bθ/l with the vertical, and the moment
of the tensions about the vertical through G is accordingly −Kθ,
where K = M gab/l.



For the determination of the motion it has only been necessary
to use one of the dynamical equations. The remaining equations
serve to determine the reactions of the rotating body on its
bearings. Suppose, for example, that there are no extraneous
forces. Take rectangular axes, of which Oz coincides with the
axis of rotation. The angular velocity being constant, the
effective force on a particle m at a distance r from Oz is mω2r
towards this axis, and its components are accordingly −ω2mx,
−ω2my, O. Since the reactions on the bearings must be
statically equivalent to the whole system of effective forces,
they will reduce to a force (X Y Z) at O and a couple (L M N)
given by

X = −ω2Σ(mx) = −ω2Σ(m)x,   Y = −ω2Σ(my) = −ω2Σ(m)y,   Z = 0,

L = ω2Σ(myz),   M = −ω2Σ(mzx),   N = 0, 

(8)

where x, y refer to the mass-centre G. The reactions do not therefore
reduce to a single force at O unless Σ(myz) = 0, Σ(msx) = 0,
i.e. unless the axis of rotation be a principal axis of inertia
(§ 11) at O. In order that the force may vanish we must also
have x, y = 0, i.e. the mass-centre must lie in the axis of rotation.
These considerations are important in the “balancing” of
machinery. We note further that if a body be free to turn
about a fixed point O, there are three mutually perpendicular
lines through this point about which it can rotate steadily,
without further constraint. The theory of principal or “permanent”
axes was first investigated from this point of view
by J. A. Segner (1755). The origin of the name “deviation
moment” sometimes applied to a product of inertia is also
now apparent.
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Proceeding to the general motion of a rigid body in two
dimensions we may take as the three co-ordinates of the body the
rectangular Cartesian co-ordinates x, y of the mass-centre G and
the angle θ through which the body has turned from some
standard position. The components of linear momentum are
then Mẋ, Mẏ, and the angular
momentum relative to G as base
is Iθ̇, where M is the mass and I
the moment of inertia about G.
If the extraneous forces be reduced
to a force (X, Y) at G and
a couple N, we have

Mẍ = X,   Mÿ = Y,   Iθ̈ = N.

(9)

If the extraneous forces have
zero moment about G the angular
velocity θ̇ is constant. Thus a
circular disk projected under
gravity in a vertical plane spins
with constant angular velocity, whilst its centre describes
a parabola.


We may apply the equations (9) to the case of a solid of revolution
rolling with its axis horizontal on a plane of inclination α. If the
axis of x be taken parallel to the slope of the plane, with x increasing
downwards, we have

Mẍ = Mg sin α − F,   0 = Mg cos α − R,   Mκ2θ̈ = Fa,

(10)

where κ is the radius of gyration about the axis of symmetry, a is
the constant distance of G from the plane, and R, F are the normal
and tangential components of the reaction of the plane, as shown in
fig. 74. We have also the kinematical relation ẋ = aθ̇. Hence


	ẍ = 	a2
	g sin α, R = Mg cos α,   F = 	κ2
	Mg sin α.

	κ2 + a2 	κ2 + a2


(11)

The acceleration of G is therefore less than in the case of frictionless
sliding in the ratio a2/(κ2 + a2). For a homogeneous sphere this
ratio is 5⁄7, for a uniform circular cylinder or disk 2⁄3, for a circular
hoop or a thin cylindrical shell 1⁄2.



The equation of energy for a rigid body has already been
stated (in effect) as a corollary from fundamental assumptions.

It may also be deduced from the principles of linear and angular
momentum as embodied in the equations (9). We have

M (ẋẍ + ẏÿ) + lθ̇θ̈ + Xẋ + Yẏ + Nθ̇,

(12)

whence, integrating with respect to t,

1⁄2M (ẋ2 + ẏ2) + 1⁄2Iθ̇2 = ∫ (X dx + Y dy + N dθ) + const.

(13)

The left-hand side is the kinetic energy of the whole mass,
supposed concentrated at G and moving with this point,
together with the kinetic energy of the motion relative to G
(§ 15); and the right-hand member represents the integral work
done by the extraneous forces in the successive infinitesimal
displacements into which the motion may be resolved.
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The formula (13) may be easily verified in the case of the compound
pendulum, or of the solid rolling down an incline. As another
example, suppose we have a
circular cylinder whose mass-centre
is at an excentric point,
rolling on a horizontal plane.
This includes the case of a compound
pendulum in which the
knife-edge is replaced by a cylindrical
pin. If α be the radius of
the cylinder, h the distance of G
from its axis (O), κ the radius of
gyration about a longitudinal
axis through G, and θ the inclination
of OG to the vertical,
the kinetic energy is 1⁄2Mκ2θ̇2 +
1⁄2M·CG2·thetȧ2, by § 3, since the
body is turning about the line of contact (C) as instantaneous axis,
and the potential energy is −Mgh cos θ. The equation of energy is
therefore

1⁄2M (κ2 + α2 + h2 − 2 ah cos θ) θ̇2 − Mgh cos θ − const.

(14)



Whenever, as in the preceding examples, a body or a system
of bodies, is subject to constraints which leave it virtually
only one degree of freedom, the equation of energy is sufficient
for the complete determination of the motion. If q be any
variable co-ordinate defining the position or (in the case of a
system of bodies) the configuration, the velocity of each particle
at any instant will be proportional to q̇, and the total kinetic
energy may be expressed in the form 1⁄2Aq̇2, where A is in general
a function of q [cf. equation (14)]. This coefficient A is called
the coefficient of inertia, or the reduced inertia of the system,
referred to the co-ordinate q.
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Thus in the case of a railway truck travelling with velocity u the
kinetic energy is 1⁄2 (M + mκ2/α2)u2, where M is the total mass, α the
radius and κ the radius of gyration of each wheel, and m is the sum
of the masses of the wheels; the reduced inertia is therefore
M + mκ2/α2.
Again, take the system composed of the flywheel, connecting rod,
and piston of a steam-engine. We have here a limiting case of three-bar
motion (§ 3), and the
instantaneous centre J of
the connecting-rod PQ will
have the position shown in
the figure. The velocities
of P and Q will be in the
ratio of JP to JQ, or OR to
OQ; the velocity of the
piston is therefore yθ̇, where
y = OR. Hence if, for
simplicity, we neglect the
inertia of the connecting-rod,
the kinetic energy will
be 1⁄2 (I + My2)thetȧ2, where I is
the moment of inertia of the flywheel, and M is the mass of the
piston. The effect of the mass of the piston is therefore to increase
the apparent moment of inertia of the flywheel by the variable
amount My2. If, on the other hand, we take OP (= x) as our variable,
the kinetic energy is 1⁄2 (M + I/y2)ẋ2. We may also say, therefore,
that the effect of the flywheel is to increase the apparent mass
of the piston by the amount I/y2; this becomes infinite at the “dead-points”
where the crank is in line with the connecting-rod.



If the system be “conservative,” we have

1⁄2Aq2 + V = const.,

(15)

where V is the potential energy. If we differentiate this with
respect to t, and divide out by q̇, we obtain


	Aq̈ + 1⁄2 	dA
	q̇2 + 	dV
	= 0

	dq 	dq


(16)

as the equation of motion of the system with the unknown
reactions (if any) eliminated. For equilibrium this must be
satisfied by q̇ = O; this requires that dV/dq = 0, i.e. the potential
energy must be “stationary.” To examine the effect of a
small disturbance from equilibrium we put V = ƒ(q), and write
q = q0 + η, where q0 is a root of ƒ′ (q0) = 0 and η is small. Neglecting
terms of the second order in η we have dV/dq = ƒ′(q) =
ƒ″(q0)·η, and the equation (16) reduces to

Aη̈ + ƒ″ (q0)η = 0,

(17)

where A may be supposed to be constant and to have the value
corresponding to q = q0. Hence if ƒ″ (q0) > 0, i.e. if V is a
minimum in the configuration of equilibrium, the variation of
η is simple-harmonic, and the period is 2π √{A/ƒ″(q0) }. This
depends only on the constitution of the system, whereas
the amplitude and epoch will vary with the initial circumstances.
If ƒ″ (q0) < 0, the solution of (17) will involve real
exponentials, and η will in general increase until the neglect of
the terms of the second order is no longer justified. The
configuration q = q0, is then unstable.


As an example of the method, we may take the problem to which
equation (14) relates. If we differentiate, and divide by θ, and
retain only the terms of the first order in θ, we obtain

{x2 + (h − α)2} θ̈ + ghθ = 0,

(18)

as the equation of small oscillations about the position θ = 0. The
length of the equivalent simple pendulum is {κ2 + (h − α)2}/h.



The equations which express the change of motion (in two
dimensions) due to an instantaneous impulse are of the forms

M (u′ − u) = ξ,   M (ν′ − ν) = η,   I (ω′ − ω) = ν.

(19)
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Here u′, ν′ are the values of the component velocities of G
just before, and u, ν their values just after, the impulse, whilst
ω′, ω denote the corresponding angular velocities. Further,
ξ, η are the time-integrals of the forces parallel to the co-ordinate
axes, and ν is the time-integral of their moment about G.
Suppose, for example, that a rigid lamina
at rest, but free to move, is struck by an
instantaneous impulse F in a given line.
Evidently G will begin to move parallel
to the line of F; let its initial velocity be
u′, and let ω′ be the initial angular
velocity. Then Mu′ = F, Iω′ = F·GP,
where GP is the perpendicular from G
to the line of F. If PG be produced to
any point C, the initial velocity of the
point C of the lamina will be

u′ − ω′·GC = (F/M) · (I − GC·CP/κ2),

where κ2 is the radius of gyration about G. The initial centre of
rotation will therefore be at C, provided GC·GP = κ2. If this
condition be satisfied there would be no impulsive reaction at C
even if this point were fixed. The point P is therefore called
the centre of percussion for the axis at C. It will be noted that
the relation between C and P is the same as that which connects
the centres of suspension and oscillation in the compound
pendulum.

§ 18. Equations of Motion in Three Dimensions.—It was
proved in § 7 that a body moving about a fixed point O can be
brought from its position at time t to its position at time t + δt by
an infinitesimal rotation ε about some axis through O; and the
limiting position of this axis, when δt is infinitely small, was called
the “instantaneous axis.” The limiting value of the ratio ε/δt
is called the angular velocity of the body; we denote it by ω.
If ξ, η, ζ are the components of ε about rectangular co-ordinate
axes through O, the limiting values of ξ/δt, η/δt, ζ/δt are
called the component angular velocities; we denote them by p, q, r.
If l, m, n be the direction-cosines of the instantaneous axis we
have

p = lω,   q = mω,   r = nω,

(1)

p2 + q2 + r2 = ω2.

(2)

If we draw a vector OJ to represent the angular velocity, then
J traces out a certain curve in the body, called the polhode,
and a certain curve in space, called the herpolhode. The cones
generated by the instantaneous axis in the body and in space
are called the polhode and herpolhode cones, respectively; in
the actual motion the former cone rolls on the latter (§ 7).
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The special case where both cones are right circular and ω is constant
is important in astronomy and also in mechanism (theory of
bevel wheels). The “precession of the equinoxes” is due to the fact
that the earth performs a motion of this kind about its centre,
and the whole class of such motions has therefore been termed
precessional. In fig. 78, which shows the various cases, OZ is the
axis of the fixed and OC that of the rolling cone, and J is the point
of contact of the polhode and herpolhode, which are of course both
circles. If αbe the semi-angle of the rolling cone, β the constant
inclination of OC to OZ, and ψ̇ the angular velocity with which the
plane ZOC revolves about OZ, then, considering the velocity of a
point in OC at unit distance from O, we have

ω sin α = ±ψ̇ sin β,

(3)

where the lower sign belongs to the third case. The earth’s precessional
motion is of this latter type, the angles being α = .0087″,
β = 23° 28′.



If m be the mass of a particle at P, and PN the perpendicular
to the instantaneous axis, the kinetic energy T is given by

2T = Σ {m (ω·PN)2 } = ω2·Σ (m·PN2) = Iω2,

(4)

where I is the moment of inertia about the instantaneous axis.
With the same notation for moments and products of inertia
as in § 11 (38), we have

I = Al2 + Bm2 + Cn2 − 2Fmn − 2Gnl − 2Hlm,

and therefore by (1),

2T = Ap2 + Bq2 + Cr2 − 2Fqr − 2Grp − 2Hpq.

(5)

Again, if x, y, z be the co-ordinates of P, the component velocities
of m are

qz − ry,   rx − pz,   py − qx,

(6)

by § 7 (5); hence, if λ, μ, ν be now used to denote the component
angular momenta about the co-ordinate axes, we have
λ = Σ {m (py − qx)y − m(rx − pz) z }, with two similar formulae, or


	λ =  Ap −Hq − Gr = 	∂T
	,

	∂p



	μ = −Hp + Bq − Fr = 	∂T
	,

	∂q



	ν = −Gp − Fq + Cr = 	∂T
	.

	∂r


(7)

If the co-ordinate axes be taken to coincide with the principal
axes of inertia at O, at the instant under consideration, we have
the simpler formulae

2T = Ap2 + Bq2 + Cr2,

(8)

λ = Ap, μ = Bq, ν = Cr.

(9)

It is to be carefully noticed that the axis of resultant angular
momentum about O does not in general coincide with the
instantaneous axis of rotation. The relation between these
axes may be expressed by means of the momental ellipsoid at
O. The equation of the latter, referred to its principal axes,
being as in § 11 (41), the co-ordinates of the point J where it
is met by the instantaneous axis are proportional to p, q, r, and
the direction-cosines of the normal at J are therefore proportional
to Ap, Bq, Cr, or λ, μ, ν. The axis of resultant angular
momentum is therefore normal to the tangent plane at J,
and does not coincide with OJ unless the latter be a principal
axis. Again, if Γ be the resultant angular momentum, so
that

λ2 + μ2 + ν2 = Γ2,

(10)

the length of the perpendicular OH on the tangent plane at J
is


	OH = 	Ap
	· 	p
	ρ + 	Bq
	· 	q
	ρ + 	Cr
	· 	r
	ρ = 	2T
	· 	ρ
	,

	Γ 	ω
	Γ 	ω
	Γ 	ω
	Γ 	ω


(11)

where ρ = OJ. This relation will be of use to us presently
(§ 19).

The motion of a rigid body in the most general case may be
specified by means of the component velocities u, v, w of any
point O of it which is taken as base, and the component angular
velocities p, q, r. The component velocities of any point whose
co-ordinates relative to O are x, y, z are then

u + qz − ry,   v + rx − pz,   w + py − qx

(12)

by § 7 (6). It is usually convenient to take as our base-point
the mass-centre of the body. In this case the kinetic energy is
given by

2T = M0 (u2 + v2 + w2) + Ap2 + Bq2 + Cr2 − 2Fqr − 2Grp − 2Hpg,

(13)

where M0 is the mass, and A, B, C, F, G, H are the moments
and products of inertia with respect to the mass-centre; cf.
§ 15 (9).

The components ξ, η, ζ of linear momentum are


	ξ = M0u = 	∂T
	,   η = M0v = 	∂T
	,   ζ = M0w = 	∂T
	

	∂u 	∂v
	∂w


(14)

whilst those of the relative angular momentum are given by (7).
The preceding formulae are sufficient for the treatment of
instantaneous impulses. Thus if an impulse (ξ, η, ζ, λ, μ, ν)
change the motion from (u, v, w, p, q, r) to (u′, v′, w′, p′, q′, r′)
we have


	M0 (u′ − u) = ξ, 	M0 (v′ − v) = η, 	M0(w′ − w) = ζ,

	A (p′ − p) = λ, 	B (q′ − q) = μ, 	C (r′ − r) = ν,



(15)

where, for simplicity, the co-ordinate axes are supposed to
coincide with the principal axes at the mass-centre. Hence
the change of kinetic energy is

T′ − T = ξ · 1⁄2 (u + u′) + η · 1⁄2 (v + v′) + ζ · 1⁄2 (w + w′),

     + λ · 1⁄2 (p + p′) + μ · 1⁄2 (q + q′) + ν · 1⁄2 (r + r′).

(16)

The factors of ξ, η, ζ, λ, μ, ν on the right-hand side are proportional
to the constituents of a possible infinitesimal displacement
of the solid, and the whole expression is proportional
(on the same scale) to the work done by the given system of
impulsive forces in such a displacement. As in § 9 this must
be equal to the total work done in such a displacement by the
several forces, whatever they are, which make up the impulse.
We are thus led to the following statement: the change of
kinetic energy due to any system of impulsive forces is equal
to the sum of the products of the several forces into the semi-sum
of the initial and final velocities of their respective points
of application, resolved in the directions of the forces. Thus
in the problem of fig. 77 the kinetic energy generated is
1⁄2M (κ2 + Cq2)ω′2, if C be the instantaneous centre; this is seen
to be equal to 1⁄2F·ω′·CP, where ω′·CP represents the initial
velocity of P.

The equations of continuous motion of a solid are obtained
by substituting the values of ξ, η, ζ, λ, μ, ν from (14) and (7)
in the general equations


	dξ
	= X,    	dη
	= Y,    	dζ
	= Z,

	dt 	dt
	dt



	dλ
	= L,    	dμ
	= M,    	dν
	= N,

	dt 	dt
	dt


(17)
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where (X, Y, Z, L, M, N) denotes the system of extraneous forces
referred (like the momenta) to the mass-centre as base, the
co-ordinate axes being of course
fixed in direction. The resulting
equations are not as a rule easy
of application, owing to the fact
that the moments and products
of inertia A, B, C, F, G, H are not
constants but vary in consequence
of the changing orientation
of the body with respect to
the co-ordinate axes.


An exception occurs, however,
in the case of a solid which is
kinetically symmetrical (§ 11) about
the mass-centre, e.g. a uniform
sphere. The equations then take
the forms


	M0u̇ = X, 	M0v̇ = Y, 	M0ẇ = Z,

	Cṗ = L, 	Cq̇ = M, 	Cṙ = N,



(18)

where C is the constant moment of inertia about any axis through

the mass-centre. Take, for example, the case of a sphere rolling on
a plane; and let the axes Ox, Oy be drawn through the centre
parallel to the plane, so that the equation of the latter is z = −a.
We will suppose that the extraneous forces consist of a known
force (X, Y, Z) at the centre, and of the reactions (F1, F2, R) at the
point of contact. Hence

M0u̇ = X + F1,   M0v̇ = Y + F2,   0 = Z + R,

Cṗ = F2a,   Cq̇ = −F1a,   Cṙ = 0.

(19)

The last equation shows that the angular velocity about the normal
to the plane is constant. Again, since the point of the sphere
which is in contact with the plane is instantaneously at rest, we
have the geometrical relations

u + qa = 0,   v + pa = 0,   w = 0,

(20)

by (12). Eliminating p, q, we get

(M0 + Ca−2) u̇ = X,   (M0 + Ca−2) v̇ = Y.

(21)

The acceleration of the centre is therefore the same as if the plane
were smooth and the mass of the sphere were increased by C/α2.
Thus the centre of a sphere rolling under gravity on a plane of
inclination a describes a parabola with an acceleration

g sin α/(1 + C/Ma2)

parallel to the lines of greatest slope.

Take next the case of a sphere rolling on a fixed spherical surface.
Let a be the radius of the rolling sphere, c that of the spherical
surface which is the locus of its centre, and let x, y, z be the co-ordinates
of this centre relative to axes through O, the centre of the
fixed sphere. If the only extraneous forces are the reactions
(P, Q, R) at the point of contact, we have

M0ẍ = P,   M0ÿ = Q,   M0z̈ = R,


	Cṗ = − 	a
	(yR − zQ),   Cq̇ = − 	a
	(zP − xR),   Cṙ = − 	a
	(xQ − yP),

	c 	c
	c


(22)

the standard case being that where the rolling sphere is outside
the fixed surface. The opposite case is obtained by reversing the
sign of a. We have also the geometrical relations

ẋ = (a/c) (qz − ry),   ẏ = (a/c) (rx − pz),   ż = (a/c) (py − gx),

(23)

If we eliminate P, Q, R from (22), the resulting equations are integrable
with respect to t; thus


	p = − 	M0a
	(yż − zẏ) + α,   q = − 	M0a
	(zẋ − xż) + β,   r = − 	M0a
	(xẏ − yẋ) + γ,

	Cc 	Cc
	Cc


(24)

where α, β, γ are arbitrary constants. Substituting in (23) we find


	( 1 + 	M0a2
	) ẋ = 	a
	(βz − γy),   ( 1 + 	M0a2
	) ẏ = 	a
	(γx − αz),   ( 1 + 	M0a2
	) ż = 	a
	(αy − βx).

	C 	c
	C 	c
	C 	c


(25)

Hence αẋ + βẏ + γż = 0, or

αx + βy + γz = const.;

(26)

which shows that the centre of the rolling sphere describes a circle.
If the axis of z be taken normal to the plane of this circle we have
α = 0, β = 0, and


	( 1 + 	M0a2
	) ẋ = −γ 	a
	y,   ( 1 + 	M0a2
	) ẏ = γ 	a
	x.

	C 	c
	C 	c


(27)

The solution of these equations is of the type

x = b cos (στ + ε),   y = b sin (σt + ε),

(28)

where b, ε are arbitrary, and


	σ = 	γa/c
	.

	1 + M0a2/C


(29)

The circle is described with the constant angular velocity σ.

When the gravity of the rolling sphere is to be taken into account
the preceding method is not in general convenient, unless the whole
motion of G is small. As an example of this latter type, suppose
that a sphere is placed on the highest point of a fixed sphere and set
spinning about the vertical diameter with the angular velocity n;
it will appear that under a certain condition the motion of G consequent
on a slight disturbance will be oscillatory. If Oz be drawn
vertically upwards, then in the beginning of the disturbed motion
the quantities x, y, p, q, P, Q will all be small. Hence, omitting terms
of the second order, we find

M0ẍ = P,   M0ẏ = Q,   R = M0g,

Cṗ = −(M0ga/c) y + aQ,   Cq̇ = (M0ga/c) x − aP,   Cṙ = 0.

(30)

The last equation shows that the component r of the angular velocity
retains (to the first order) the constant value n. The geometrical
relations reduce to

ẋ = aq − (na/c) y,   ẏ = −ap + (na/c) x.

(31)

Eliminating p, g, P, Q, we obtain the equations

(C + M0a2) ẍ + (Cna/c) y − (M0ga2/c) x = 0,

(C + M0a2) ÿ − (Cna/c) x − (M0ga2/c) y = 0,

(32)

which are both contained in


	{ (C + M0a2) 	d2
	− i 	Cna
	  	d
	− 	M0ga2
	} (x + iy) = 0.

	dt2 	c
	dt 	c


(33)

This has two solutions of the type x + iy = αei(σt + ε), where α, ε are
arbitrary, and σ is a root of the quadratic

(C + M0a2) σ2 − (Cna/c) σ + M0ga2/c = 0.

(34)

If

n2 > (4Mgc/C) (1 + M0a2/C),

(35)

both roots are real, and have the same sign as n. The motion of
G then consists of two superposed circular vibrations of the type

x = α cos (σt + ε),   y = α sin (σt + ε),

(36)

in each of which the direction of revolution is the same as that of
the initial spin of the sphere. It follows therefore that the original
position is stable provided the spin n exceed the limit defined by
(35). The case of a sphere spinning about a vertical axis at the
lowest point of a spherical bowl is obtained by reversing the signs
of α and c. It appears that this position is always stable.

It is to be remarked, however, that in the first form of the problem
the stability above investigated is practically of a limited or temporary
kind. The slightest frictional forces—such as the resistance
of the air—even if they act in lines through the centre of the rolling
sphere, and so do not directly affect its angular momentum, will
cause the centre gradually to descend in an ever-widening spiral
path.



§ 19. Free Motion of a Solid.—Before proceeding to further
problems of motion under extraneous forces it is convenient to
investigate the free motion of a solid relative to its mass-centre
O, in the most general case. This is the same as the motion
about a fixed point under the action of extraneous forces which
have zero moment about that point. The question was first
discussed by Euler (1750); the geometrical representation to be
given is due to Poinsot (1851).

The kinetic energy T of the motion relative to O will be constant.
Now T = 1⁄2Iω2, where ω is the angular velocity and I is
the moment of inertia about the instantaneous axis. If ρ be the
radius-vector OJ of the momental ellipsoid

Ax2 + By2 + Cz2 = Mε4

(1)

drawn in the direction of the instantaneous axis, we have
I = Mε4/ρ2 (§ 11); hence ω varies as ρ. The locus of J may therefore
be taken as the “polhode” (§ 18). Again, the vector which
represents the angular momentum with respect to O will be
constant in every respect. We have seen (§ 18) that this vector
coincides in direction with the perpendicular OH to the tangent
plane of the momental ellipsoid at J; also that


	OH = 	2T
	· 	ρ
	,

	Γ 	ω


(2)

where Γ is the resultant angular momentum about O. Since ω
varies as ρ, it follows that OH is constant, and the tangent plane
at J is therefore fixed in space. The motion of the body relative
to O is therefore completely represented if we imagine the momental
ellipsoid at O to roll without sliding on a plane fixed in
space, with an angular velocity proportional at each instant to
the radius-vector of the point of contact. The fixed plane is
parallel to the invariable plane at O, and the line OH is called the
invariable line. The trace of the point of contact J on the fixed
plane is the “herpolhode.”

If p, q, r be the component angular velocities about the principal
axes at O, we have

(A2p2 + B2q2 + C2r2) / Γ2 = (Ap2 + Bq2 + Cr2) / 2T,

(3)

each side being in fact equal to unity. At a point on the polhode
cone x : y : z = p : q : r, and the equation of this cone is therefore


	A2 ( 1 − 	Γ2
	) x2 + B2 ( 1 − 	Γ2
	) y2 + C2 ( 1 − 	Γ2
	) z2 = 0.

	2AT 	2BT
	2CT


(4)

Since 2AT − Γ2 = B (A − B)q2 + C(A − C)r2, it appears that if
A > B > C the coefficient of x2 in (4) is positive, that of z2 is
negative, whilst that of y2 is positive or negative according as
2BT ≷ Γ2. Hence the polhode cone surrounds the axis of
greatest or least moment according as 2BT ≷ Γ2. In the
critical case of 2BT = Γ2 it breaks up into two planes through
the axis of mean moment (Oy). The herpolhode curve in the
fixed plane is obviously confined between two concentric circles
which it alternately touches; it is not in general a re-entrant
curve. It has been shown by De Sparre that, owing to the
limitation imposed on the possible forms of the momental
ellipsoid by the relation B + C > A, the curve has no points of
inflexion. The invariable line OH describes another cone in the

body, called the invariable cone. At any point of this we have
x : y : z = Ap · Bq : Cr, and the equation is therefore


	( 1 − 	Γ2
	) x2 + ( 1 − 	Γ2
	) y2 + ( 1 − 	Γ2
	) z2 = 0.

	2AT 	2BT
	2CT


(5)
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The signs of the coefficients follow the same rule as in the case of
(4). The possible forms of the invariable cone are indicated in
fig. 80 by means of the intersections with a concentric spherical
surface. In the critical case of
2BT = Γ2 the cone degenerates
into two planes. It appears
that if the body be sightly disturbed
from a state of rotation
about the principal axis of
greatest or least moment, the
invariable cone will closely surround
this axis, which will
therefore never deviate far
from the invariable line. If,
on the other hand, the body be
slightly disturbed from a state
of rotation about the mean axis
a wide deviation will take place.
Hence a rotation about the axis of greatest or least moment is
reckoned as stable, a rotation about the mean axis as unstable.
The question is greatly simplified when two of the principal
moments are equal, say A = B. The polhode and herpolhode
cones are then right circular, and the motion is “precessional”
according to the definition of § 18. If α be the inclination of the
instantaneous axis to the axis of symmetry, β the inclination of
the latter axis to the invariable line, we have

Γ cos β = C ω cos α,   Γ sin β = A ω sin α,

(6)

whence


	tan β 	A
	tan α.

	C


(7)
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Hence β ≷ α, and the circumstances are therefore those of the
first or second case in fig. 78, according as A ≷ C. If ψ be the
rate at which the plane HOJ revolves about OH, we have


	ψ = 	sin α
	ω = 	C cos α
	ω,

	sin β 	A cos β


(8)

by § 18 (3). Also if χ̇ be the rate at which J describes the
polhode, we have ψ̇ sin (β − α) = χ̇ sin β, whence


	χ̇ = 	sin (α − β)
	ω.

	sin α


(9)

If the instantaneous axis only deviate slightly from the axis of
symmetry the angles α, β are small, and χ̇ = (A − C) A·ω; the
instantaneous axis therefore completes its revolution in the body
in the period


	2π
	= 	A − C
	ω.

	χ̇ 	A


(10)


In the case of the earth it is inferred from the independent
phenomenon of luni-solar precession that (C − A)/A = .00313. Hence
if the earth’s axis of rotation deviates slightly from the axis of
figure, it should describe a cone about the latter in 320 sidereal
days. This would cause a periodic variation in the latitude of any
place on the earth’s surface, as determined by astronomical methods.
There appears to be evidence of a slight periodic variation of latitude,
but the period would seem to be about fourteen months. The
discrepancy is attributed to a defect of rigidity in the earth. The
phenomenon is known as the Eulerian nutation, since it is supposed
to come under the free rotations first discussed by Euler.



§ 20. Motion of a Solid of Revolution.—In the case of a solid of
revolution, or (more generally) whenever there is kinetic symmetry
about an axis through the mass-centre, or through a fixed
point O, a number of interesting problems can be treated almost
directly from first principles. It frequently happens that the
extraneous forces have zero moment about the axis of symmetry,
as e.g. in the case of the flywheel of a gyroscope if we neglect the
friction at the bearings. The angular velocity (r) about this axis
is then constant. For we have seen that r is constant when
there are no extraneous forces; and r is evidently not affected
by an instantaneous impulse which leaves the angular momentum
Cr, about the axis of symmetry, unaltered. And a continuous
force may be regarded as the limit of a succession
of infinitesimal instantaneous impulses.
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Suppose, for example, that a flywheel is rotating with angular
velocity n about its axis, which is (say) horizontal, and that this
axis is made to rotate with the angular velocity ψ̇ in the horizontal
plane. The components of angular momentum about the axis of
the flywheel and about the vertical will be Cn and A ψ̇ respectively,
where A is the moment of inertia about any axis through the mass-centre
(or through the fixed point O) perpendicular to that of symmetry.
If OK>  be the vector representing the former component
at time t, the vector which represents it at time t + δt will be OK′>,
equal to OK>  in magnitude and making with it an angle δψ. Hence
KK′> (= Cn δψ) will represent the change in this component due to
the extraneous forces. Hence, so far as this component is concerned,
the extraneous forces must supply a couple of moment
Cnψ̇ in a vertical plane through the
axis of the flywheel. If this couple
be absent, the axis will be tilted out
of the horizontal plane in such a sense
that the direction of the spin n approximates
to that of the azimuthal rotation
ψ̇. The remaining constituent of
the extraneous forces is a couple Aψ̈
about the vertical; this vanishes if ψ̇
is constant. If the axis of the flywheel
make an angle θ with the vertical, it is seen in like manner that the
required couple in the vertical plane through the axis is Cn sin θ ψ̇.
This matter can be strikingly illustrated with an ordinary gyroscope,
e.g. by making the larger movable ring in fig. 37 rotate about its
vertical diameter.




	

	Fig. 83.


If the direction of the axis of kinetic symmetry be specified
by means of the angular co-ordinates θ, ψ
of § 7, then considering the component
velocities of the point C in fig. 83, which
are θ̇ and sin θψ̇ along and perpendicular
to the meridian ZC, we see that the component
angular velocities about the lines
OA′, OB′ are −sin θ ψ̇ and θ̇ respectively.
Hence if the principal moments of inertia
at O be A, A, C, and if n be the constant
angular velocity about the axis OC, the
kinetic energy is given by

2T = A (θ̇2 + sin2 θψ̇2) + Cn2.

(1)

Again, the components of angular momentum about OC, OA′ are
Cn, −A sin θ ψ̇, and therefore the angular momentum (μ, say)
about OZ is

μ = A sin2 θψ̇ + Cn cos θ.

(2)

We can hence deduce the condition of steady precessional
motion in a top. A solid of revolution is supposed to be free
to turn about a fixed point O on its axis of symmetry, its mass-centre
G being in this axis at a distance h from O. In fig. 83 OZ
is supposed to be vertical, and OC is the axis of the solid drawn
in the direction OG. If θ is constant the points C, A′ will in
time δt come to positions C″, A″ such that CC″ = sin θ δψ, A′A″ =
cos θ δψ, and the angular momentum about OB′ will become
Cn sin θ δψ − A sin θ ψ̇ · cos θ δψ. Equating this to Mgh sin θ δt,
and dividing out by sin θ, we obtain

A cos θ ψ̇2 − Cnψ̇ + Mgh = 0,

(3)

as the condition in question. For given values of n and θ we
have two possible values of ψ̇ provided n exceed a certain limit.
With a very rapid spin, or (more precisely) with Cn large in
comparison with √(4AMgh cos θ), one value of ψ̇ is small and
the other large, viz. the two values are Mgh/Cn and Cn/A cos θ
approximately. The absence of g from the latter expression
indicates that the circumstances of the rapid precession are very

nearly those of a free Eulerian rotation (§ 19), gravity playing
only a subordinate part.


	

	Fig. 84.



Again, take the case of a circular disk rolling in steady motion
on a horizontal plane. The centre O of the disk is supposed to
describe a horizontal circle of
radius c with the constant angular
velocity ψ̇, whilst its plane preserves
a constant inclination θ to
the horizontal. The components
of the reaction of the horizontal
lane will be Mcψ̇2 at right angles
to the tangent line at the point
of contact and Mg vertically upwards,
and the moment of these
about the horizontal diameter of
the disk, which corresponds to
OB′ in fig. 83, is Mcψ̇2. α sin θ − Mgα cos θ, where α is the radius of
the disk. Equating this to the rate of increase of the angular
momentum about OB′, investigated as above, we find


	( C + Ma2 + A 	a
	cos θ ) ψ̇2 = Mg 	a2
	cot θ,

	c 	c


(4)

where use has been made of the obvious relation nα = cψ̇. If c and
θ be given this formula determines the value of ψ̇ for which the
motion will be steady.



In the case of the top, the equation of energy and the condition
of constant angular momentum (μ) about the vertical
OZ are sufficient to determine the motion of the axis. Thus,
we have

1⁄2A (θ̇2 + sin2 θψ̇2) + 1⁄2Cn2 + Mgh cos θ = const.,

(5)

A sin2 θψ̇ + ν cos θ = μ,

(6)

where ν is written for Cn. From these ψ̇ may be eliminated, and
on differentiating the resulting equation with respect to t we
obtain


	Aθ̈ − 	(μ − ν cos θ) (μ cos θ − ν)
	− Mgh sin θ = 0.

	A sin3 θ


(7)

If we put θ̈ = 0 we get the condition of steady precessional
motion in a form equivalent to (3). To find the small oscillation
about a state of steady precession in which the axis makes a
constant angle α with the vertical, we write θ = α + χ, and
neglect terms of the second order in χ. The result is of the form

χ̈ + σ2χ = 0,

(8)

where

σ2 = { (μ − ν cos α)2 + 2 (μ − ν cos α) (μ cos α − ν) cos α +

(μ cos α − ν)2 } / A2 sin4 α.

(9)

When ν is large we have, for the “slow” precession σ = ν/A, and
for the “rapid” precession σ = A/ν cos α = ψ̇, approximately.
Further, on examining the small variation in ψ̇, it appears that
in a slightly disturbed slow precession the motion of any point
of the axis consists of a rapid circular vibration superposed on
the steady precession, so that the resultant path has a trochoidal
character. This is a type of motion commonly observed in a top
spun in the ordinary way, although the successive undulations
of the trochoid may be too small to be easily observed. In a
slightly disturbed rapid precession the superposed vibration is
elliptic-harmonic, with a period equal to that of the precession
itself. The ratio of the axes of the ellipse is sec α, the longer
axis being in the plane of θ. The result is that the axis of the top
describes a circular cone about a fixed line making a small angle
with the vertical. This is, in fact, the “invariable line” of the
free Eulerian rotation with which (as already remarked) we are
here virtually concerned. For the more general discussion of
the motion of a top see Gyroscope.

§ 21. Moving Axes of Reference.—For the more general treatment
of the kinetics of a rigid body it is usually convenient to
adopt a system of moving axes. In order that the moments and
products of inertia with respect to these axes may be constant,
it is in general necessary to suppose them fixed in the solid.

We will assume for the present that the origin O is fixed. The
moving axes Ox, Oy, Oz form a rigid frame of reference whose
motion at time t may be specified by the three component
angular velocities p, q, r. The components of angular momentum
about Ox, Oy, Oz will be denoted as usual by λ, μ, ν. Now consider
a system of fixed axes Ox′, Oy′, Oz′ chosen so as to coincide
at the instant t with the moving system Ox, Oy, Oz. At the
instant t + δt, Ox, Oy, Oz will no longer coincide with Ox′, Oy′, Oz′;
in particular they will make with Ox′ angles whose cosines are,
to the first order, 1, −rδt, qδt, respectively. Hence the altered
angular momentum about Ox′ will be λ + δλ + (μ + δμ) (−rδt) +
(ν + δν) qδt. If L, M, N be the moments of the extraneous forces
about Ox, Oy, Oz this must be equal to λ + Lδt. Hence, and
by symmetry, we obtain


	dλ
	− rν + qν = L,

	dt



	dμ
	− pν + rλ = M,

	dt



	dν
	− qλ + pν = N.

	dt


(1)

These equations are applicable to any dynamical system whatever.
If we now apply them to the case of a rigid body moving
about a fixed point O, and make Ox, Oy, Oz coincide with the
principal axes of inertia at O, we have λ, μ, ν = Ap, Bq, Cr,
whence


	A 	dp
	− (B − C) qr = L,

	dt



	B 	dq
	− (C − A) rp = M,

	



	C 	dr
	− (A − B) pq = N.

	dt


(2)

If we multiply these by p, q, r and add, we get


	d
	·  1⁄2 (Ap2 + Bq2 + Cr2) = Lp + Mq + Nr,

	dt


(3)

which is (virtually) the equation of energy.

As a first application of the equations (2) take the case of a
solid constrained to rotate with constant angular velocity ω about
a fixed axis (l, m, n). Since p, q, r are then constant, the requisite
constraining couple is

L = (C − B) mnω2,   M = (A − C) nlω2,   N = (B − A) lmω2.

(4)

If we reverse the signs, we get the “centrifugal couple” exerted
by the solid on its bearings. This couple vanishes when the axis
of rotation is a principal axis at O, and in no other case
(cf. § 17).

If in (2) we put, L, M, N = O we get the case of free rotation;
thus


	A 	dp
	(B − C) qr,

	dt



	B 	dq
	(C − A) rp,

	dt



	C 	dr
	(A − B) pq.

	dt


(5)

These equations are due to Euler, with whom the conception of
moving axes, and the application to the problem of free rotation,
originated. If we multiply them by p, q, r, respectively, or again
by Ap, Bq, Cr respectively, and add, we verify that the expressions
Ap2 + Bq2 + Cr2 and A2p2 + B2q2 + C2r2 are both constant.
The former is, in fact, equal to 2T, and the latter to Γ2, where
T is the kinetic energy and Γ the resultant angular momentum.


To complete the solution of (2) a third integral is required; this
involves in general the use of elliptic functions. The problem has
been the subject of numerous memoirs; we will here notice only
the form of solution given by Rueb (1834), and at a later period
by G. Kirchhoff (1875), If we write


	u  = ∫φ0 	dφ
	,   Δφ = √(1 − k2 sin2 φ),

	Δφ


we have, in the notation of elliptic functions, φ = am u. If we
assume

p = p0 cos am (σt + ε),   q = q0sin am (σt + ε),   r = r0Δ am (σt + ε),

(7)

we find


	ṗ = − 	σp0
	qr,   q̇ = 	σq0 
	rp,   ṙ = 	k2σr0
	pq.

	q0r0 	r0p0
	p0q0


(8)

Hence (5) will be satisfied, provided


	−σp0
	= 	B − C
	,    	σq0
	= 	C − A
	,    	−k2σr0
	= 	A − B
	.

	q0r0 	A
	r0p0 	B
	p0q0 	C


(9)

These equations, together with the arbitrary initial values of p, q, r,
determine the six constants which we have denoted by p0, q0, r0, k2, σ, ε.
We will suppose that A > B > C. From the form of the polhode
curves referred to in § 19 it appears that the angular velocity q
about the axis of mean moment must vanish periodically. If we
adopt one of these epochs as the origin of t, we have ε = 0, and
p0, r0 will become identical with the initial values of p, r. The
conditions (9) then lead to


	q02 = 	A (A − C)
	p02,   σ2 = 	(A − C) (B − C)
	r02,   k2 = 	A (A − B)
	· 	p02
	.

	B (B − C) 	AB
	C (B − C) 	r02


(10)



For a real solution we must have k2 < 1, which is equivalent to
2BT > Γ2. If the initial conditions are such as to make 2BT < Γ2,
we must interchange the forms of p and r in (7). In the present
case the instantaneous axis returns to its initial position in the
body whenever φ increases by 2π, i.e. whenever t increases by
4K/σ, when K is the “complete” elliptic integral of the first kind
with respect to the modulus k.

The elliptic functions degenerate into simpler forms when k2 = 0
or k2 = 1. The former case arises when two of the principal moments
are equal; this has been sufficiently dealt with in § 19. If k2 = 1,
we must have 2BT = Γ2. We have seen that the alternative 2BT ≷ Γ2
determines whether the polhode cone surrounds the principal axis
of least or greatest moment. The case of 2BT = Γ2, exactly, is
therefore a critical case; it may be shown that the instantaneous
axis either coincides permanently with the axis of mean moment
or approaches it asymptotically.



When the origin of the moving axes is also in motion with a
velocity whose components are u, v, w, the dynamical equations
are


	dξ
	− rη + qζ = X,    	dη
	− pζ + rχ = Y,    	dζ
	− qχ + pη = Z,

	dt 	dt
	dt


(11)


	dλ
	− rμ + qν − wη + vζ = L,    	dμ
	− pν + rλ- uζ + wξ = M,

	dt 	dt



	dν
	− qλ + pμ − vξ + uη = N.

	dt


(12)

To prove these, we may take fixed axes O′x′, O′y′, O′z′ coincident
with the moving axes at time t, and compare the linear
and angular momenta ξ + δξ, η + δη, ζ + δζ, λ + δλ, μ + δμ, ν + δν
relative to the new position of the axes, Ox, Oy, Oz at time t + δt
with the original momenta ξ, η, ζ, λ, μ, ν relative to O′x′, O′y′,
O′z′ at time t. As in the case of (2), the equations are applicable
to any dynamical system whatever. If the moving origin coincide
always with the mass-centre, we have ξ, η, ζ = M0u, M0v,
M0w, where M0 is the total mass, and the equations simplify.

When, in any problem, the values of u, v, w, p, q, r have been
determined as functions of t, it still remains to connect the
moving axes with some fixed frame of reference. It will be
sufficient to take the case of motion about a fixed point O; the
angular co-ordinates θ, φ, ψ of Euler may then be used for the
purpose. Referring to fig. 36 we see that the angular velocities
p, q, r of the moving lines, OA, OB, OC about their instantaneous
positions are

p = θ̇ sin φ − sin θ cos φψ̇,  
q = θ̇ cos φ + sin θ sin φψ̇,

r = φ̇ + cos θψ̇,

(13)

by § 7 (3), (4). If OA, OB, OC be principal axes of inertia of a
solid, and if A, B, C denote the corresponding moments of inertia,
the kinetic energy is given by

2T = A (θ̇ sin φ − sin θ cos φψ̇)2
 + B (θ̇ cos φ + sin θ sin θψ)2

+ C (φ̇ + cos θψ̇)2.

(14)

If A = B this reduces to

2T = A (θ̇2 + sin2 θ ψ̇2) + C (φ̇ + cos θ ψ̇)2; 

(15)

cf. § 20 (1).

§ 22. Equations of Motion in Generalized Co-ordinates.—Suppose
we have a dynamical system composed of a finite number
of material particles or rigid bodies, whether free or constrained
in any way, which are subject to mutual forces and also to the
action of any given extraneous forces. The configuration of
such a system can be completely specified by means of a certain
number (n) of independent quantities, called the generalized co-ordinates
of the system. These co-ordinates may be chosen in an
endless variety of ways, but their number is determinate, and
expresses the number of degrees of freedom of the system. We
denote these co-ordinates by q1, q2, ... qn. It is implied in the above
description of the system that the Cartesian co-ordinates x, y, z of
any particle of the system are known functions of the q’s, varying
in form (of course) from particle to particle. Hence the kinetic
energy T is given by


	2T = Σ {m (ẋ2 + ẏ2 + ż2) }

	  = a11q̇12 + a22q̇22 + ... + 2a12q̇1q̇2 + ...,



(1)

where


	arr = Σ [ m { ( 	∂x
	)2 + ( 	∂y
	)2 + ( 	∂z
	)2 } ],

	∂qr 	∂qr
	∂qr



	ars = Σ { m ( 	∂x
	  	∂x
	+ 	∂y
	  	∂y
	+ 	∂z
	  	∂z
	) } = asr.

	∂qr 	∂qs
	∂qr 	∂qs
	∂qr 	∂qs


(2)

Thus T is expressed as a homogeneous quadratic function of
the quantities q̇1, q̇2, ... q̇n, which are called the generalized
components of velocity. The coefficients arr, ars are called the coefficients
of inertia; they are not in general constants, being
functions of the q’s and so variable with the configuration.
Again, If (X, Y, Z) be the force on m, the work done in an infinitesimal
change of configuration is

Σ (Xδx + Yδy + Zδz) = Q1δq1 + Q2δq2 + ... + Qnδqn,

(3)

where


	Qr = Σ ( X 	∂x
	+ Y 	∂y
	+ Z 	∂z
	).

	∂qr 	∂qr
	∂qr


(4)

The quantities Qr are called the generalized components of
force.

The equations of motion of m being

mẍ = X,   mÿ = Y,   mz̈ = Z,

(5)

we have


	Σ { m ( ẍ 	∂x
	+ ÿ 	∂y
	+ z̈ 	∂z
	) } = Qr.

	∂qr 	∂qr
	∂qr


(6)

Now

(7)


	ẋ = 	∂x
	q̇1 + 	∂x
	q̇2 + ... + 	∂x
	q̇n,

	∂q1 	∂q2
	∂qn


whence

(8)


	∂ẋ
	= 	∂x
	.

	∂q̇r 	∂qr


Also

(9)


	d
	( 	∂x
	) = 	∂2x
	q̇1 + 	∂2x
	q̇2 + ... + 	∂2x
	q̇r = 	∂ẋ
	.

	dt 	∂qr
	∂q1∂qr 	∂q2∂qr
	∂qn∂qr 	∂qr


Hence

(10)


	ẍ 	∂x
	= 	d
	( ẋ 	∂x
	) − ẋ 	d
	( 	∂x
	) = 	d
	( ẋ 	∂ẋ
	) − ẋ 	∂ẋ
	.

	∂qr 	dt
	∂qr 	dt
	∂qr 	dt
	∂q̇r 	∂qr


By these and the similar transformations relating to y and z the
equation (6) takes the form


	d
	( 	∂T
	) − 	∂T
	= Qr.

	dt 	∂q̇r
	∂qr


(11)

If we put r = 1, 2, ... n in succession, we get the n independent
equations of motion of the system. These equations are due to
Lagrange, with whom indeed the first conception, as well as the
establishment, of a general dynamical method applicable to all
systems whatever appears to have originated. The above proof
was given by Sir W. R. Hamilton (1835). Lagrange’s own proof
will be found under Dynamics, § Analytical. In a conservative
system free from extraneous force we have

Σ (X δx + Y δy + Z δz) = −δV,

(12)

where V is the potential energy. Hence


	Qr = − 	∂V
	,

	∂qr


(13)

and


	d
	( 	∂T
	) − 	∂T
	= − 	∂V
	.

	dt 	∂q̇r
	∂qr 	∂qr


(14)

If we imagine any given state of motion (q̇1, q̇2 ... q̇n) through
the configuration (q1, q2, ... qn) to be generated instantaneously
from rest by the action of suitable impulsive forces, we find on
integrating (11) with respect to t over the infinitely short duration
of the impulse


	∂T
	= Qr′,

	∂q̇r


(15)

where Qr′ is the time integral of Qr and so represents a generalized
component of impulse. By an obvious analogy, the expressions
∂T/∂q̇r may be called the generalized components of
momentum; they are usually denoted by pr thus

pr = ∂T / ∂q̇r = a1rq̇1 + a2rq̇2 + ... + anrq̇n.

(16)

Since T is a homogeneous quadratic function of the velocities
q̇1, q̇2, ... q̇n, we have


	2T = 	∂T
	q̇1 + 	∂T
	q̇2 + ... + 	∂T
	q̇n = p1q̇2 + p2q̇2 + ... + pnq̇n.

	∂q̇1 	∂q̇2
	∂q̇n


(17)

Hence


	2 	dT
	= ṗ1q̇1 + ṗ2q̇2 + ... + ṗnq̇n
  + ṗ1q̈1 + ṗ2q̈2 + ... + ṗnq̈n

	dt 



	= ( 	∂T
	+ Q1 ) q̇1 + ( 	∂T
	+ Q2 ) q̇2 + ... + ( 	∂T
	+ Qn ) q̇n + 	∂T
	q̈1 + 	∂T
	q̈2 + ... + 	∂T
	q̈n

	∂q̇1 	∂q̇2
	∂q̇n 	∂q̇1
	∂q̇2 	∂q̇n



	= 	dT
	+ Q1q̇1 + Q2q̇2 + ... + Qnq̇n,

	dt


(18)

or


	dT
	= Q1q̇1 + Q2q̇2 + ... + Qnq̇n.

	dt


(19)



This equation expresses that the kinetic energy is increasing at a
rate equal to that at which work is being done by the forces. In
the case of a conservative system free from extraneous force it
becomes the equation of energy


	d
	(T + V) = 0, or T + V = const.,

	dt


(20)

in virtue of (13).


As a first application of Lagrange’s formula (11) we may form
the equations of motion of a particle in spherical polar co-ordinates.
Let r be the distance of a point P from a fixed origin O, θ the angle
which OP makes with a fixed direction OZ, ψ the azimuth of the
plane ZOP relative to some fixed plane through OZ. The displacements
of P due to small variations of these co-ordinates are
∂r along OP, r δθ perpendicular to OP in the plane ZOP, and r sin θ δψ
perpendicular to this plane. The component velocities in these
directions are therefore ṙ, rθ̇, r sin θψ̇, and if m be the mass of a moving
particle at P we have

2T = m (ṙ2 + r2θ;̇2 + r2 sin2 θψ;̇2).

(21)

Hence the formula (11) gives


	m (r̈ − rθ̇2 − r sin2 θψ̇2) 	= R,

	d/dt (mr2θ̇) − mr2 · sin θ cos θψ̇2 	= Θ,

	d/dt (mr2 sin2 θψ̇) 	= Ψ.



(22)

The quantities R, Θ, Ψ are the coefficients in the expression
R δr + Θ δθ + Ψ δψ for the work done in an infinitely small displacement;
viz. R is the radial component of force, Θ is the moment
about a line through O perpendicular to the plane ZOP, and Ψ is
the moment about OZ. In the case of the spherical pendulum
we have r = l, Θ = − mgl sin θ, Ψ = 0, if OZ be drawn vertically
downwards, and therefore


	θ̈ − sin θ cos θψ̇2 	= − (g/l) sin θ,

	sin2 θψ̇ 	= h,



(23)

where h is a constant. The latter equation expresses that the
angular momentum ml2 sin2 θψ̇ about the vertical OZ is constant.
By elimination of ψ̇ we obtain


	θ̈ − h2 cos2 θ / sin3 θ = − 	g
	sin θ.

	l


(24)

If the particle describes a horizontal circle of angular radius α
with constant angular velocity Ω, we have ω̇ = 0, h = Ω2 sin α, and
therefore


	Ω2 = 	g
	cos α,

	l


(25)

as is otherwise evident from the elementary theory of uniform
circular motion. To investigate the small oscillations about this
state of steady motion we write θ = α + χ in (24) and neglect terms
of the second order in χ. We find, after some reductions,

χ̈ + (1 + 3 cos2 α) Ω2χ = 0;

(26)

this shows that the variation of χ is simple-harmonic, with the
period

2π / √(1 + 3 cos2 α)·Ω

As regards the most general motion of a spherical pendulum, it
is obvious that a particle moving under gravity on a smooth sphere
cannot pass through the highest or lowest point unless it describes
a vertical circle. In all other cases there must be an upper and a
lower limit to the altitude. Again, a vertical plane passing through
O and a point where the motion is horizontal is evidently a plane of
symmetry as regards the path. Hence the path will be confined
between two horizontal circles which it touches alternately, and the
direction of motion is never horizontal except at these circles. In
the case of disturbed steady motion, just considered, these circles
are nearly coincident. When both are near the lowest point the
horizontal projection of the path is approximately an ellipse, as
shown in § 13; a closer investigation shows that the ellipse is to be
regarded as revolving about its centre with the angular velocity
2⁄3  abΩ/l2, where a, b are the semi-axes.

To apply the equations (11) to the case of the top we start with
the expression (15) of § 21 for the kinetic energy, the simplified
form (1) of § 20 being for the present purpose inadmissible, since
it is essential that the generalized co-ordinates employed should be
competent to specify the position of every particle. If λ, μ, ν be
the components of momentum, we have


	λ = ∂T / ∂θ̇ 	= Aθ̇,

	μ = ∂T / ∂ψ̇ 	= A sin2 θψ̇ + C (φ̇ + cos θψ̇) cos θ,

	ν = ∂T / ∂φ̇ 	= C (θ̇ + cos θψ̇).



(27)

The meaning of these quantities is easily recognized; thus λ is the
angular momentum about a horizontal axis normal to the plane
of θ, μ is the angular momentum about the vertical OZ, and ν is
the angular momentum about the axis of symmetry. If M be the
total mass, the potential energy is V = Mgh cos θ, if OZ be drawn
vertically upwards. Hence the equations (11) become


	Aθ̇ − A sin θ cos θψ̇2 + C (φ̇ + cos θψ̇) ψ̇ sin θ = Mgh sin θ,

	  d/dt · { A sin2 θψ̇ + C(φ̇ + cos θψ̇) cos θ } = 0,

	  d/dt · { C (φ̇ + cos θψ̇) } = 0,



(28)

of which the last two express the constancy of the momenta μ, ν.
Hence

Aθ̈ − A sin θ cos θψ̇2 + ν sin θψ̇ = Mgh sin θ,

  A sin2 θψ̇ + ν cosθ = μ.

(29)

If we eliminate ψ̇ we obtain the equation (7) of § 20. The theory
of disturbed precessional motion there outlined does not give a
convenient view of the oscillations of the axis about the vertical
position. If θ be small the equations (29) may be written


	θ̈ − θω̇2 = − 	ν2 − 4AMgh
	θ,

	4A2


θ2ω̇ = const.,

(30)

where


	ω = ψ − 	ν
	t.

	2A


(31)

Since θ, ω are the polar co-ordinates (in a horizontal plane) of a point
on the axis of symmetry, relative to an initial line which revolves
with constant angular velocity ν/2A, we see by comparison with
§ 14 (15) (16) that the motion of such a point will be elliptic-harmonic
superposed on a uniform rotation ν/2A, provided ν2 > 4AMgh.
This gives (in essentials) the theory of the “gyroscopic pendulum.”



§ 23. Stability of Equilibrium. Theory of Vibrations.—If, in a
conservative system, the configuration (q1, q2, ... qn) be one of
equilibrium, the equations (14) of § 22 must be satisfied by
q̇1, q̇2 ... q̇n = 0, whence

∂V / ∂qr = 0.

(1)

A necessary and sufficient condition of equilibrium is therefore
that the value of the potential energy should be stationary for
infinitesimal variations of the co-ordinates. If, further, V be a
minimum, the equilibrium is necessarily stable, as was shown by
P. G. L. Dirichlet (1846). In the motion consequent on any
slight disturbance the total energy T + V is constant, and since
T is essentially positive it follows that V can never exceed its
equilibrium value by more than a slight amount, depending
on the energy of the disturbance. This implies, on the present
hypothesis, that there is an upper limit to the deviation of each
co-ordinate from its equilibrium value; moreover, this limit
diminishes indefinitely with the energy of the original disturbance.
No such simple proof is available to show without qualification
that the above condition is necessary. If, however, we
recognize the existence of dissipative forces called into play by
any motion whatever of the system, the conclusion can be drawn
as follows. However slight these forces may be, the total energy
T + V must continually diminish so long as the velocities
q̇1, q̇2, ... q̇n differ from zero. Hence if the system be started
from rest in a configuration for which V is less than in the
equilibrium configuration considered, this quantity must still
further decrease (since T cannot be negative), and it is evident
that either the system will finally come to rest in some other
equilibrium configuration, or V will in the long run diminish
indefinitely. This argument is due to Lord Kelvin and P. G.
Tait (1879).

In discussing the small oscillations of a system about a configuration
of stable equilibrium it is convenient so to choose the
generalized cc-ordinates q1, q2, ... qn that they shall vanish in the
configuration in question. The potential energy is then given
with sufficient approximation by an expression of the form

2V = c11q12 + c22q22 + ... + 2c12q1q2 + ...,

(2)

a constant term being irrelevant, and the terms of the first order
being absent since the equilibrium value of V is stationary. The
coefficients crr, crs are called coefficients of stability. We may
further treat the coefficients of inertia arr, ars of § 22 (1) as
constants. The Lagrangian equations of motion are then of the
type

a1rq̈1 + a2rq̈2 + ... + anrq̈n + c1rq1 + c2rq2 + ... + cnrqn = Qr,

(3)

where Qr now stands for a component of extraneous force. In a
free oscillation we have Q1, Q2, ... Qn = 0, and if we assume

qr = Ar eiσt,

(4)

we obtain n equations of the type

(c1r − σ2a1r) A1 + (c2r − σ2a2r) A2 + ... + (cnr − σ2anr) An = 0.

(5)



Eliminating the n − 1 ratios A1 : A2 : ... : An we obtain the
determinantal equation

Δ (σ2) = 0,

(6)

where


	Δ(σ2) = 	c11 − σ2a11, 	c21 − σ2a21, 	..., 	Cn1 − σ2anl

	  	c12 − σ2a12, 	c22 − σ2a22, 	..., 	Cn2 − σ2an2

	  	. 	. 	... 	.

	  	. 	. 	... 	.

	  	. 	. 	... 	.

	  	c1n − σ2a1n, 	c2n − σ2a2n, 	..., 	Cnn − σ2ann



(7)

The quadratic expression for T is essentially positive, and the
same holds with regard to V in virtue of the assumed stability.
It may be shown algebraically that under these conditions the
n roots of the above equation in σ2 are all real and positive. For
any particular root, the equations (5) determine the ratios of
the quantities A1, A2, ... An, the absolute values being alone
arbitrary; these quantities are in fact proportional to the minors
of any one row in the determinate Δ(σ2). By combining the
solutions corresponding to a pair of equal and opposite values
of σ we obtain a solution in real form:

qr = Car cos (σt + ε),

(8)
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where a1, a2 ... ar are a determinate series of quantities having
to one another the above-mentioned ratios, whilst the constants
C, ε are arbitrary. This solution, taken by itself, represents a
motion in which each particle of the system (since
its displacements parallel to Cartesian co-ordinate
axes are linear functions of the q’s) executes a simple
vibration of period 2π/σ. The amplitudes of oscillation
of the various particles have definite ratios
to one another, and the phases are in agreement,
the absolute amplitude (depending on C) and the
phase-constant (ε) being alone arbitrary. A
vibration of this character is called a normal mode
of vibration of the system; the number n of such
modes is equal to that of the degrees of freedom
possessed by the system. These statements require
some modification when two or more of the roots
of the equation (6) are equal. In the case of a
multiple root the minors of Δ(σ2) all vanish, and
the basis for the determination of the quantities ar
disappears. Two or more normal modes then
become to some extent indeterminate, and
elliptic vibrations of the individual particles are possible. An
example is furnished by the spherical pendulum (§ 13).


As an example of the method of determination of the normal modes
we may take the “double pendulum.” A mass M hangs from a
fixed point by a string of length a, and a second mass m hangs from
M by a string of length b. For simplicity we will suppose that the
motion is confined to one vertical plane. If θ, φ be the inclinations
of the two strings to the vertical, we have, approximately,


	2T = Ma2θ̇2 + m (aθ̇ + bψ̇)2

	2V = Mgaθ2 + mg (aθ2 + bψ2).



(9)

The equations (3) take the forms


	aθ ̈ + μbφ̈ + gθ = 0,

	aθ ̈ + bφ̈ + gφ = 0.



(10)

where μ = m/(M + m). Hence


	(σ2 − g/a) aθ + μσ2bφ = 0,

	σ2aθ + (σ2 − g/b) bφ = 0.



(11)

The frequency equation is therefore

(σ2 − g/a) (σ2 − g/b) − μσ4 = 0.

(12)

The roots of this quadratic in σ2 are easily seen to be real and
positive. If M be large compared with m, μ is small, and the roots
are g/a and g/b, approximately. In the normal mode corresponding
to the former root, M swings almost like the bob of a simple pendulum
of length a, being comparatively uninfluenced by the presence of m,
whilst m executes a “forced” vibration (§ 12) of the corresponding
period. In the second mode, M is nearly at rest [as appears from the
second of equations (11)], whilst m swings almost like the bob of a
simple pendulum of length b. Whatever the ratio M/m, the two
values of σ2 can never be exactly equal, but they are approximately
equal if a, b are nearly equal and μ is very small. A curious phenomenon
is then to be observed; the motion of each particle, being
made up (in general) of two superposed simple vibrations of nearly
equal period, is seen to fluctuate greatly in extent, and if the amplitudes
be equal we have periods of approximate rest, as in the case of
“beats” in acoustics. The vibration then appears to be transferred
alternately from m to M at regular intervals. If, on the other hand,
M is small compared with m, μ is nearly equal to unity, and the roots
of (12) are σ2 = g/(a + b) and σ2 = mg/M·(a + b)/ab, approximately.
The former root makes θ = φ, nearly; in the corresponding normal
mode m oscillates like the bob of a simple pendulum of length a + b.
In the second mode aθ + bφ = 0, nearly, so that m is approximately
at rest. The oscillation of M then resembles that of a particle at a
distance a from one end of a string of length a + b fixed at the ends
and subject to a tension mg.



The motion of the system consequent on arbitrary initial
conditions may be obtained by superposition of the n normal
modes with suitable amplitudes and phases. We have then

qr = αrθ + αr′θ′ + αr″θ″ + ...,

(13)

where

θ = C cos (σt + ε),   θ′ = C′ cos (σ′t + ε),   θ″ = C″ cos (σ″t + ε), ...

(14)

provided σ2, σ′2, σ″2, ... are the n roots of (6). The coefficients
of θ, θ′, θ″, ... in (13) satisfy the conjugate or orthogonal
relations

a11α1α1′ + a22α2α2′ + ... + a12 (α1α2′ + α2α1′) + ... = 0,

(15)

c11α1α1′ + c22α2α2′ + ... + c12 (α1α2′ + α2α1′) + ... = 0,

(16)

provided the symbols αr, αr′ correspond to two distinct roots
σ2, σ′2 of (6). To prove these relations, we replace the symbols
A1, A2, ... An in (5) by α1, α2, ... αn respectively, multiply
the resulting equations by a′1, a′2, ... a′n, in order, and add.
The result, owing to its symmetry, must still hold if we
interchange accented and unaccented Greek letters, and by
comparison we deduce (15) and (16), provided σ2 and σ′2 are
unequal. The actual determination of C, C′, C″, ... and
ε, ε′, ε″, ... in terms of the initial conditions is as follows. If
we write

C cos ε = H,   −C sin ε = K,

(17)

we must have


	αrH + αr′H′ + αr″H″ + ... 	= [qr]0,

	σαrH + σ′αr′H′ + σ″αr″H″ + ... 	= [q̇r]0,



(18)

where the zero suffix indicates initial values. These equations
can be at once solved for H, H′, H″, ... and K, K′, K″, ... by
means of the orthogonal relations (15).

By a suitable choice of the generalized co-ordinates it is possible
to reduce T and V simultaneously to sums of squares. The
transformation is in fact effected by the assumption (13), in virtue
of the relations (15) (16), and we may write

2T = aθ̇2 + a′θ̇′2 + a″θ̇″2 + ...,

2V = cθ2 + c′θ′2 + c″θ″2 + ....

(19)

The new co-ordinates θ, θ′, θ″ ... are called the normal co-ordinates
of the system; in a normal mode of vibration one of these
varies alone. The physical characteristics of a normal mode are
that an impulse of a particular normal type generates an initial
velocity of that type only, and that a constant extraneous force
of a particular normal type maintains a displacement of that type
only. The normal modes are further distinguished by an important
“stationary” property, as regards the frequency. If we
imagine the system reduced by frictionless constraints to one
degree of freedom, so that the co-ordinates θ, θ′, θ″, ... have
prescribed ratios to one another, we have, from (19),


	σ2 = 	 cθ2 + c′θ′2 = c″θ″2 + ...
	,

	aθ2 + a′θ′2 + a″θ″2 + ...


(20)

This shows that the value of σ2 for the constrained mode is intermediate
to the greatest and least of the values c/a, c′/a′, c″/a″, ...
proper to the several normal modes. Also that if the constrained
mode differs little from a normal mode of free vibration (e.g. if
θ′, θ″, ... are small compared with θ), the change in the frequency
is of the second order. This property can often be utilized to
estimate the frequency of the gravest normal mode of a system,
by means of an assumed approximate type, when the exact determination
would be difficult. It also appears that an estimate
thus obtained is necessarily too high.

From another point of view it is easily recognized that the
equations (5) are exactly those to which we are led in the ordinary
process of finding the stationary values of the function


	V (q1, q2, ... qn)
	,

	T (q1, q2, ... qn)


where the denominator stands for the same homogeneous
quadratic function of the q’s that T is for the q̇’s. It is easy to
construct in this connexion a proof that the n values of σ2 are
all real and positive.




The case of three degrees of freedom is instructive on account of
the geometrical analogies. With a view to these we may write


	2T = aẋ2 + bẏ2 + cż2 + 2fẏż + 2gżẋ + 2hẋẏ,

	2V = Ax2 + By2 + Cz2 + 2Fyz + 2Gzx + 2Hxy.



(21)

It is obvious that the ratio


	V (x, y, z)


	T (x, y, z)


(22)

must have a least value, which is moreover positive, since the
numerator and denominator are both essentially positive. Denoting
this value by σ12, we have


	Ax1 + Hy1 + Gz1 = σ12 (ax1 + hy1 + ∂gz1),

	Hx1 + By1 + Fz1 = σ12 (hx1 + by1 + fz1),

	Gx1 + Fy1 + Cz1 = σ12 (gx1 + fy1 + cz1),



(23)

provided x1 : y1 : z1 be the corresponding values of the ratios x:y:z.
Again, the expression (22) will also have a least value when the ratios
x : y : z are subject to the condition


	x1 	∂V 
	+ y1 	∂V 
	+ z1 	∂V 
	= 0;

	∂x 	∂y
	∂z


(24)

and if this be denoted by σ22 we have a second system of equations
similar to (23). The remaining value σ22 is the value of (22)
when x : y : z arc chosen so as to satisfy (24) and


	x2 	∂V 
	+ y2 	∂V 
	+ z2 	∂V 
	= 0;

	∂x 	∂y
	∂z


(25)

The problem is identical with that of finding the common conjugate
diameters of the ellipsoids T(x, y, z) = const., V(x, y, z) = const.
If in (21) we imagine that x, y, z denote infinitesimal rotations of a
solid free to turn about a fixed point in a given field of force, it appears
that the three normal modes consist each of a rotation about
one of the three diameters aforesaid, and that the values of σ are
proportional to the ratios of the lengths of corresponding diameters
of the two quadrics.



We proceed to the forced vibrations of the system. The typical
case is where the extraneous forces are of the simple-harmonic
type cos (σt + ε); the most general law of variation with time can
be derived from this by superposition, in virtue of Fourier’s
theorem. Analytically, it is convenient to put Qr, equal to eiσt
multiplied by a complex coefficient; owing to the linearity of the
equations the factor eiσt will run through them all, and need not
always be exhibited. For a system of one degree of freedom we
have

aq̈ + cq = Q,

(26)

and therefore on the present supposition as to the nature of Q


	q = 	Q
	.

	 c − σ2a


(27)

This solution has been discussed to some extent in § 12, in connexion
with the forced oscillations of a pendulum. We may note
further that when σ is small the displacement q has the “equilibrium
value” Q/c, the same as would be produced by a steady
force equal to the instantaneous value of the actual force, the
inertia of the system being inoperative. On the other hand,
when σ2 is great q tends to the value −Q/σ2a, the same as if
the potential energy were ignored. When there are n degrees
of freedom we have from 

(3)

(c1r − σ2a2r) q1 + (c22r − σ2a2r) q2 + ... + (cnr − σ2anr) qn = Qr,

(28)

and therefore

Δ(σ2) · qr = a1rQ1 + a2rQ2 + ... + anrQn,

(29)

where a1r, a2r, ... anr are the minors of the rth row of the
determinant (7). Every particle of the system executes in
general a simple vibration of the imposed period 2π/σ, and all
the particles pass simultaneously through their equilibrium
positions. The amplitude becomes very great when σ2 approximates
to a root of (6), i.e. when the imposed period nearly coincides
with one of the free periods. Since ars = asr, the coefficient
of Qs in the expression for qr is identical with that of Qr in the
expression for qs. Various important “reciprocal theorems”
formulated by H. Helmholtz and Lord Rayleigh are founded
on this relation. Free vibrations must of course be superposed
on the forced vibrations given by (29) in order to obtain the
complete solution of the dynamical equations.

In practice the vibrations of a system are more or less affected
by dissipative forces. In order to obtain at all events a qualitative
representation of these it is usual to introduce into the
equations frictional terms proportional to the velocities. Thus
in the case of one degree of freedom we have, in place of (26),

aq̈ + bq̇ + cq = Q,

(30)

where a, b, c are positive. The solution of this has been sufficiently
discussed in § 12. In the case of multiple freedom, the
equations of small motion when modified by the introduction
of terms proportional to the velocities are of the type


	d
	  	∂T
	+ B1rq̇1 + B2rq̇2 + ... + Bnrq̇n + 	∂V
	= Qr.

	dt 	∂q̇r
	∂qr


(31)

If we put

brs = bsr = 1⁄2 (Brs + Bsr),   βrs = −βsr = 1⁄2 (Brs − Bsr),

(32)

this may be written


	d
	  	∂T
	+ 	∂F
	+ β1rq̇1 + β2rq̇2 + ... + βnrq̇r + 	∂V
	= Qr,

	dt 	∂q̇r
	∂q̇r 	∂qr


(33)

provided

2F = b11q̇12 + b22q̇22 + ... + 2b12q̇1q̇2 + ...

(34)

The terms due to F in (33) are such as would arise from frictional
resistances proportional to the absolute velocities of the particles,
or to mutual forces of resistance proportional to the relative
velocities; they are therefore classed as frictional or dissipative
forces. The terms affected with the coefficients βrs on the other
hand are such as occur in “cyclic” systems with latent motion
(Dynamics, § Analytical); they are called the gyrostatic terms.
If we multiply (33) by q̇r and sum with respect to r from 1 to n,
we obtain, in virtue of the relations βrs = −βsr, βrr = 0,


	d
	(T + V) = 2F + Q1q̇1 + Q2q̇2 + ... + Qnq̇n.

	dt


(35)

This shows that mechanical energy is lost at the rate 2F per unit
time. The function F is therefore called by Lord Rayleigh the
dissipation function.

If we omit the gyrostatic terms, and write qr = Creλt, we find,
for a free vibration,

(a1rλ2 + b1rλ + c1r) C1 + (a2rλ2 + b2rλ + c2r) C2 + ...

+ (anrλ2 + bnrλ + cnr) Cn = 0.

(36)

This leads to a determinantal equation in λ whose 2n roots are
either real and negative, or complex with negative real parts, on
the present hypothesis that the functions T, V, F are all essentially
positive. If we combine the solutions corresponding to a
pair of conjugate complex roots, we obtain, in real form,

qr = Cαr e−t/τ cos (σt + ε − εr),

(37)

where σ, τ, αr, εr are determined by the constitution of the system,
whilst C, ε are arbitrary, and independent of r. The n
formulae of this type represent a normal mode of free vibration:
the individual particles revolve as a rule in elliptic orbits which
gradually contract according to the law indicated by the exponential
factor. If the friction be relatively small, all the normal
modes are of this character, and unless two or more values of σ
are nearly equal the elliptic orbits are very elongated. The
effect of friction on the period is moreover of the second order.

In a forced vibration of eiσt the variation of each co-ordinate
is simple-harmonic, with the prescribed period, but there is a
retardation of phase as compared with the force. If the friction
be small the amplitude becomes relatively very great if the
imposed period approximate to a free period. The validity of
the “reciprocal theorems” of Helmholtz and Lord Rayleigh,
already referred to, is not affected by frictional forces of the kind
here considered.


The most important applications of the theory of vibrations are
to the case of continuous systems such as strings, bars, membranes,
plates, columns of air, where the number of degrees of freedom is
infinite. The series of equations of the type (3) is then replaced by
a single linear partial differential equation, or by a set of two or three
such equations, according to the number of dependent variables.
These variables represent the whole assemblage of generalized
co-ordinates qr; they are continuous functions of the independent
variables x, y, z whose range of variation corresponds to that of the
index r, and of t. For example, in a one-dimensional system such
as a string or a bar, we have one dependent variable, and two independent
variables x and t. To determine the free oscillations
we assume a time factor eiσt; the equations then become linear
differential equations between the dependent variables of the problem
and the independent variables x, or x, y, or x, y, z as the case may be.
If the range of the independent variable or variables is unlimited,
the value of σ is at our disposal, and the solution gives us the laws
of wave-propagation (see Wave). If, on the other hand, the body
is finite, certain terminal conditions have to be satisfied. These
limit the admissible values of σ, which are in general determined

by a transcendental equation corresponding to the determinantal
equation (6).

Numerous examples of this procedure, and of the corresponding
treatment of forced oscillations, present themselves in theoretical
acoustics. It must suffice here to consider the small oscillations of a
chain hanging vertically from a fixed extremity. If x be measured
upwards from the lower end, the horizontal component of the tension
P at any point will be Pδy/δx, approximately, if y denote the lateral
displacement. Hence, forming the equation of motion of a mass-element,
ρδx, we have

ρ δx · ÿ = δ (P · ∂y/∂x).

(38)

Neglecting the vertical acceleration we have P = gρx, whence


	∂2y
	= g 	∂
	( x 	∂y
	).

	∂t2 	∂x
	∂x


(39)

Assuming that y varies as eiσt we have


	∂
	( x 	∂y
	) + ky = 0.

	∂x 	∂x


(40)

provided k = σ2/g. The solution of (40) which is finite for x = 0
is readily obtained in the form of a series, thus


	y = C ( 1 − 	kx
	+ 	k2x2
	− ... ) = CJ0(z),

	12 	1222


(41)

in the notation of Bessel’s functions, if z2 = 4kx. Since y must vanish
at the upper end (x = l), the admissible values of σ are determined by

σ2 = gz2/4l,   J0(z) = 0.

(42)

The function J0(z) has been tabulated; its lower roots are given by

z/π= .7655, 1.7571, 2.7546,...,

approximately, where the numbers tend to the form s − 1⁄4. The
frequency of the gravest mode is to that of a uniform bar in the ratio
.9815 That this ratio should be less than unity agrees with the
theory of “constrained types” already given. In the higher normal
modes there are nodes or points of rest (y = 0); thus in the second
mode there is a node at a distance .190l from the lower end.
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(H. Lb.)

II.—Applied Mechanics1

§ 1. The practical application of mechanics may be divided
into two classes, according as the assemblages of material
objects to which they relate are intended to remain fixed or
to move relatively to each other—the former class being comprehended
under the term “Theory of Structures” and the
latter under the term “Theory of Machines.”

PART I.—OUTLINE OF THE THEORY OF STRUCTURES


§ 2. Support of Structures.—Every structure, as a whole, is maintained
in equilibrium by the joint action of its own weight, of the
external load or pressure applied to it from without and tending to
displace it, and of the resistance of the material which supports it.
A structure is supported either by resting on the solid crust of the
earth, as buildings do, or by floating in a fluid, as ships do in water
and balloons in air. The principles of the support of a floating
structure form an important part of Hydromechanics (q.v.). The
principles of the support, as a whole, of a structure resting on the
land, are so far identical with those which regulate the equilibrium
and stability of the several parts of that structure that the only
principle which seems to require special mention here is one which
comprehends in one statement the power both of liquids and of
loose earth to support structures. This was first demonstrated in
a paper “On the Stability of Loose Earth,” read to the Royal
Society on the 19th of June 1856 (Phil. Trans. 1856), as follows:—

Let E represent the weight of the portion of a horizontal stratum
of earth which is displaced by the foundation of a structure, S the
utmost weight of that structure consistently with the power of the
earth to resist displacement, φ the angle of repose of the earth; then


	S
	= ( 	1 + sin φ
	)2.

	E 	1 − sin φ


To apply this to liquids φ must be made zero, and then S/E = 1,
as is well known. For a proof of this expression see Rankine’s
Applied Mechanics, 17th ed., p. 219.

§ 3. Composition of a Structure, and Connexion of its Pieces.—A
structure is composed of pieces,—such as the stones of a building
in masonry, the beams of a timber framework, the bars, plates
and bolts of an iron bridge. Those pieces are connected at their
joints or surfaces of mutual contact, either by simple pressure and
friction (as in masonry with moist mortar or without mortar), by
pressure and adhesion (as in masonry with cement or with hardened
mortar, and timber with glue), or by the resistance of fastenings
of different kinds, whether made by means of the form of the joint
(as dovetails, notches, mortices and tenons) or by separate fastening
pieces (as trenails, pins, spikes, nails, holdfasts, screws, bolts, rivets,
hoops, straps and sockets.)

§ 4. Stability, Stiffness and Strength.—A structure may be damaged
or destroyed in three ways:—first, by displacement of its pieces
from their proper positions relatively to each other or to the
earth; secondly by disfigurement of one or more of those pieces,
owing to their being unable to preserve their proper shapes under
the pressures to which they are subjected; thirdly, by breaking
of one or more of those pieces. The power of resisting displacement
constitutes stability, the power of each piece to resist disfigurement
is its stiffness; and its power to resist breaking, its strength.

§ 5. Conditions of Stability.—The principles of the stability of a
structure can be to a certain extent investigated independently of
the stiffness and strength, by assuming, in the first instance, that
each piece has strength sufficient to be safe against being broken,
and stiffness sufficient to prevent its being disfigured to an extent
inconsistent with the purposes of the structure, by the greatest forces
which are to be applied to it. The condition that each piece of the
structure is to be maintained in equilibrium by having its gross load,
consisting of its own weight and of the external pressure applied to
it, balanced by the resistances or pressures exerted between it and
the contiguous pieces, furnishes the means of determining the magnitude,
position and direction of the resistances required at each joint
in order to produce equilibrium; and the conditions of stability are,
first, that the position, and, secondly, that the direction, of the resistance
required at each joint shall, under all the variations to which
the load is subject, be such as the joint is capable of exerting—conditions
which are fulfilled by suitably adjusting the figures and
positions of the joints, and the ratios of the gross loads of the pieces.
As for the magnitude of the resistance, it is limited by conditions,
not of stability, but of strength and stiffness.

§ 6. Principle of Least Resistance.—Where more than one system
of resistances are alike capable of balancing the same system of loads
applied to a given structure, the smallest of those alternative systems,
as was demonstrated by the Rev. Henry Moseley in his Mechanics of
Engineering and Architecture, is that which will actually be exerted—because

the resistances to displacement are the effect of a strained
state of the pieces, which strained state is the effect of the load,
and when the load is applied the strained state and the resistances
produced by it increase until the resistances acquire just those magnitudes
which are sufficient to balance the load, after which they
increase no further.

This principle of least resistance renders determinate many
problems in the statics of structures which were formerly considered
indeterminate.

§ 7. Relations between Polygons of Loads and of Resistances.—In a
structure in which each piece is supported at two joints only, the
well-known laws of statics show that the directions of the gross load
on each piece and of the two resistances by which it is supported
must lie in one plane, must either be parallel or meet in one point,
and must bear to each other, if not parallel, the proportions of the
sides of a triangle respectively parallel to their directions, and, if
parallel, such proportions that each of the three forces shall be
proportional to the distance between the other two,—all the three
distances being measured along one direction.


	

	Fig. 86.


Considering, in the first place, the case in which the load and the
two resistances by which each piece is balanced meet in one point,
which may be called the centre of load, there will be as many such
points of intersection, or centres of load, as there are pieces in the
structure; and the directions and positions of the resistances or mutual
pressures exerted between the pieces will be represented by the sides
of a polygon joining
those points, as in fig.
86 where P1, P2, P3,
P4 represent the centres
of load in a structure
of four pieces,
and the sides of the
polygon of resistances
P1 P2 P3 P4 represent
respectively the directions
and positions
of the resistances exerted
at the joints.
Further, at any one of the centres of load let PL represent the
magnitude and direction of the gross load, and Pa, Pb the two resistances
by which the piece to which that load is applied is supported;
then will those three lines be respectively the diagonal and sides of
a parallelogram; or, what is the same thing, they will be equal to
the three sides of a triangle; and they must be in the same plane,
although the sides of the polygon of resistances may be in different
planes.


	

	Fig. 87.


According to a well-known principle of statics, because the loads
or external pressures P1L1, &c., balance each other, they must be
proportional to the sides of a closed polygon
drawn respectively parallel to their directions.
In fig. 87 construct such a polygon of loads by
drawing the lines L1, &c., parallel and proportional
to, and joined end to end in the order
of, the gross loads on the pieces of the structure.
Then from the proportionality and parallelism
of the load and the two resistances applied
to each piece of the structure to the three
sides of a triangle, there results the following
theorem (originally due to Rankine):—

If from the angles of the polygon of loads there
be drawn lines (R1, R2, &c.), each of which is
parallel to the resistance (as P1P2, &c.) exerted
at the joint between the pieces to which the two
loads represented by the contiguous sides of the
polygon of loads (such as L1, L2, &c.) are applied; then will all those
lines meet in one point (O), and their lengths, measured from that point
to the angles of the polygon, will represent the magnitudes of the resistances
to which they are respectively parallel.

When the load on one of the pieces is parallel to the resistances
which balance it, the polygon of resistances ceases to be closed, two
of the sides becoming parallel to each other and to the load in
question, and extending indefinitely. In the polygon of loads the
direction of a load sustained by parallel resistances traverses the
point O.2

§ 8. How the Earth’s Resistance is to be treated.... When the pressure
exerted by a structure on the earth (to which the earth’s resistance
is equal and opposite) consists either of one pressure, which is necessarily
the resultant of the weight of the structure and of all the other
forces applied to it, or of two or more parallel vertical forces, whose
amount can be determined at the outset of the investigation, the
resistance of the earth can be treated as one or more upward loads
applied to the structure. But in other cases the earth is to be treated
as one of the pieces of the structure, loaded with a force equal and
opposite in direction and position to the resultant of the weight of
the structure and of the other pressures applied to it.

§ 9. Partial Polygons of Resistance.—In a structure in which there
are pieces supported at more than two joints, let a polygon be constructed
of lines connecting the centres of load of any continuous
series of pieces. This may be called a partial polygon of resistances.
In considering its properties, the load at each centre of load is to be
held to include the resistances of those joints which are not comprehended
in the partial polygon of resistances, to which the theorem
of § 7 will then apply in every respect. By constructing several
partial polygons, and computing the relations between the loads
and resistances which are determined by the application of that
theorem to each of them, with the aid, if necessary, of Moseley’s
principle of the least resistance, the whole of the relations amongst
the loads and resistances may be found.

§ 10. Line of Pressures—Centres and Line of Resistance.—The line
of pressures is a line to which the directions of all the resistances in
one polygon are tangents. The centre of resistance at any joint is
the point where the line representing the total resistance exerted at
that joint intersects the joint. The line of resistance is a line traversing
all the centres of resistance of a series of joints,—its form, in
the positions intermediate between the actual joints of the structure,
being determined by supposing the pieces and their loads to be
subdivided by the introduction of intermediate joints ad infinitum,
and finding the continuous line, curved or straight, in which the
intermediate centres of resistance are all situated, however great
their number. The difference between the line of resistance and the
line of pressures was first pointed out by Moseley.


	

	Fig. 88.


§ 11.* The principles of the two preceding sections may be illustrated
by the consideration of a particular case of a buttress of blocks
forming a continuous series
of pieces (fig. 88), where aa,
bb, cc, dd represent plane
joints. Let the centre of
pressure C at the first joint
aa be known, and also the
pressure P acting at C in
direction and magnitude.
Find R1 the resultant of this
pressure, the weight of the
block aabb acting through its
centre of gravity, and any
other external force which
may be acting on the block,
and produce its line of action
to cut the joint bb in C1. C1
is then the centre of pressure
for the joint bb, and R1 is the
total force acting there. Repeating
this process for each
block in succession there will
be found the centres of pressure
C2, C3, &c., and also the
resultant pressures R2, R3,
&c., acting at these respective
centres. The centres of pressure at the joints are also called
centres of resistance, and the curve passing through these points is
called a line of resistance. Let all the resultants acting at the several
centres of resistance be produced until they cut one another in a
series of points so as to form an unclosed polygon. This polygon
is the partial polygon of resistance. A curve tangential to all the
sides of the polygon is the line of pressures.

§ 12. Stability of Position, and Stability of Friction.—The resistances
at the several joints having been determined by the principles
set forth in §§ 6, 7, 8, 9 and 10, not only under the ordinary load of
the structure, but under all the variations to which the load is subject
as to amount and distribution, the joints are now to be placed and
shaped so that the pieces shall not suffer relative displacement
under any of those loads. The relative displacement of the two
pieces which abut against each other at a joint may take place either

by turning or by sliding. Safety against displacement by turning
is called stability of position; safety against displacement by sliding,
stability of friction.

§ 13. Condition of Stability of Position.—If the materials of a structure
were infinitely stiff and strong, stability of position at any joint
would be insured simply by making the centre of resistance fall
within the joint under all possible variations of load. In order to
allow for the finite stiffness and strength of materials, the least
distance of the centre of resistance inward from the nearest edge of
the joint is made to bear a definite proportion to the depth of the
joint measured in the same direction, which proportion is fixed,
sometimes empirically, sometimes by theoretical deduction from the
laws of the strength of materials. That least distance is called by
Moseley the modulus of stability. The following are some of the
ratios of the modulus of stability to the depth of the joint which occur
in practice:—


	Retaining walls, as designed by British engineers 	1 : 8

	Retaining walls, as designed by French engineers 	1 : 5

	Rectangular piers of bridges and other buildings, and arch-stones 	1 : 3

	Rectangular foundations, firm ground 	1 : 3

	Rectangular foundations, very soft ground 	1 : 2

	Rectangular foundations, intermediate kinds of ground 	1 : 3 to 1 : 2

	Thin, hollow towers (such as furnace chimneys exposed to high winds), square 	1 : 6

	Thin, hollow towers, circular 	1 : 4

	Frames of timber or metal, under their ordinary or average distribution of load 	1 : 3

	Frames of timber or metal, under the greatest irregularities of load 	1 : 3



In the case of the towers, the depth of the joint is to be understood
to mean the diameter of the tower.


	

	Fig. 89.


§ 14. Condition of Stability of Friction.—If the resistance to be
exerted at a joint is always perpendicular
to the surfaces which abut at and form
that joint, there is no tendency of the
pieces to be displaced by sliding. If the
resistance be oblique, let JK (fig. 89) be
the joint, C its centre of resistance, CR a
line representing the resistance, CN a
perpendicular to the joint at the centre of
resistance. The angle NCR is the obliquity
of the resistance. From R draw RP
parallel and RQ perpendicular to the
joint; then, by the principles of statics,
the component of the resistance normal
to the joint is—

CP = CR · cos PCR;

and the component tangential to the joint is—

CQ = CR · sin PCR = CP · tan PCR.

If the joint be provided either with projections and recesses, such as
mortises and tenons, or with fastenings, such as pins or bolts, so as
to resist displacement by sliding, the question of the utmost amount
of the tangential resistance CQ which it is capable of exerting
depends on the strength of such projections, recesses, or fastenings;
and belongs to the subject of strength, and not to that of stability.
In other cases the safety of the joint against displacement by sliding
depends on its power of exerting friction, and that power depends
on the law, known by experiment, that the friction between two
surfaces bears a constant ratio, depending on the nature of the
surfaces, to the force by which they are pressed together. In order
that the surfaces which abut at the joint JK may be pressed together,
the resistance required by the conditions of equilibrium CR, must be
a thrust and not a pull; and in that case the force by which the surfaces
are pressed together is equal and opposite to the normal component
CP of the resistance. The condition of stability of friction
is that the tangential component CQ of the resistance required shall
not exceed the friction due to the normal component; that is, that

CQ ≯ ƒ · CP,

where ƒ denotes the coefficient of friction for the surfaces in question.
The angle whose tangent is the coefficient of friction is called the
angle of repose, and is expressed symbolically by—

φ = tan −1 ƒ.

Now CQ = CP · tan PCR;

consequently the condition of stability of friction is fulfilled if the
angle PCR is not greater than φ; that is to say, if the obliquity of
the resistance required at the joint does not exceed the angle of repose;
and this condition ought to be fulfilled under all possible variations
of the load.

It is chiefly in masonry and earthwork that stability of friction is
relied on.

§ 15. Stability of Friction in Earth.—The grains of a mass of loose
earth are to be regarded as so many separate pieces abutting against
each other at joints in all possible positions, and depending for their
stability on friction. To determine whether a mass of earth is
stable at a given point, conceive that point to be traversed by planes
in all possible positions, and determine which position gives the
greatest obliquity to the total pressure exerted between the portions
of the mass which abut against each other at the plane. The
condition of stability is that this obliquity shall not exceed the
angle of repose of the earth. The consequences of this principle are
developed in a paper, “On the Stability of Loose Earth,” already
cited in § 2.

§ 16. Parallel Projections of Figures.—If any figure be referred to a
system of co-ordinates, rectangular or oblique, and if a second figure
be constructed by means of a second system of co-ordinates, rectangular
or oblique, and either agreeing with or differing from the first
system in rectangularity or obliquity, but so related to the co-ordinates
of the first figure that for each point in the first figure there
shall be a corresponding point in the second figure, the lengths
of whose co-ordinates shall bear respectively to the three corresponding
co-ordinates of the corresponding point in the first figure three
ratios which are the same for every pair of corresponding points in
the two figures, these corresponding figures are called parallel
projections of each other. The properties of parallel projections
of most importance to the subject of the present article are the
following:—

(1) A parallel projection of a straight line is a straight line.

(2) A parallel projection of a plane is a plane.

(3) A parallel projection of a straight line or a plane surface
divided in a given ratio is a straight line or a plane surface divided
in the same ratio.

(4) A parallel projection of a pair of equal and parallel straight
lines, or plain surfaces, is a pair of equal and parallel straight lines,
or plane surfaces; whence it follows

(5) That a parallel projection of a parallelogram is a parallelogram,
and

(6) That a parallel projection of a parallelepiped is a parallelepiped.

(7) A parallel projection of a pair of solids having a given ratio
is a pair of solids having the same ratio.

Though not essential for the purposes of the present article, the
following consequence will serve to illustrate the principle of parallel
projections:—

(8) A parallel projection of a curve, or of a surface of a given
algebraical order, is a curve or a surface of the same order.

For example, all ellipsoids referred to co-ordinates parallel to any
three conjugate diameters are parallel projections of each other and
of a sphere referred to rectangular co-ordinates.

§ 17. Parallel Projections of Systems of Forces.—If a balanced
system of forces be represented by a system of lines, then will every
parallel projection of that system of lines represent a balanced system
of forces.

For the condition of equilibrium of forces not parallel is that
they shall be represented in direction and magnitude by the sides
and diagonals of certain parallelograms, and of parallel forces
that they shall divide certain straight lines in certain ratios; and the
parallel projection of a parallelogram is a parallelogram, and that
of a straight line divided in a given ratio is a straight line divided in
the same ratio.

The resultant of a parallel projection of any system of forces is
the projection of their resultant; and the centre of gravity of a
parallel projection of a solid is the projection of the centre of gravity
of the first solid.

§ 18. Principle of the Transformation of Structures.—Here we have
the following theorem: If a structure of a given figure have stability
of position under a system of forces represented by a given system of
lines, then will any structure whose figure is a parallel projection
of that of the first structure have stability of position under a system
of forces represented by the corresponding projection of the first
system of lines.

For in the second structure the weights, external pressures, and
resistances will balance each other as in the first structure; the
weights of the pieces and all other parallel systems of forces will
have the same ratios as in the first structure; and the several
centres of resistance will divide the depths of the joints in the same
proportions as in the first structure.

If the first structure have stability of friction, the second structure
will have stability of friction also, so long as the effect of the
projection is not to increase the obliquity of the resistance at any
joint beyond the angle of repose.

The lines representing the forces in the second figure show their
relative directions and magnitudes. To find their absolute directions
and magnitudes, a vertical line is to be drawn in the first figure, of
such a length as to represent the weight of a particular portion of
the structure. Then will the projection of that line in the projected
figure indicate the vertical direction, and represent the weight of the
part of the second structure corresponding to the before-mentioned
portion of the first structure.

The foregoing “principle of the transformation of structures”
was first announced, though in a somewhat less comprehensive
form, to the Royal Society on the 6th of March 1856. It is useful
in practice, by enabling the engineer easily to deduce the conditions
of equilibrium and stability of structures of complex and unsymmetrical
figures from those of structures of simple and symmetrical
figures. By its aid, for example, the whole of the properties of

elliptical arches, whether square or skew, whether level or sloping
in their span, are at once deduced by projection from those of symmetrical
circular arches, and the properties of ellipsoidal and elliptic-conoidal
domes from those of hemispherical and circular-conoidal
domes; and the figures of arches fitted to resist the thrust of earth,
which is less horizontally than vertically in a certain given ratio,
can be deduced by a projection from those of arches fitted to resist
the thrust of a liquid, which is of equal intensity, horizontally and
vertically.

§ 19. Conditions of Stiffness and Strength.—After the arrangement
of the pieces of a structure and the size and figure of their joints or
surfaces of contact have been determined so as to fulfil the conditions
of stability,—conditions which depend mainly on the position and
direction of the resultant or total load on each piece, and the relative
magnitude of the loads on the different pieces—the dimensions of
each piece singly have to be adjusted so as to fulfil the conditions
of stiffness and strength—conditions which depend not only on the
absolute magnitude of the load on each piece, and of the resistances
by which it is balanced, but also on the mode of distribution of the
load over the piece, and of the resistances over the joints.

The effect of the pressures applied to a piece, consisting of the
load and the supporting resistances, is to force the piece into a state
of strain or disfigurement, which increases until the elasticity, or
resistance to strain, of the material causes it to exert a stress, or
effort to recover its figure, equal and opposite to the system of
applied pressures. The condition of stiffness is that the strain or
disfigurement shall not be greater than is consistent with the purposes
of the structure; and the condition of strength is that the stress
shall be within the limits of that which the material can bear with
safety against breaking. The ratio in which the utmost stress
before breaking exceeds the safe working stress is called the factor
of safety, and is determined empirically. It varies from three to
twelve for various materials and structures. (See Strength of
Materials.)

PART II. THEORY OF MACHINES

§ 20. Parts of a Machine: Frame and Mechanism.—The parts of
a machine may be distinguished into two principal divisions,—the
frame, or fixed parts, and the mechanism, or moving parts. The
frame is a structure which supports the pieces of the mechanism,
and to a certain extent determines the nature of their motions.

The form and arrangement of the pieces of the frame depend upon
the arrangement and the motions of the mechanism; the dimensions
of the pieces of the frame required in order to give it stability and
strength are determined from the pressures applied to it by means
of the mechanism. It appears therefore that in general the mechanism
is to be designed first and the frame afterwards, and that the
designing of the frame is regulated by the principles of the stability
of structures and of the strength and stiffness of materials,—care
being taken to adapt the frame to the most severe load which can
be thrown upon it at any period of the action of the mechanism.

Each independent piece of the mechanism also is a structure, and
its dimensions are to be adapted, according to the principles of the
strength and stiffness of materials, to the most severe load to which
it can be subjected during the action of the machine.

§ 21. Definition and Division of the Theory of Machines.—From
what has been said in the last section it appears that the department
of the art of designing machines which has reference to the
stability of the frame and to the stiffness and strength of the frame
and mechanism is a branch of the art of construction. It is therefore
to be separated from the theory of machines, properly speaking,
which has reference to the action of machines considered as moving.
In the action of a machine the following three things take place:—

Firstly, Some natural source of energy communicates motion and
force to a piece or pieces of the mechanism, called the receiver of
power or prime mover.

Secondly, The motion and force are transmitted from the prime
mover through the train of mechanism to the working piece or pieces,
and during that transmission the motion and force are modified
in amount and direction, so as to be rendered suitable for the
purpose to which they are to be applied.

Thirdly, The working piece or pieces by their motion, or by their
motion and force combined, produce some useful effect.

Such are the phenomena of the action of a machine, arranged in
the order of causation. But in studying or treating of the theory
of machines, the order of simplicity is the best; and in this order the
first branch of the subject is the modification of motion and force
by the train of mechanism; the next is the effect or purpose of the
machine; and the last, or most complex, is the action of the prime
mover.

The modification of motion and the modification of force take
place together, and are connected by certain laws; but in the study
of the theory of machines, as well as in that of pure mechanics,
much advantage has been gained in point of clearness and simplicity
by first considering alone the principles of the modification of motion,
which are founded upon what is now known as Kinematics, and afterwards
considering the principles of the combined modification of
motion and force, which are founded both on geometry and on the
laws of dynamics. The separation of kinematics from dynamics
is due mainly to G. Monge, Ampère and R. Willis.

The theory of machines in the present article will be considered
under the following heads:—


I. Pure Mechanism, or Applied Kinematics; being the theory
of machines considered simply as modifying motion.

II. Applied Dynamics; being the theory of machines considered
as modifying both motion and force.



Chap. I. On Pure Mechanism

§ 22. Division of the Subject.—Proceeding in the order of simplicity,
the subject of Pure Mechanism, or Applied Kinematics, may be thus
divided:—


Division 1.—Motion of a point.

Division 2.—Motion of the surface of a fluid.

Division 3.—Motion of a rigid solid.

Division 4.—Motions of a pair of connected pieces, or of an “elementary combination” in mechanism.

Division 5.—Motions of trains of pieces of mechanism.

Division 6.—Motions of sets of more than two connected pieces, or of “aggregate combinations.”



A point is the boundary of a line, which is the boundary of
a surface, which is the boundary of a volume. Points, lines and
surfaces have no independent existence, and consequently those
divisions of this chapter which relate to their motions are only
preliminary to the subsequent divisions, which relate to the motions
of bodies.

Division 1. Motion of a Point.

§ 23. Comparative Motion.—The comparative motion of two points
is the relation which exists between their motions, without having
regard to their absolute amounts. It consists of two elements,—the
velocity ratio, which is the ratio of any two magnitudes bearing
to each other the proportions of the respective velocities of the
two points at a given instant, and the directional relation, which
is the relation borne to each other by the respective directions of the
motions of the two points at the same given instant.

It is obvious that the motions of a pair of points may be varied
in any manner, whether by direct or by lateral deviation, and yet
that their comparative motion may remain constant, in consequence
of the deviations taking place in the same proportions, in the same
directions and at the same instants for both points.

Robert Willis (1800-1875) has the merit of having been the first
to simplify considerably the theory of pure mechanism, by pointing
out that that branch of mechanics relates wholly to comparative
motions.

The comparative motion of two points at a given instant is capable
of being completely expressed by one of Sir William Hamilton’s
Quaternions,—the “tensor” expressing the velocity ratio, and the
“versor” the directional relation.

Graphical methods of analysis founded on this way of representing
velocity and acceleration were developed by R. H. Smith in a paper
communicated to the Royal Society of Edinburgh in 1885, and
illustrations of the method will be found below.

Division 2. Motion of the Surface of a Fluid Mass.

§ 24. General Principle.—A mass of fluid is used in mechanism
to transmit motion and force between two or more movable portions
(called pistons or plungers) of the solid envelope or vessel in which
the fluid is contained; and, when such transmission is the sole
action, or the only appreciable action of the fluid mass, its volume
is either absolutely constant, by reason of its temperature and
pressure being maintained constant, or not sensibly varied.

Let a represent the area of the section of a piston made by a plane
perpendicular to its direction of motion, and v its velocity, which
is to be considered as positive when outward, and negative when
inward. Then the variation of the cubic contents of the vessel
in a unit of time by reason of the motion of one piston is va. The
condition that the volume of the fluid mass shall remain unchanged
requires that there shall be more than one piston, and that the
velocities and areas of the pistons shall be connected by the
equation—

Σ · va = 0.

(1)

§ 25. Comparative Motion of Two Pistons.—If there be but two
pistons, whose areas are a1 and a2, and their velocities v1 and v2,
their comparative motion is expressed by the equation—

v2/v1 = −a1/a2;

(2)

that is to say, their velocities are opposite as to inwardness and
outwardness and inversely proportional to their areas.

§ 26. Applications: Hydraulic Press: Pneumatic Power-Transmitter.—In
the hydraulic press the vessel consists of two cylinders,
viz. the pump-barrel and the press-barrel, each having its piston,
and of a passage connecting them having a valve opening towards
the press-barrel. The action of the enclosed water in transmitting
motion takes place during the inward stroke of the pump-plunger,
when the above-mentioned valve is open; and at that time the press-plunger
moves outwards with a velocity which is less than the
inward velocity of the pump-plunger, in the same ratio that the
area of the pump-plunger is less than the area of the press-plunger.
(See Hydraulics.)

In the pneumatic power-transmitter the motion of one piston is

transmitted to another at a distance by means of a mass of air contained
in two cylinders and an intervening tube. When the pressure
and temperature of the air can be maintained constant, this
machine fulfils equation (2), like the hydraulic press. The amount
and effect of the variations of pressure and temperature undergone
by the air depend on the principles of the mechanical action of
heat, or Thermodynamics (q.v.), and are foreign to the subject of
pure mechanism.

Division 3. Motion of a Rigid Solid.

§ 27. Motions Classed.—In problems of mechanism, each solid
piece of the machine is supposed to be so stiff and strong as not to
undergo any sensible change of figure or dimensions by the forces
applied to it—a supposition which is realized in practice if the
machine is skilfully designed.

This being the case, the various possible motions of a rigid solid
body may all be classed under the following heads: (1) Shifting
or Translation; (2) Turning or Rotation; (3) Motions compounded
of Shifting and Turning.

The most common forms for the paths of the points of a piece of
mechanism, whose motion is simple shifting, are the straight line
and the circle.

Shifting in a straight line is regulated either by straight fixed
guides, in contact with which the moving piece slides, or by combinations
of link-work, called parallel motions, which will be described
in the sequel. Shifting in a straight line is usually reciprocating;
that is to say, the piece, after shifting through a certain distance,
returns to its original position by reversing its motion.

Circular shifting is regulated by attaching two or more points
of the shifting piece to ends of equal and parallel rotating cranks,
or by combinations of wheel-work to be afterwards described. As
an example of circular shifting may be cited the motion of the coupling
rod, by which the parallel and equal cranks upon two or more
axles of a locomotive engine are connected and made to rotate
simultaneously. The coupling rod remains always parallel to itself,
and all its points describe equal and similar circles relatively to the
frame of the engine, and move in parallel directions with equal
velocities at the same instant.

§ 28. Rotation about a Fixed Axis: Lever, Wheel and Axle.—The
fixed axis of a turning body is a line fixed relatively to the body
and relatively to the fixed space in which the body turns. In
mechanism it is usually the central line either of a rotating shaft
or axle having journals, gudgeons, or pivots turning in fixed bearings,
or of a fixed spindle or dead centre round which a rotating
bush turns; but it may sometimes be entirely beyond the limits of
the turning body. For example, if a sliding piece moves in circular
fixed guides, that piece rotates about an ideal fixed axis traversing
the centre of those guides.

Let the angular velocity of the rotation be denoted by α = dθ/dt,
then the linear velocity of any point A at the distance r from the
axis is αr; and the path of that point is a circle of the radius r
described about the axis.

This is the principle of the modification of motion by the lever,
which consists of a rigid body turning about a fixed axis called a
fulcrum, and having two points at the same or different distances
from that axis, and in the same or different directions, one of which
receives motion and the other transmits motion, modified in direction
and velocity according to the above law.

In the wheel and axle, motion is received and transmitted by
two cylindrical surfaces of different radii described about their
common fixed axis of turning, their velocity-ratio being that of
their radii.
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§ 29. Velocity Ratio of Components of Motion.—As the distance
between any two points in a rigid body is invariable, the projections
of their velocities upon the line joining
them must be equal. Hence it follows
that, if A in fig. 90 be a point in a rigid
body CD, rotating round the fixed axis
F, the component of the velocity of A
in any direction AP parallel to the
plane of rotation is equal to the total
velocity of the point m, found by
letting fall Fm perpendicular to AP;
that is to say, is equal to

α · Fm.

Hence also the ratio of the components
of the velocities of two points
A and B in the directions AP and BW respectively, both in the
plane of rotation, is equal to the ratio of the perpendiculars Fm
and Fn.

§ 30. Instantaneous Axis of a Cylinder rolling on a Cylinder.—Let
a cylinder bbb, whose axis of figure is B and angular velocity γ, roll
on a fixed cylinder ααα, whose axis of figure is A, either outside (as
in fig. 91), when the rolling will be towards the same hand as the
rotation, or inside (as in fig. 92), when the rolling will be towards
the opposite hand; and at a given instant let T be the line of contact
of the two cylindrical surfaces, which is at their common
intersection with the plane AB traversing the two axes of figure.

The line T on the surface bbb has for the instant no velocity in
a direction perpendicular to AB; because for the instant it touches,
without sliding, the line T on the fixed surface aaa.

The line T on the surface bbb has also for the instant no velocity
in the plane AB; for it has just ceased to move towards the fixed
surface aaa, and is just about to begin to move away from that
surface.

The line of contact T, therefore, on the surface of the cylinder
bbb, is for the instant at rest, and is the “instantaneous axis”
about which the cylinder bbb turns, together with any body rigidly
attached to that cylinder.
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To find, then, the direction and velocity at the given instant of
any point P, either in or rigidly attached to the rolling cylinder T,
draw the plane PT; the direction of motion of P will be perpendicular
to that plane, and towards the right or left hand according
to the direction of the rotation of bbb; and the velocity of P will be

vP = γ·PT,

(3)

PT denoting the perpendicular distance of P from T. The path
of P is a curve of the kind called epitrochoids. If P is in the
circumference of bbb, that path becomes an epicycloid.

The velocity of any point in the axis of figure B is

vB = γ·TB;

(4)

and the path of such a point is a circle described about A with the
radius AB, being for outside rolling the sum, and for inside rolling
the difference, of the radii of the cylinders.

Let α denote the angular velocity with which the plane of axes
AB rotates about the fixed axis A. Then it is evident that

vB = α·AB,

(5)

and consequently that

α = γ·TB/AB.


(6)

For internal rolling, as in fig. 92, AB is to be treated as negative,
which will give a negative value to α, indicating that in this case
the rotation of AB round A is contrary to that of the cylinder bbb.

The angular velocity of the rolling cylinder, relatively to the
plane of axes AB, is obviously given by the equation—


	β = γ − α

	whence β = γ · TA/AB



(7)

care being taken to attend to the sign of α, so that when that is
negative the arithmetical values of γ and α are to be added in order
to give that of β.

The whole of the foregoing reasonings are applicable, not merely
when aaa and bbb are actual cylinders, but also when they are the
osculating cylinders of a pair of cylindroidal surfaces of varying
curvature, A and B being the axes of curvature of the parts of those
surfaces which are in contact for the instant under consideration.
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§ 31. Instantaneous Axis of a Cone rolling on a Cone.—Let Oaa
(fig. 93) be a fixed cone, OA its axis, Obb a cone rolling on it, OB
the axis of the rolling cone, OT the line of contact of the two cones
at the instant under consideration. By reasoning similar to that
of § 30, it appears that OT is the instantaneous axis of rotation of
the rolling cone.

Let γ denote the total angular velocity of the rotation of the
cone B about the instantaneous axis, β its angular velocity about
the axis OB relatively to the plane AOB, and α the angular velocity
with which the plane AOB turns round the axis OA. It is required
to find the ratios of those angular velocities.

Solution.—In OT take any point E, from which draw EC parallel
to OA, and ED parallel to OB, so as to construct the parallelogram
OCED. Then

OD : OC : OE :: α : β : γ.

(8)

Or because of the proportionality of the sides of triangles to the
sines of the opposite angles,

sin TOB : sin TOA : sin AOB :: α : β : γ,

(8 A)



that is to say, the angular velocity about each axis is proportional
to the sine of the angle between the other two.

Demonstration.—From C draw CF perpendicular to OA, and CG
perpendicular to OE


	Then CF = 2 × 	area EC
	,

	CE



	and CG = 2 × 	area ECO
	;

	OE


∴ CG : CF :: CE = OD : OE.

Let vc denote the linear velocity of the point C. Then

vc = α · CF = γ · CG

∴ γ : α :: CF : CG :: OE : OD,

which is one part of the solution above stated. From E draw EH
perpendicular to OB, and EK to OA. Then it can be shown as
before that

EK : EH :: OC : OD.

Let vE be the linear velocity of the point E fixed in the plane of
axes AOB. Then

vK = α · EK.

Now, as the line of contact OT is for the instant at rest on the rolling
cone as well as on the fixed cone, the linear velocity of the point E
fixed to the plane AOB relatively to the rolling cone is the same
with its velocity relatively to the fixed cone. That is to say,

β · EH = vE = α · EK;

therefore

α : β :: EH : EK :: OD : OC,

which is the remainder of the solution.

The path of a point P in or attached to the rolling cone is a
spherical epitrochoid traced on the surface of a sphere of the radius
OP. From P draw PQ perpendicular to the instantaneous axis.
Then the motion of P is perpendicular to the plane OPQ, and its
velocity is

vP = γ · PQ.

(9)

The whole of the foregoing reasonings are applicable, not merely
when A and B are actual regular cones, but also when they are the
osculating regular cones of a pair of irregular conical surfaces,
having a common apex at O.

§ 32. Screw-like or Helical Motion.—Since any displacement in
a plane can be represented in general by a rotation, it follows that
the only combination of translation and rotation, in which a complex
movement which is not a mere rotation is produced, occurs when
there is a translation perpendicular to the plane and parallel to the
axis of rotation.
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Such a complex motion is called screw-like or helical motion; for
each point in the body describes a helix or screw round the axis of
rotation, fixed or instantaneous as the case may
be. To cause a body to move in this manner it
is usually made of a helical or screw-like figure,
and moves in a guide of a corresponding figure.
Helical motion and screws adapted to it are said
to be right- or left-handed according to the
appearance presented by the rotation to an observer
looking towards the direction of the
translation. Thus the screw G in fig. 94 is right-handed.

The translation of a body in helical motion is
called its advance. Let vx denote the velocity of
advance at a given instant, which of course is common to all the
particles of the body; α the angular velocity of the rotation at
the same instant; 2π = 6.2832 nearly, the circumference of a circle
of the radius unity. Then

T = 2π/α

(10)

is the time of one turn at the rate α; and

p = vxT = 2πvx/α

(11)

is the pitch or advance per turn—a length which expresses the
comparative motion of the translation and the rotation.

The pitch of a screw is the distance, measured parallel to its axis,
between two successive turns of the same thread or helical projection.

Let r denote the perpendicular distance of a point in a body
moving helically from the axis. Then

vr = αr 

(12)

is the component of the velocity of that point in a plane perpendicular
to the axis, and its total velocity is

v = √ {vx2 + vr2}.

(13)

The ratio of the two components of that velocity is

vx/vr = p/2πr = tan θ.

(14)

where θ denotes the angle made by the helical path of the point
with a plane perpendicular to the axis.

Division 4. Elementary Combinations in Mechanism

§ 33. Definitions.—An elementary combination in mechanism consists
of two pieces whose kinds of motion are determined by their
connexion with the frame, and their comparative motion by their
connexion with each other—that connexion being effected either
by direct contact of the pieces, or by a connecting piece, which is
not connected with the frame, and whose motion depends entirely
on the motions of the pieces which it connects.

The piece whose motion is the cause is called the driver; the
piece whose motion is the effect, the follower.

The connexion of each of those two pieces with the frame is in
general such as to determine the path of every point in it. In the
investigation, therefore, of the comparative motion of the driver
and follower, in an elementary combination, it is unnecessary to
consider relations of angular direction, which are already fixed by
the connexion of each piece with the frame; so that the inquiry is
confined to the determination of the velocity ratio, and of the
directional relation, so far only as it expresses the connexion between
forward and backward movements of the driver and follower. When
a continuous motion of the driver produces a continuous motion
of the follower, forward or backward, and a reciprocating motion
a motion reciprocating at the same instant, the directional relation
is said to be constant. When a continuous motion produces a
reciprocating motion, or vice versa, or when a reciprocating motion
produces a motion not reciprocating at the same instant, the
directional relation is said to be variable.

The line of action or of connexion of the driver and follower is a
line traversing a pair of points in the driver and follower respectively,
which are so connected that the component of their velocity relatively
to each other, resolved along the line of connexion, is null.
There may be several or an indefinite number of lines of connexion,
or there may be but one; and a line of connexion may connect
either the same pair of points or a succession of different pairs.

§ 34. General Principle.—From the definition of a line of connexion
it follows that the components of the velocities of a pair of connected
points along their line of connexion are equal. And from this, and
from the property of a rigid body, already stated in § 29, it follows,
that the components along a line of connexion of all the points traversed
by that line, whether in the driver or in the follower, are equal; and
consequently, that the velocities of any pair of points traversed by
a line of connexion are to each other inversely as the cosines, or directly
as the secants, of the angles made by the paths of those points with the
line of connexion.

The general principle stated above in different forms serves to
solve every problem in which—the mode of connexion of a pair of
pieces being given—it is required to find their comparative motion
at a given instant, or vice versa.
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§ 35. Application to a Pair of Shifting Pieces.—In fig. 95, let
P1P2 be the line of connexion of a pair of pieces, each of which has
a motion of translation or shifting.
Through any point T in that line
draw TV1, TV2, respectively parallel
to the simultaneous direction of
motion of the pieces; through any
other point A in the line of connexion
draw a plane perpendicular
to that line, cutting TV1, TV2 in
V1, V2; then, velocity of piece 1 :
velocity of piece 2 :: TV1 : TV2.
Also TA represents the equal components
of the velocities of the
pieces parallel to their line of connexion,
and the line V1V2 represents their velocity relatively to each
other.

§ 36. Application to a Pair of Turning Pieces.—Let α1, α2 be the
angular velocities of a pair of turning pieces; θ1, θ2 the angles
which their line of connexion makes with their respective planes of
rotation; r1, r2 the common perpendiculars let fall from the line
of connexion upon the respective axes of rotation of the pieces.
Then the equal components, along the line of connexion, of the
velocities of the points where those perpendiculars meet that line
are—

α1r1 cos θ1 = α2r2 cos θ2;

consequently, the comparative motion of the pieces is given by the
equation


	α2
	= 	r1 cos θ1
	.

	α1 	r2 cos θ2


(15)

§ 37. Application to a Shifting Piece and a Turning Piece.—Let a
shifting piece be connected with a turning piece, and at a given
instant let α1 be the angular velocity of the turning piece, r1 the
common perpendicular of its axis of rotation and the line of connexion,
θ1 the angle made by the line of connexion with the plane
of rotation, θ2 the angle made by the line of connexion with the
direction of motion of the shifting piece, v2 the linear velocity of
that piece. Then

α1r1 cos θ1 = v2 cos θ2;

(16)

which equation expresses the comparative motion of the two pieces.

§ 38. Classification of Elementary Combinations in Mechanism.—The
first systematic classification of elementary combinations in
mechanism was that founded by Monge, and fully developed by
Lanz and Bétancourt, which has been generally received, and has
been adopted in most treatises on applied mechanics. But that
classification is founded on the absolute instead of the comparative

motions of the pieces, and is, for that reason, defective, as Willis
pointed out in his admirable treatise On the Principles of Mechanism.

Willis’s classification is founded, in the first place, on comparative
motion, as expressed by velocity ratio and directional relation, and
in the second place, on the mode of connexion of the driver and
follower. He divides the elementary combinations in mechanism
into three classes, of which the characters are as follows:—

   Class A: Directional relation constant; velocity ratio constant.

   Class B: Directional relation constant; velocity ratio varying.

   Class C: Directional relation changing periodically; velocity
ratio constant or varying.

Each of those classes is subdivided by Willis into five divisions,
of which the characters are as follows:—


	Division 	A: 	Connexion 	by 	rolling contact.

	” 	B: 	” 	” 	sliding contact.

	” 	C: 	” 	” 	wrapping connectors.

	” 	D: 	” 	” 	link-work.

	” 	E: 	” 	” 	reduplication.



In the Reuleaux system of analysis of mechanisms the principle
of comparative motion is generalized, and mechanisms apparently
very diverse in character are shown to be founded on the same
sequence of elementary combinations forming a kinematic chain.
A short description of this system is given in § 80, but in the present
article the principle of Willis’s classification is followed mainly.
The arrangement is, however, modified by taking the mode of
connexion as the basis of the primary classification, and by removing
the subject of connexion by reduplication to the section of aggregate
combinations. This modified arrangement is adopted as being
better suited than the original arrangement to the limits of an
article in an encyclopaedia; but it is not disputed that the original
arrangement may be the best for a separate treatise.

§ 39. Rolling Contact: Smooth Wheels and Racks.—In order that
two pieces may move in rolling contact, it is necessary that each
pair of points in the two pieces which touch each other should at
the instant of contact be moving in the same direction with the
same velocity. In the case of two shifting pieces this would involve
equal and parallel velocities for all the points of each piece, so that
there could be no rolling, and, in fact, the two pieces would move
like one; hence, in the case of rolling contact, either one or both
of the pieces must rotate.

The direction of motion of a point in a turning piece being perpendicular
to a plane passing through its axis, the condition that
each pair of points in contact with each other must move in the
same direction leads to the following consequences:—

I. That, when both pieces rotate, their axes, and all their points
of contact, lie in the same plane.

II. That, when one piece rotates, and the other shifts, the axis of
the rotating piece, and all the points of contact, lie in a plane
perpendicular to the direction of motion of the shifting piece.

The condition that the velocity of each pair of points of contact
must be equal leads to the following consequences:—

III. That the angular velocities of a pair of turning pieces in
rolling contact must be inversely as the perpendicular distances of
any pair of points of contact from the respective axes.

IV. That the linear velocity of a shifting piece in rolling contact
with a turning piece is equal to the product of the angular velocity
of the turning piece by the perpendicular distance from its axis to
a pair of points of contact.

The line of contact is that line in which the points of contact are
all situated. Respecting this line, the above Principles III. and
IV. lead to the following conclusions:—

V. That for a pair of turning pieces with parallel axes, and for
a turning piece and a shifting piece, the line of contact is straight,
and parallel to the axes or axis; and hence that the rolling surfaces
are either plane or cylindrical (the term “cylindrical” including
all surfaces generated by the motion of a straight line parallel to
itself).

VI. That for a pair of turning pieces with intersecting axes the
line of contact is also straight, and traverses the point of intersection
of the axes; and hence that the rolling surfaces are conical,
with a common apex (the term “conical” including all surfaces
generated by the motion of a straight line which traverses a fixed
point).

Turning pieces in rolling contact are called smooth or toothless
wheels. Shifting pieces in rolling contact with turning pieces may
be called smooth or toothless racks.

VII. In a pair of pieces in rolling contact every straight line
traversing the line of contact is a line of connexion.

§ 40. Cylindrical Wheels and Smooth Racks.—In designing cylindrical
wheels and smooth racks, and determining their comparative
motion, it is sufficient to consider a section of the pair of pieces
made by a plane perpendicular to the axis or axes.

The points where axes intersect the plane of section are called
centres; the point where the line of contact intersects it, the point
of contact, or pitch-point; and the wheels are described as circular,
elliptical, &c., according to the forms of their sections made by that
plane.

When the point of contact of two wheels lies between their
centres, they are said to be in outside gearing; when beyond their
centres, in inside gearing, because the rolling surface of the larger
wheel must in this case be turned inward or towards its centre.

From Principle III. of § 39 it appears that the angular velocity-ratio
of a pair of wheels is the inverse ratio of the distances of the
point of contact from the centres respectively.
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For outside gearing that ratio is negative,
because the wheels turn contrary ways; for inside
gearing it is positive, because they turn the
same way.

If the velocity ratio is to be constant, as in
Willis’s Class A, the wheels must be circular;
and this is the most common form for wheels.

If the velocity ratio is to be variable, as in
Willis’s Class B, the figures of the wheels are a
pair of rolling curves, subject to the condition
that the distance between their poles (which are
the centres of rotation) shall be constant.

The following is the geometrical relation
which must exist between such a pair of
curves:—

Let C1, C2 (fig. 96) be the poles of a pair of
rolling curves; T1, T2 any pair of points of contact;
U1, U2 any other pair of points of contact.
Then, for every possible pair of points of contact, the two following
equations must be simultaneously fulfilled:—

Sum of radii, C1U1 + C2U2 = C1T1 + C2T2 = constant;

arc, T2U2 = T1U1.

(17)

A condition equivalent to the above, and necessarily connected
with it, is, that at each pair of points of contact the inclinations of
the curves to their radii-vectores shall be equal and contrary; or,
denoting by r1, r2 the radii-vectores at any given pair of points of
contact, and s the length of the equal arcs measured from a certain
fixed pair of points of contact—

dr2/ds = −dr1/ds;

(18)

which is the differential equation of a pair of rolling curves whose
poles are at a constant distance apart.

For full details as to rolling curves, see Willis’s work, already
mentioned, and Clerk Maxwell’s paper on Rolling Curves, Trans.
Roy. Soc. Edin., 1849.

A rack, to work with a circular wheel, must be straight. To work
with a wheel of any other figure, its section must be a rolling curve,
subject to the condition that the perpendicular distance from the
pole or centre of the wheel to a straight line parallel to the direction
of the motion of the rack shall be constant. Let r1 be the radius-vector
of a point of contact on the wheel, x2 the ordinate from the
straight line before mentioned to the corresponding point of contact
on the rack. Then

dx2/ds = −dr1/ds

(19)

is the differential equation of the pair of rolling curves.

To illustrate this subject, it may be mentioned that an ellipse
rotating about one focus rolls completely round in outside gearing
with an equal and similar ellipse also rotating about one focus, the
distance between the axes of rotation being equal to the major axis
of the ellipses, and the velocity ratio varying from (1 + eccentricity)/(1 − eccentricity)
to (1 − eccentricity)/(1 + eccentricity); an hyperbola rotating about its further focus
rolls in inside gearing, through a limited arc, with an equal and
similar hyperbola rotating about its nearer focus, the distance
between the axes of rotation being equal to the axis of the hyperbolas,
and the velocity ratio varying between (eccentricity + 1)/(eccentricity − 1) and
unity; and a parabola rotating about its focus rolls with an equal
and similar parabola, shifting parallel to its directrix.
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§ 41. Conical or Bevel and Disk Wheels.—From Principles III.
and VI. of § 39 it appears that the angular velocities of a pair of
wheels whose axes meet in a point are to each other inversely as
the sines of the angles which the axes of the wheels make with the
line of contact. Hence we have the following construction (figs. 97
and 98).—Let O be the apex or point of intersection of the two axes
OC1, OC2. The angular velocity ratio
being given, it is required to find the
line of contact. On OC1, OC2 take
lengths OA1, OA2, respectively proportional
to the angular velocities of
the pieces on whose axes they are
taken. Complete the parallelogram
OA1EA2; the diagonal OET will be the
line of contact required.

When the velocity ratio is variable,
the line of contact will shift its position
in the plane C1OC2, and the wheels will
be cones, with eccentric or irregular
bases. In every case which occurs in
practice, however, the velocity ratio is
constant; the line of contact is constant in position, and the rolling
surfaces of the wheels are regular circular cones (when they are
called bevel wheels); or one of a pair of wheels may have a flat disk

for its rolling surface, as W2 in fig. 98, in which case it is a disk
wheel. The rolling surfaces of actual wheels consist of frusta or
zones of the complete cones or disks, as shown by W1, W2 in
figs. 97 and 98.
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§ 42. Sliding Contact (lateral): Skew-Bevel Wheels.—An hyperboloid
of revolution is a surface resembling a sheaf or a dice box, generated
by the rotation of a straight
line round an axis from which
it is at a constant distance,
and to which it is inclined at
a constant angle. If two such
hyperboloids E, F, equal or
unequal, be placed in the
closest possible contact, as in
fig. 99, they will touch each
other along one of the generating
straight lines of each,
which will form their line of
contact, and will be inclined to the axes AG, BH in opposite
directions. The axes will not be parallel, nor will they intersect
each other.

The motion of two such hyperboloids, turning in contact with
each other, has hitherto been classed amongst cases of rolling
contact; but that classification is not
strictly correct, for, although the component
velocities of a pair of points of
contact in a direction at right angles
to the line of contact are equal, still,
as the axes are parallel neither to each
other nor to the line of contact, the
velocities of a pair of points of contact
have components along the line of
contact which are unequal, and their
difference constitutes a lateral sliding.

The directions and positions of the axes being given, and the
required angular velocity ratio, the following construction serves
to determine the line of contact, by whose rotation round the two
axes respectively the hyperboloids are generated:—

In fig. 100, let B1C1, B2C2 be the two axes; B1B2 their common
perpendicular. Through any point O in this common perpendicular
draw OA1 parallel to B1C1 and OA2
parallel to B2C2; make those lines proportional
to the angular velocities
about the axes to which they are
respectively parallel; complete the
parallelogram OA1EA2, and draw the
diagonal OE; divide B1B2 in D into
two parts, inversely proportional to
the angular velocities about the axes
which they respectively adjoin;
through D parallel to OE draw DT.
This will be the line of contact.

A pair of thin frusta of a pair of
hyperboloids are used in practice to
communicate motion between a pair
of axes neither parallel nor intersecting,
and are called skew-bevel wheels.

In skew-bevel wheels the properties
of a line of connexion are not possessed by every line traversing
the line of contact, but only by every line traversing the line of
contact at right angles.

If the velocity ratio to be communicated were variable, the point
D would alter its position, and the line DT its direction, at different
periods of the motion, and the wheels would be hyperboloids of an
eccentric or irregular cross-section; but forms of this kind are not
used in practice.

§ 43. Sliding Contact (circular): Grooved Wheels.—As the adhesion
or friction between a pair of smooth wheels is seldom sufficient to
prevent their slipping on each other, contrivances are used to
increase their mutual hold. One of those consists in forming the
rim of each wheel into a series of alternate ridges and grooves
parallel to the plane of rotation; it is applicable to cylindrical and
bevel wheels, but not to skew-bevel wheels. The comparative
motion of a pair of wheels so ridged and grooved is the same as
that of a pair of smooth wheels in rolling contact, whose cylindrical
or conical surfaces lie midway between the tops of the ridges and
bottoms of the grooves, and those ideal smooth surfaces are called
the pitch surfaces of the wheels.

The relative motion of the faces of contact of the ridges and
grooves is a rotatory sliding or grinding motion, about the line of
contact of the pitch-surfaces as an instantaneous axis.

Grooved wheels have hitherto been but little used.

§ 44. Sliding Contact (direct): Teeth of Wheels, their Number and
Pitch.—The ordinary method of connecting a pair of wheels, or a
wheel and a rack, and the only method which ensures the exact
maintenance of a given numerical velocity ratio, is by means of a
series of alternate ridges and hollows parallel or nearly parallel to
the successive lines of contact of the ideal smooth wheels whose
velocity ratio would be the same with that of the toothed wheels.
The ridges are called teeth; the hollows, spaces. The teeth of the
driver push those of the follower before them, and in so doing
sliding takes place between them in a direction across their lines
of contact.

The pitch-surfaces of a pair of toothed wheels are the ideal smooth
surfaces which would have the same comparative motion by rolling
contact that the actual wheels have by the sliding contact of their
teeth. The pitch-circles of a pair of circular toothed wheels are
sections of their pitch-surfaces, made for spur-wheels (that is, for
wheels whose axes are parallel) by a plane at right angles to the
axes, and for bevel wheels by a sphere described about the common
apex. For a pair of skew-bevel wheels the pitch-circles are a pair
of contiguous rectangular sections of the pitch-surfaces. The
pitch-point is the point of contact of the pitch-circles.

The pitch-surface of a wheel lies intermediate between the points
of the teeth and the bottoms of the hollows between them. That
part of the acting surface of a tooth which projects beyond the
pitch-surface is called the face; that part which lies within the
pitch-surface, the flank.

Teeth, when not otherwise specified, are understood to be made
in one piece with the wheel, the material being generally cast-iron,
brass or bronze. Separate teeth, fixed into mortises in the rim of
the wheel, are called cogs. A pinion is a small toothed wheel; a
trundle is a pinion with cylindrical staves for teeth.

The radius of the pitch-circle of a wheel is called the geometrical
radius; a circle touching the ends of the teeth is called the addendum
circle, and its radius the real radius; the difference between these
radii, being the projection of the teeth beyond the pitch-surface,
is called the addendum.

The distance, measured along the pitch-circle, from the face of
one tooth to the face of the next, is called the pitch. The pitch
and the number of teeth in wheels are regulated by the following
principles:—

I. In wheels which rotate continuously for one revolution or
more, it is obviously necessary that the pitch should be an aliquot
part of the circumference.

In wheels which reciprocate without performing a complete
revolution this condition is not necessary. Such wheels are called
sectors.

II. In order that a pair of wheels, or a wheel and a rack, may
work correctly together, it is in all cases essential that the pitch
should be the same in each.

III. Hence, in any pair of circular wheels which work together,
the numbers of teeth in a complete circumference are directly as
the radii and inversely as the angular velocities.

IV. Hence also, in any pair of circular wheels which rotate continuously
for one revolution or more, the ratio of the numbers of
teeth and its reciprocal the angular velocity ratio must be expressible
in whole numbers.

From this principle arise problems of a kind which will be referred
to in treating of Trains of Mechanism.

V. Let n, N be the respective numbers of teeth in a pair of
wheels, N being the greater. Let t, T be a pair of teeth in the
smaller and larger wheel respectively, which at a particular instant
work together. It is required to find, first, how many pairs of
teeth must pass the line of contact of the pitch-surfaces before t
and T work together again (let this number be called a); and,
secondly, with how many different teeth of the larger wheel the
tooth t will work at different times (let this number be called b);
thirdly, with how many different teeth of the smaller wheel the
tooth T will work at different times (let this be called c).

Case 1. If n is a divisor of N,

a = N; b = N/n; c = 1.

(20)

Case 2. If the greatest common divisor of N and n be d, a number
less than n, so that n = md, N = Md; then

a = mN = Mn = Mmd; b = M; c = m.

(21)

Case 3. If N and n be prime to each other,

a = nN; b = N; c = n.

(22)

It is considered desirable by millwrights, with a view to the
preservation of the uniformity of shape of the teeth of a pair of
wheels, that each given tooth in one wheel should work with as
many different teeth in the other wheel as possible. They therefore
study that the numbers of teeth in each pair of wheels which
work together shall either be prime to each other, or shall have
their greatest common divisor as small as is consistent with a
velocity ratio suited for the purposes of the machine.

§ 45. Sliding Contact: Forms of the Teeth of Spur-wheels and
Racks.—A line of connexion of two pieces in sliding contact is a
line perpendicular to their surfaces at a point where they touch.
Bearing this in mind, the principle of the comparative motion of a
pair of teeth belonging to a pair of spur-wheels, or to a spur-wheel
and a rack, is found by applying the principles stated generally in
§§ 36 and 37 to the case of parallel axes for a pair of spur-wheels, and
to the case of an axis perpendicular to the direction of shifting for a
wheel and a rack.

In fig. 101, let C1, C2 be the centres of a pair of spur-wheels;
B1IB1′, B2IB2′ portions of their pitch-circles, touching at I, the
pitch-point. Let the wheel 1 be the driver, and the wheel 2 the
follower.
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Let D1TB1A1, D2TB2A2 be the positions, at a given instant, of
the acting surfaces of a pair of teeth in the driver and follower
respectively, touching each other
at T; the line of connexion of
those teeth is P1P2, perpendicular
to their surfaces at T. Let
C1P1, C2P2 be perpendiculars let
fall from the centres of the
wheels on the line of contact.
Then, by § 36, the angular
velocity-ratio is

α2/α1 = C1P1/C2P2.

(23)

The following principles regulate
the forms of the teeth and
their relative motions:—

I. The angular velocity ratio
due to the sliding contact of
the teeth will be the same with
that due to the rolling contact
of the pitch-circles, if the line of
connexion of the teeth cuts the
line of centres at the pitch-point.

For, let P1P2 cut the line of
centres at I; then, by similar
triangles,

α1 : α2 :: C2P2 : C1P1 :: IC2 :: IC1;

(24)

which is also the angular velocity ratio due to the rolling contact
of the circles B1IB1′, B2IB2′.

This principle determines the forms of all teeth of spur-wheels.
It also determines the forms of the teeth of straight racks, if one
of the centres be removed, and a straight line EIE′, parallel to the
direction of motion of the rack, and perpendicular to C1IC2, be
substituted for a pitch-circle.

II. The component of the velocity of the point of contact of
the teeth T along the line of connexion is

α1 · C1P1 = α2 · C2P2.

(25)

III. The relative velocity perpendicular to P1P2 of the teeth at
their point of contact—that is, their velocity of sliding on each
other—is found by supposing one of the wheels, such as 1, to be
fixed, the line of centres C1C2 to rotate backwards round C1 with
the angular velocity α1, and the wheel 2 to rotate round C2 as before,
with the angular velocity α2 relatively to the line of centres C1C2,
so as to have the same motion as if its pitch-circle rolled on the
pitch-circle of the first wheel. Thus the relative motion of the
wheels is unchanged; but 1 is considered as fixed, and 2 has the
total motion, that is, a rotation about the instantaneous axis I,
with the angular velocity α1 + α2. Hence the velocity of sliding is
that due to this rotation about I, with the radius IT; that is to
say, its value is

(α1 + α2) · IT;

(26)

so that it is greater the farther the point of contact is from the line
of centres; and at the instant when that point passes the line of
centres, and coincides with the pitch-point, the velocity of sliding
is null, and the action of the teeth is, for the instant, that of rolling
contact.

IV. The path of contact is the line traversing the various positions
of the point T. If the line of connexion preserves always the same
position, the path of contact coincides with it, and is straight; in
other cases the path of contact is curved.

It is divided by the pitch-point I into two parts—the arc or line
of approach described by T in approaching the line of centres, and
the arc or line of recess described by T after having passed the line
of centres.

During the approach, the flank D1B1 of the driving tooth drives
the face D2B2 of the following tooth, and the teeth are sliding
towards each other. During the recess (in which the position of
the teeth is exemplified in the figure by curves marked with accented
letters), the face B1′A1′ of the driving tooth drives the flank B2′A2′
of the following tooth, and the teeth are sliding from each other.

The path of contact is bounded where the approach commences
by the addendum-circle of the follower, and where the recess terminates
by the addendum-circle of the driver. The length of the path
of contact should be such that there shall always be at least one
pair of teeth in contact; and it is better still to make it so long that
there shall always be at least two pairs of teeth in contact.

V. The obliquity of the action of the teeth is the angle EIT =
IC1, P1 = IC2P2.

In practice it is found desirable that the mean value of the
obliquity of action during the contact of teeth should not exceed
15°, nor the maximum value 30°.

It is unnecessary to give separate figures and demonstrations for
inside gearing. The only modification required in the formulae is,
that in equation (26) the difference of the angular velocities should
be substituted for their sum.

§ 46. Involute Teeth.—The simplest form of tooth which fulfils
the conditions of § 45 is obtained in the following manner (see fig.
102). Let C1, C2 be the centres of two wheels, B1IB1′, B2IB2′ their
pitch-circles, I the pitch-point; let the obliquity of action of the
teeth be constant, so that the same straight line P1IP2 shall represent
at once the constant line of connexion of teeth and the path of
contact. Draw C1P1, C2P2 perpendicular to P1IP2, and with those
lines as radii describe about the centres of the wheels the circles
D1D1′, D2D2′, called base-circles. It is evident that the radii of the
base-circles bear to each other the same proportions as the radii
of the pitch-circles, and also that

C1P1 = IC1 · cos obliquity

C2P2 = IC2 · cos obliquity.


(27)

(The obliquity which is found to answer best in practice is about
141⁄2°; its cosine is about 31/22, and its sine about 1⁄4. These values
though not absolutely exact, are
near enough to the truth for
practical purposes.)
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Suppose the base-circles to be a
pair of circular pulleys connected
by means of a cord whose course
from pulley to pulley is P1IP2.
As the line of connexion of those
pulleys is the same as that of the
proposed teeth, they will rotate
with the required velocity ratio.
Now, suppose a tracing point T
to be fixed to the cord, so as to
be carried along the path of contact
P1IP2, that point will trace
on a plane rotating along with the
wheel 1 part of the involute of the
base-circle D1D1′, and on a plane
rotating along with the wheel 2
part of the involute of the base-circle
D2D2′; and the two curves
so traced will always touch each
other in the required point of contact T, and will therefore fulfil
the condition required by Principle I. of § 45.

Consequently, one of the forms suitable for the teeth of wheels is
the involute of a circle; and the obliquity of the action of such
teeth is the angle whose cosine is the ratio of the radius of their
base-circle to that of the pitch-circle of the wheel.

All involute teeth of the same pitch work smoothly together.

To find the length of the path of contact on either side of the
pitch-point I, it is to be observed that the distance between the
fronts of two successive teeth, as measured along P1IP2, is less than
the pitch in the ratio of cos obliquity : I; and consequently that,
if distances equal to the pitch be marked off either way from I
towards P1 and P2 respectively, as the extremities of the path of
contact, and if, according to Principle IV. of § 45, the addendum-circles
be described through the points so found, there will always
be at least two pairs of teeth in action at once. In practice it
is usual to make the path of contact somewhat longer, viz. about
2.4 times the pitch; and with this length of path, and the obliquity
already mentioned of 141⁄2°, the addendum is about 3.1 of the pitch.

The teeth of a rack, to work correctly with wheels having involute
teeth, should have plane surfaces perpendicular to the line of connexion,
and consequently making with the direction of motion of
the rack angles equal to the complement of the obliquity of action.

§ 47. Teeth for a given Path of Contact: Sang’s Method.—In the
preceding section the form of the teeth is found by assuming a
figure for the path of contact, viz. the straight line. Any other
convenient figure may be assumed for the path of contact, and the
corresponding forms of the teeth found by determining what curves
a point T, moving along the assumed path of contact, will trace on
two disks rotating round the centres of the wheels with angular
velocities bearing that relation to the component velocity of T
along TI, which is given by Principle II. of § 45, and by equation (25).
This method of finding the forms of the teeth of wheels forms the
subject of an elaborate and most interesting treatise by Edward
Sang.

All wheels having teeth of the same pitch, traced from the same
path of contact, work correctly together, and are said to belong to
the same set.
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§ 48. Teeth traced by Rolling Curves.—If any curve R (fig. 103)
be rolled on the inside of the pitch-circle BB of a wheel, it appears,
from § 30, that the instantaneous
axis of the rolling
curve at any instant will
be at the point I, where it
touches the pitch-circle for
the moment, and that
consequently the line AT,
traced by a tracing-point
T, fixed to the rolling
curve upon the plane of
the wheel, will be everywhere
perpendicular to
the straight line TI; so
that the traced curve AT
will be suitable for the flank of a tooth, in which T is the point of
contact corresponding to the position I of the pitch-point. If the

same rolling curve R, with the same tracing-point T, be rolled on
the outside of any other pitch-circle, it will have the face of a tooth
suitable to work with the flank AT.

In like manner, if either the same or any other rolling curve R′
be rolled the opposite way, on the outside of the pitch-circle BB, so
that the tracing point T′ shall start from A, it will trace the face
AT′ of a tooth suitable to work with a flank traced by rolling the
same curve R′ with the same tracing-point T′ inside any other
pitch-circle.

The figure of the path of contact is that traced on a fixed plane by
the tracing-point, when the rolling curve is rotated in such a manner
as always to touch a fixed straight line EIE (or E′I′E′, as the case
may be) at a fixed point I (or I′).

If the same rolling curve and tracing-point be used to trace both
the faces and the flanks of the teeth of a number of wheels of different
sizes but of the same pitch, all those wheels will work correctly
together, and will form a set. The teeth of a rack, of the same set,
are traced by rolling the rolling curve on both sides of a straight
line.

The teeth of wheels of any figure, as well as of circular wheels,
may be traced by rolling curves on their pitch-surfaces; and all
teeth of the same pitch, traced by the same rolling curve with the
same tracing-point, will work together correctly if their pitch-surfaces
are in rolling contact.
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§ 49. Epicycloidal Teeth.—The most convenient rolling curve is
the circle. The path of contact which it traces is identical with
itself; and the flanks of the teeth
are internal and their faces external
epicycloids for wheels, and
both flanks and faces are cycloids
for a rack.

For a pitch-circle of twice the
radius of the rolling or describing
circle (as it is called) the internal
epicycloid is a straight line, being,
in fact, a diameter of the pitch-circle,
so that the flanks of the
teeth for such a pitch-circle are
planes radiating from the axis.
For a smaller pitch-circle the
flanks would be convex and in-curved
or under-cut, which would
be inconvenient; therefore the
smallest wheel of a set should
have its pitch-circle of twice the
radius of the describing circle, so
that the flanks may be either straight or concave.

In fig. 104 let BB′ be part of the pitch-circle of a wheel with
epicycloidal teeth; CIC′ the line of centres; I the pitch-point; EIE′
a straight tangent to the pitch-circle at that point; R the internal
and R′ the equal external describing circles, so placed as to touch
the pitch-circle and each other at I. Let DID′ be the path of contact,
consisting of the arc of approach DI and the arc of recess ID′.
In order that there may always be at least two pairs of teeth in
action, each of those arcs should be equal to the pitch.

The obliquity of the action in passing the line of centres is nothing;
the maximum obliquity is the angle EID = E′ID; and the mean
obliquity is one-half of that angle.

It appears from experience that the mean obliquity should not
exceed 15°; therefore the maximum obliquity should be about 30°;
therefore the equal arcs DI and ID′ should each be one-sixth of a
circumference; therefore the circumference of the describing circle
should be six times the pitch.

It follows that the smallest pinion of a set in which pinion the
flanks are straight should have twelve teeth.

§ 50. Nearly Epicycloidal Teeth: Willis’s Method.—To facilitate
the drawing of epicycloidal teeth in practice, Willis showed how to
approximate to their figure by means of two circular arcs—one
concave, for the flank, and the other convex, for the face—and
each having for its radius the mean radius of curvature of the
epicycloidal arc. Willis’s formulae are founded on the following
properties of epicycloids:—

Let R be the radius of the pitch-circle; r that of the describing
circle; θ the angle made by the normal TI to the epicycloid at a
given point T, with a tangent to the circle at I—that is, the obliquity
of the action at T.

Then the radius of curvature of the epicycloid at T is—


	For an internal epicycloid, ρ = 4r sin θ 	R − r


	R − 2r



	For an external epicycloid, ρ′ = 4r sin θ 	R + r


	R + 2r


(28)

Also, to find the position of the centres of curvature relatively to the
pitch-circle, we have, denoting the chord of the describing circle TI
by c, c = 2r sin θ; and therefore


	For the flank, ρ − c = 2r sin θ 	R


	R − 2r



	For the face, ρ′ − c = 2r sin θ 	R


	R + 2r


(29)

For the proportions approved of by Willis, sin θ = 1⁄4 nearly; r = p
(the pitch) nearly; c = 1⁄2p nearly; and, if N be the number of teeth
in the wheel, r/R = 6/N nearly; therefore, approximately,


	ρ − c = 	p
	· 	N


	2 	N − 12



	ρ − c = 	p
	· 	N


	2 	N + 12


(30)
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Hence the following construction (fig. 105). Let BB be part of
the pitch-circle, and a the point where a tooth is to cross it. Set
off ab = ac − 1⁄2p. Draw radii bd,
ce; draw fb, cg, making angles of
751⁄2° with those radii. Make
bf = p′ − c, cg = p − c. From f,
with the radius fa, draw the circular
arc ah; from g, with the radius ga,
draw the circular arc ak. Then
ah is the face and ak the flank of
the tooth required.

To facilitate the application of
this rule, Willis published tables of
ρ − c and ρ′ − c, and invented an instrument
called the “odontograph.”

§ 51. Trundles and Pin-Wheels.—If a wheel or trundle have
cylindrical pins or staves for teeth, the faces of the teeth of a wheel
suitable for driving it are described by first tracing external epicycloids,
by rolling the pitch-circle of the pin-wheel or trundle on
the pitch-circle of the driving-wheel, with the centre of a stave for
a tracing-point, and then drawing curves parallel to, and within
the epicycloids, at a distance from them equal to the radius of a
stave. Trundles having only six staves will work with large
wheels.

§ 52. Backs of Teeth and Spaces.—Toothed wheels being in general
intended to rotate either way, the backs of the teeth are made
similar to the fronts. The space between two teeth, measured on
the pitch-circle, is made about 1⁄6th part wider than the thickness of
the tooth on the pitch-circle—that is to say,


	Thickness of tooth 	= 5⁄11 pitch;

	Width of space 	= 6⁄11 pitch.



The difference of 1⁄11 of the pitch is called the back-lash. The
clearance allowed between the points of teeth and the bottoms of
the spaces between the teeth of the other wheel is about one-tenth
of the pitch.

§ 53. Stepped and Helical Teeth.—R. J. Hooke invented the making
of the fronts of teeth in a series of steps with a view to increase
the smoothness of action. A wheel thus formed resembles in shape
a series of equal and similar toothed disks placed side by side, with
the teeth of each a little behind those of the preceding disk. He
also invented, with the same object, teeth whose fronts, instead of
being parallel to the line of contact of the pitch-circles, cross it
obliquely, so as to be of a screw-like or helical form. In wheel-work
of this kind the contact of each pair of teeth commences at the
foremost end of the helical front, and terminates at the aftermost
end; and the helix is of such a pitch that the contact of one pair
of teeth shall not terminate until that of the next pair has
commenced.

Stepped and helical teeth have the desired effect of increasing the
smoothness of motion, but they require more difficult and expensive
workmanship than common teeth; and helical teeth are, besides,
open to the objection that they exert a laterally oblique pressure,
which tends to increase resistance, and unduly strain the machinery.

§ 54. Teeth of Bevel-Wheels.—The acting surfaces of the teeth of
bevel-wheels are of the conical kind, generated by the motion of a
line passing through the common apex of the pitch-cones, while its
extremity is carried round the outlines of the cross section of the
teeth made by a sphere described about that apex.
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The operations of describing the exact figures of the teeth of bevel-wheels,
whether by involutes or by rolling curves, are in every
respect analogous to those for describing the figures of the teeth of
spur-wheels, except that in the case of bevel-wheels all those operations
are to be performed on the surface of a sphere described about the
apex instead of on a plane, substituting
poles for centres, and
great circles for straight lines.

In consideration of the practical
difficulty, especially in the
case of large wheels, of obtaining
an accurate spherical surface,
and of drawing upon it
when obtained, the following
approximate method, proposed
originally by Tredgold, is
generally used:—

Let O (fig. 106) be the common
apex of a pair of bevel-wheels;
OB1I, OB2I their pitch cones;
OC1, OC2 their axes; OI their
line of contact. Perpendicular to OI draw A1IA2, cutting the axes
in A1, A2; make the outer rims of the patterns and of the wheels

portions of the cones A1B1I, A2B2I, of which the narrow zones
occupied by the teeth will be sufficiently near to a spherical surface
described about O for practical purposes. To find the figures of the
teeth, draw on a flat surface circular arcs ID1, ID2, with the radii
A1I, A2I; those arcs will be the developments of arcs of the pitch-circles
B1I, B2I, when the conical surfaces A1B1I, A2B2I are spread
out flat. Describe the figures of teeth for the developed arcs as for
a pair of spur-wheels; then wrap the developed arcs on the cones,
so as to make them coincide with the pitch-circles, and trace
the teeth on the conical surfaces.

§ 55. Teeth of Skew-Bevel Wheels.—The crests of the teeth of a
skew-bevel wheel are parallel to the generating straight line of the
hyperboloidal pitch-surface; and the transverse sections of the teeth
at a given pitch-circle are similar to those of the teeth of a bevel-wheel
whose pitch surface is a cone touching the hyperboloidal
surface at the given circle.

§ 56. Cams.—A cam is a single tooth, either rotating continuously
or oscillating, and driving a sliding or turning piece either constantly
or at intervals. All the principles which have been stated in § 45 as
being applicable to teeth are applicable to cams; but in designing
cams it is not usual to determine or take into consideration the form
of the ideal pitch-surface, which would give the same comparative
motion by rolling contact that the cam gives by sliding contact.

§ 57. Screws.—The figure of a screw is that of a convex or concave
cylinder, with one or more helical projections, called threads, winding
round it. Convex and concave screws are distinguished technically
by the respective names of male and female; a short concave screw
is called a nut; and when a screw is spoken of without qualification
a convex screw is usually understood.

The relation between the advance and the rotation, which compose
the motion of a screw working in contact with a fixed screw or helical
guide, has already been demonstrated in § 32; and the same relation
exists between the magnitudes of the rotation of a screw about a
fixed axis and the advance of a shifting nut in which it rotates.
The advance of the nut takes place in the opposite direction to that
of the advance of the screw in the case in which the nut is fixed.
The pitch or axial pitch of a screw has the meaning assigned to it in
that section, viz. the distance, measured parallel to the axis, between
the corresponding points in two successive turns of the same thread.
If, therefore, the screw has several equidistant threads, the true
pitch is equal to the divided axial pitch, as measured between two
adjacent threads, multiplied by the number of threads.

If a helix be described round the screw, crossing each turn of the
thread at right angles, the distance between two corresponding
points on two successive turns of the same thread, measured along
this normal helix, may be called the normal pitch; and when the
screw has more than one thread the normal pitch from thread to
thread may be called the normal divided pitch.

The distance from thread to thread, measured on a circle described
about the axis of the screw, called the pitch-circle, may be called
the circumferential pitch; for a screw of one thread it is one circumference;
for a screw of n threads, (one circumference)/n.

Let r denote the radius of the pitch circle;


n the number of threads;

θ the obliquity of the threads to the pitch circle, and of the
        normal helix to the axis;




	Pa 	the axial 	pitch

	Pa/n  = pa 	divided pitch;

	 

	Pn 	the normal 	pitch

	Pn/n  = pn 	divided pitch;

	 

	Pc the circumferential pitch;



then


	pc = pa cot θ = pn cos θ = 	2πr
	,

	n



	pa = pn sec θ = pc tan θ = 	2πr tan θ
	,

	n



	pn = pc sin θ = pa cos θ = 	2πr sin θ
	.

	n


(31)

If a screw rotates, the number of threads which pass a fixed point
in one revolution is the number of threads in the screw.

A pair of convex screws, each rotating about its axis, are used
as an elementary combination to transmit motion by the sliding
contact of their threads. Such screws are commonly called endless
screws. At the point of contact of the screws their threads must
be parallel; and their line of connexion is the common perpendicular
to the acting surfaces of the threads at their point of contact.
Hence the following principles:—

I. If the screws are both right-handed or both left-handed, the
angle between the directions of their axes is the sum of their obliquities;
if one is right-handed and the other left-handed, that angle
is the difference of their obliquities.

II. The normal pitch for a screw of one thread, and the normal
divided pitch for a screw of more than one thread, must be the
same in each screw.

III. The angular velocities of the screws are inversely as their
numbers of threads.

Hooke’s wheels with oblique or helical teeth are in fact screws
of many threads, and of large diameters as compared with their
lengths.

The ordinary position of a pair of endless screws is with their axes
at right angles to each other. When one is of considerably greater
diameter than the other, the larger is commonly called in practice
a wheel, the name screw being applied to the smaller only; but they
are nevertheless both screws in fact.

To make the teeth of a pair of endless screws fit correctly and
work smoothly, a hardened steel screw is made of the figure of the
smaller screw, with its thread or threads notched so as to form a
cutting tool; the larger screw, or “wheel,” is cast approximately
of the required figure; the larger screw and the steel screw are fitted
up in their proper relative position, and made to rotate in contact
with each other by turning the steel screw, which cuts the threads
of the larger screw to their true figure.
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§ 58. Coupling of Parallel Axes—Oldham’s Coupling.—A coupling
is a mode of connecting a pair of shafts so that they shall rotate in
the same direction with the same mean
angular velocity. If the axes of the
shafts are in the same straight line, the
coupling consists in so connecting their
contiguous ends that they shall rotate
as one piece; but if the axes are not in
the same straight line combinations of
mechanism are required. A coupling
for parallel shafts which acts by sliding
contact was invented by Oldham, and
is represented in fig. 107. C1, C2 are
the axes of the two parallel shafts;
D1, D2 two disks facing each other,
fixed on the ends of the two shafts
respectively; E1E1 a bar sliding in
a diametral groove in the face of D1; E2E2 a bar sliding in a
diametral groove in the face of D2: those bars are fixed together
at A, so as to form a rigid cross. The angular velocities of the
two disks and of the cross are all equal at every instant; the
middle point of the cross, at A, revolves in the dotted circle described
upon the line of centres C1C2 as a diameter twice for each
turn of the disks and cross; the instantaneous axis of rotation of
the cross at any instant is at I, the point in the circle C1C2
diametrically opposite to A.

Oldham’s coupling may be used with advantage where the axes
of the shafts are intended to be as nearly in the same straight line
as is possible, but where there is some doubt as to the practibility
or permanency of their exact continuity.

§ 59. Wrapping Connectors—Belts, Cords and Chains.—Flat belts
of leather or of gutta percha, round cords of catgut, hemp or other
material, and metal chains are used as wrapping connectors to
transmit rotatory motion between pairs of pulleys and drums.

Belts (the most frequently used of all wrapping connectors)
require nearly cylindrical pulleys. A belt tends to move towards
that part of a pulley whose radius is greatest; pulleys for belts,
therefore, are slightly swelled in the middle, in order that the belt
may remain on the pulley, unless forcibly shifted. A belt when in
motion is shifted off a pulley, or from one pulley on to another of
equal size alongside of it, by pressing against that part of the belt
which is moving towards the pulley.

Cords require either cylindrical drums with ledges or grooved
pulleys.

Chains require pulleys or drums, grooved, notched and toothed,
so as to fit the links of the chain.

Wrapping connectors for communicating continuous motion are
endless.

Wrapping connectors for communicating reciprocating motion
have usually their ends made fast to the pulleys or drums which
they connect, and which in this case may be sectors.
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The line of connexion of two pieces connected by a wrapping
connector is the centre line of the
belt, cord or chain; and the comparative
motions of the pieces are
determined by the principles of
§ 36 if both pieces turn, and of § 37
if one turns and the other shifts,
in which latter case the motion
must be reciprocating.

The pitch-line of a pulley or drum
is a curve to which the line of connexion
is always a tangent—that is
to say, it is a curve parallel to the
acting surface of the pulley or
drum, and distant from it by half
the thickness of the wrapping connector.

Pulleys and drums for communicating
a constant velocity ratio are circular. The effective radius,
or radius of the pitch-circle of a circular pulley or drum, is equal to
the real radius added to half the thickness of the connector. The

angular velocities of a pair of connected circular pulleys or drums
are inversely as the effective radii.

A crossed belt, as in fig. 108, A, reverses the direction of the
rotation communicated; an uncrossed belt, as in fig. 108, B,
preserves that direction.

The length L of an endless belt connecting a pair of pulleys whose
effective radii are r1, r2, with parallel axes whose distance apart
is c, is given by the following formulae, in each of which the first
term, containing the radical, expresses the length of the straight
parts of the belt, and the remainder of the formula the length of the
curved parts.

For a crossed belt:—


	L = 2 √ {c2 − (r1 + r2)2} + (r1 + r2)
  ( π − 2 sin−1 	r1 + r2
	);

	c


(32 A)

and for an uncrossed belt:—


	L = 2 √ {c2 − (r1 − r2)2 } + π (r1 + r2 + 2 (r1 − r2) sin−1 	r1 − r2
	;

	c


(32 B)

in which r1 is the greater radius, and r2 the less.

When the axes of a pair of pulleys are not parallel, the pulleys
should be so placed that the part of the belt which is approaching
each pulley shall be in the plane of the pulley.

§ 60. Speed-Cones.—A pair of speed-cones (fig. 109) is a contrivance
for varying and adjusting the velocity ratio communicated between
a pair of parallel shafts by means of a belt. The speed-cones are
either continuous cones or conoids, as A, B, whose velocity ratio can
be varied gradually while they are in motion by shifting the belt,
or sets of pulleys whose radii vary by steps, as C, D, in which case
the velocity ratio can be changed by shifting the belt from one pair
of pulleys to another.
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In order that the belt may fit accurately in every possible position
on a pair of speed-cones, the quantity L must be constant, in equations
(32 A) or (32 B), according
as the belt is crossed or
uncrossed.

For a crossed belt, as in A
and C, fig. 109, L depends
solely on c and on r1 + r2.
Now c is constant because the
axes are parallel; therefore the
sum of the radii of the pitch-circles
connected in every
position of the belt is to be
constant. That condition is
fulfilled by a pair of continuous
cones generated by
the revolution of two straight
lines inclined opposite ways to
their respective axes at equal
angles.

For an uncrossed belt, the
quantity L in equation (32 B)
is to be made constant. The exact fulfilment of this condition requires
the solution of a transcendental equation; but it may be fulfilled with
accuracy sufficient for practical purposes by using, instead of (32 B)
the following approximate equation:—

L nearly = 2c + π (r1 + r2) + (r1 − r2)2 / c.

(33)

The following is the most convenient practical rule for the application
of this equation:—

Let the speed-cones be equal and similar conoids, as in B, fig.
109, but with their large and small ends turned opposite ways. Let
r1 be the radius of the large end of each, r2 that of the small end,
r0 that of the middle; and let v be the sagitta, measured perpendicular
to the axes, of the arc by whose revolution each of the conoids is
generated, or, in other words, the bulging of the conoids in the middle
of their length. Then

v = r0 − (r1 + r2) / 2 = (r1 − r2)2 / 2πc.

(34)

2π = 6.2832; but 6 may be used in most practical cases without
sensible error.

The radii at the middle and end being thus determined, make the
generating curve an arc either of a circle or of a parabola.

§ 61. Linkwork in General.—The pieces which are connected by
linkwork, if they rotate or oscillate, are usually called cranks, beams
and levers. The link by which they are connected is a rigid rod or
bar, which may be straight or of any other figure; the straight figure
being the most favourable to strength, is always used when there
is no special reason to the contrary. The link is known by various
names in various circumstances, such as coupling-rod, connecting-rod,
crank-rod, eccentric-rod, &c. It is attached to the pieces which
it connects by two pins, about which it is free to turn. The effect
of the link is to maintain the distance between the axes of those
pins invariable; hence the common perpendicular of the axes of the
pins is the line of connexion, and its extremities may be called the
connected points. In a turning piece, the perpendicular let fall
from its connected point upon its axis of rotation is the arm or
crank-arm.

The axes of rotation of a pair of turning pieces connected by a link
are almost always parallel, and perpendicular to the line of connexion
in which case the angular velocity ratio at any instant is the reciprocal
of the ratio of the common perpendiculars let fall from the
line of connexion upon the respective axes of rotation.

If at any instant the direction of one of the crank-arms coincides
with the line of connexion, the common perpendicular of the line
of connexion and the axis of that crank-arm vanishes, and the
directional relation of the motions becomes indeterminate. The
position of the connected point of the crank-arm in question at
such an instant is called a dead-point. The velocity of the other
connected point at such an instant is null, unless it also reaches a
dead-point at the same instant, so that the line of connexion is in
the plane of the two axes of rotation, in which case the velocity
ratio is indeterminate. Examples of dead-points, and of the means
of preventing the inconvenience which they tend to occasion, will
appear in the sequel.

§ 62. Coupling of Parallel Axes.—Two or more parallel shafts
(such as those of a locomotive engine, with two or more pairs of
driving wheels) are made to rotate with constantly equal angular
velocities by having equal cranks, which are maintained parallel by
a coupling-rod of such a length that the line of connexion is equal
to the distance between the axes. The cranks pass their dead-points
simultaneously. To obviate the unsteadiness of motion which
this tends to cause, the shafts are provided with a second set of
cranks at right angles to the first, connected by means of a similar
coupling-rod, so that one set of cranks pass their dead points at the
instant when the other set are farthest from theirs.

§ 63. Comparative Motion of Connected Points.—As the link is a
rigid body, it is obvious that its action in communicating motion
may be determined by finding the comparative motion of the
connected points, and this is often the most convenient method of
proceeding.

If a connected point belongs to a turning piece, the direction of
its motion at a given instant is perpendicular to the plane containing
the axis and crank-arm of the piece. If a connected point belongs
to a shifting piece, the direction of its motion at any instant is given,
and a plane can be drawn perpendicular to that direction.

The line of intersection of the planes perpendicular to the paths
of the two connected points at a given instant is the instantaneous
axis of the link at that instant; and the velocities of the connected
points are directly as their distances from that axis.
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In drawing on a plane surface, the two planes perpendicular to
the paths of the connected points are represented by two lines (being
their sections by a plane normal
to them), and the instantaneous
axis by a point (fig. 110); and,
should the length of the two
lines render it impracticable to
produce them until they actually
intersect, the velocity ratio of the
connected points may be found
by the principle that it is equal
to the ratio of the segments
which a line parallel to the line
of connexion cuts off from any
two lines drawn from a given
point, perpendicular respectively
to the paths of the connected
points.

To illustrate this by one
example. Let C1 be the axis, and T1 the connected point of the
beam of a steam-engine; T1T2 the connecting or crank-rod; T2 the
other connected point, and the centre of the crank-pin; C2
the axis of the crank and its shaft. Let v1 denote the velocity of
T1 at any given instant; v2 that of T2. To find the ratio of these
velocities, produce C1T1, C2T2 till they intersect in K; K is the
instantaneous axis of the connecting rod, and the velocity ratio is

v1 : v2 :: KT1 : KT2.

(35)

Should K be inconveniently far off, draw any triangle with its sides
respectively parallel to C1T1, C2T2 and T1T2; the ratio of the two
sides first mentioned will be the velocity ratio required. For
example, draw C2A parallel to C1T1, cutting T1T2 in A; then

v1 : v2 :: C2A : C2T2.

(36)

§ 64. Eccentric.—An eccentric circular disk fixed on a shaft, and
used to give a reciprocating motion to a rod, is in effect a crank-pin
of sufficiently large diameter to surround the shaft, and so to avoid
the weakening of the shaft which would arise from bending it so as
to form an ordinary crank. The centre of the eccentric is its
connected point; and its eccentricity, or the distance from that
centre to the axis of the shaft, is its crank-arm.

An eccentric may be made capable of having its eccentricity
altered by means of an adjusting screw, so as to vary the extent of
the reciprocating motion which it communicates.

§ 65. Reciprocating Pieces—Stroke—Dead-Points.—The distance
between the extremities of the path of the connected point in a
reciprocating piece (such as the piston of a steam-engine) is called
the stroke or length of stroke of that piece. When it is connected with
a continuously turning piece (such as the crank of a steam-engine)
the ends of the stroke of the reciprocating piece correspond to the

dead-points of the path of the connected point of the turning piece,
where the line of connexion is continuous with or coincides with the
crank-arm.

Let S be the length of stroke of the reciprocating piece, L the
length of the line of connexion, and R the crank-arm of the continuously
turning piece. Then, if the two ends of the stroke be in
one straight line with the axis of the crank,

S = 2R;

(37)

and if these ends be not in one straight line with that axis, then
S, L − R, and L + R, are the three sides of a triangle, having the
angle opposite S at that axis; so that, if θ be the supplement of the
arc between the dead-points,

S2 = 2 (L2 + R2) − 2 (L2 − R2) cos θ,


	cos θ = 	2L2 + 2R2 − S2
	.

	2 (L2 − R2)


(38)
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§ 66. Coupling of Intersecting Axes—Hooke’s Universal Joint.—Intersecting
axes are coupled by a contrivance of Hooke’s, known as
the “universal joint,” which belongs to the class of linkwork (see
fig. 111). Let O be the point of intersection of the axes OC1, OC2,
and θ their angle of inclination
to each other. The pair of
shafts C1, C2 terminate in a pair
of forks F1, F2 in bearings at
the extremities of which turn
the gudgeons at the ends of the
arms of a rectangular cross,
having its centre at O. This
cross is the link; the connected
points are the centres of the
bearings F1, F2. At each instant
each of those points
moves at right angles to the
central plane of its shaft and
fork, therefore the line of intersection of the central planes of the
two forks at any instant is the instantaneous axis of the cross,
and the velocity ratio of the points F1, F2 (which, as the forks are
equal, is also the angular velocity ratio of the shafts) is equal to
the ratio of the distances of those points from that instantaneous
axis. The mean value of that velocity ratio is that of equality,
for each successive quarter-turn is made by both shafts in the
same time; but its actual value fluctuates between the limits:—


	α2
	= 	1
	when F1 is the plane of OC1C2

	α1 	cos θ



	and 	α2
	= cos θ when F2 is in that plane.

	α1


(39)

Its value at intermediate instants is given by the following equations:
let φ1, φ2 be the angles respectively made by the central
planes of the forks and shafts with the plane OC1C2 at a given instant;
then

cos θ = tan φ1 tan φ2,


	α2
	= − 	dφ2
	= 	tan φ1 + cot φ1
	.

	α1 	dφ1
	tan φ2 + cot φ2



(40)

§ 67. Intermittent Linkwork—Click and Ratchet.—A click acting
upon a ratchet-wheel or rack, which it pushes or pulls through a
certain arc at each forward stroke and leaves at rest at each backward
stroke, is an example of intermittent linkwork. During the
forward stroke the action of the click is governed by the principles
of linkwork; during the backward stroke that action ceases. A
catch or pall, turning on a fixed axis, prevents the ratchet-wheel or
rack from reversing its motion.

Division 5.—Trains of Mechanism.

§ 68. General Principles..—A train of mechanism consists of a series
of pieces each of which is follower to that which drives it and driver
to that which follows it.

The comparative motion of the first driver and last follower is
obtained by combining the proportions expressing by their terms
the velocity ratios and by their signs the directional relations of
the several elementary combinations of which the train consists.

§ 69. Trains of Wheelwork.—Let A1, A2, A3, &c., Am−1, Am denote
a series of axes, and α1, α2, α3, &c., αm−1, αm their angular velocities.
Let the axis A1 carry a wheel of N1 teeth, driving a wheel of n2 teeth
on the axis A2, which carries also a wheel of N2 teeth, driving a
wheel of n3 teeth on the axis A3, and so on; the numbers of teeth
in drivers being denoted by N′s, and in followers by n’s, and the axes
to which the wheels are fixed being denoted by numbers. Then
the resulting velocity ratio is denoted by


	αm
	= 	α2
	· 	α3
	· &c. ... 	αm
	= 	N1 · N2 ... &c. ... Nm−1
	;

	α1 	α1
	α2 	αm−1
	n2 · n3 ... &c. ... nm


(41)

that is to say, the velocity ratio of the last and first axes is the ratio
of the product of the numbers of teeth in the drivers to the product
of the numbers of teeth in the followers.

Supposing all the wheels to be in outside gearing, then, as each
elementary combination reverses the direction of rotation, and as
the number of elementary combinations m − 1 is one less than the
number of axes m, it is evident that if m is odd the direction of
rotation is preserved, and if even reversed.

It is often a question of importance to determine the number of
teeth in a train of wheels best suited for giving a determinate velocity
ratio to two axes. It was shown by Young that, to do this with
the least total number of teeth, the velocity ratio of each elementary
combination should approximate as nearly as possible to 3.59. This
would in many cases give too many axes; and, as a useful practical
rule, it may be laid down that from 3 to 6 ought to be the limit of
the velocity ratio of an elementary combination in wheel-work.
The smallest number of teeth in a pinion for epicycloidal teeth ought
to be twelve (see § 49)—but it is better, for smoothness of motion,
not to go below fifteen; and for involute teeth the smallest number
is about twenty-four.

Let B/C be the velocity ratio required, reduced to its least terms,
and let B be greater than C. If B/C is not greater than 6, and C lies
between the prescribed minimum number of teeth (which may be
called t) and its double 2t, then one pair of wheels will answer the
purpose, and B and C will themselves be the numbers required.
Should B and C be inconveniently large, they are, if possible, to be
resolved into factors, and those factors (or if they are too small,
multiples of them) used for the number of teeth. Should B or C,
or both, be at once inconveniently large and prime, then, instead
of the exact ratio B/C some ratio approximating to that ratio, and
capable of resolution into convenient factors, is to be found by the
method of continued fractions.

Should B/C be greater than 6, the best number of elementary
combinations m − 1 will lie between


	log B − log C
	and 	log B − log C
	.

	log 6 	log 3


Then, if possible, B and C themselves are to be resolved each into
m − 1 factors (counting 1 as a factor), which factors, or multiples
of them, shall be not less than t nor greater than 6t; or if B and C
contain inconveniently large prime factors, an approximate velocity
ratio, found by the method of continued fractions, is to be substituted
for B/C as before.

So far as the resultant velocity ratio is concerned, the order of
the drivers N and of the followers n is immaterial: but to secure
equable wear of the teeth, as explained in § 44, the wheels ought to
be so arranged that, for each elementary combination, the greatest
common divisor of N and n shall be either 1, or as small as possible.

§ 70. Double Hooke’s Coupling.—It has been shown in § 66 that
the velocity ratio of a pair of shafts coupled by a universal joint
fluctuates between the limits cos θ and 1/cos θ. Hence one or both
of the shafts must have a vibratory and unsteady motion, injurious
to the mechanism and framework. To obviate this evil a short
intermediate shaft is introduced, making equal angles with the first
and last shaft, coupled with each of them by a Hooke’s joint, and
having its own two forks in the same plane. Let α1, α2, α3 be the
angular velocities of the first, intermediate, and last shaft in this
train of two Hooke’s couplings. Then, from the principles of § 60 it
is evident that at each instant α2/α1 = α2/α3, and consequently that
α3 = α1; so that the fluctuations of angular velocity ratio caused by
the first coupling are exactly neutralized by the second, and the
first and last shafts have equal angular velocities at each instant.

§ 71. Converging and Diverging Trains of Mechanism.—Two or
more trains of mechanism may converge into one—as when the two
pistons of a pair of steam-engines, each through its own connecting-rod,
act upon one crank-shaft. One train of mechanism may diverge
into two or more—as when a single shaft, driven by a prime mover,
carries several pulleys, each of which drives a different machine.
The principles of comparative motion in such converging and diverging
trains are the same as in simple trains.

Division 6.—Aggregate Combinations.

§ 72. General Principles.—Willis designated as “aggregate
combinations” those assemblages of pieces of mechanism in which
the motion of one follower is the resultant of component motions
impressed on it by more than one driver. Two classes of aggregate
combinations may be distinguished which, though not different in
their actual nature, differ in the data which they present to the
designer, and in the method of solution to be followed in questions
respecting them.

Class I. comprises those cases in which a piece A is not carried
directly by the frame C, but by another piece B, relatively to which
the motion of A is given—the motion of the piece B relatively to
the frame C being also given. Then the motion of A relatively to
the frame C is the resultant of the motion of A relatively to B and
of B relatively to C; and that resultant is to be found by the principles
already explained in Division 3 of this Chapter §§ 27-32.

Class II. comprises those cases in which the motions of three points
in one follower are determined by their connexions with two or with
three different drivers.

This classification is founded on the kinds of problems arising
from the combinations. Willis adopts another classification
founded on the objects of the combinations, which objects he divides
into two classes, viz. (1) to produce aggregate velocity, or a velocity
which is the resultant of two or more components in the same path,
and (2) to produce an aggregate path—that is, to make a given point

in a rigid body move in an assigned path by communicating certain
motions to other points in that body.

It is seldom that one of these effects is produced without at the
same time producing the other; but the classification of Willis
depends upon which of those two effects, even supposing them to
occur together, is the practical object of the mechanism.
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§ 73. Differential Windlass.—The axis C (fig. 112) carries a larger
barrel AE and a smaller barrel DB, rotating as one
piece with the angular velocity α1 in the direction
AE. The pulley or sheave FG has a weight W
hung to its centre. A cord has one end made fast
to and wrapped round the barrel AE; it passes
from A under the sheave FG, and has the other
end wrapped round and made fast to the barrel
BD. Required the relation between the velocity of
translation v2 of W and the angular velocity α1 of
the differential barrel.

In this case v2 is an aggregate velocity, produced
by the joint action of the two drivers AE and BD,
transmitted by wrapping connectors to FG, and
combined by that sheave so as to act on the follower
W, whose motion is the same with that of
the centre of FG.

The velocity of the point F is α1·AC, upward
motion being considered positive. The velocity
of the point G is −α1·CB, downward motion being negative.
Hence the instantaneous axis of the sheave FG is in the diameter
FG, at the distance


	FG
	· 	AC − BC


	2 	AC + BC


from the centre towards G; the angular velocity of the sheave is


	α2 = α1 · 	AC + BC
	;

	FG


and, consequently, the velocity of its centre is


	v2 = α2 · 	FG
	· 	AC − BC
	= 	α1 (AC − BC)
	,

	2 	AC + BC
	2


(42)

or the mean between the velocities of the two vertical parts of the cord.

If the cord be fixed to the framework at the point B, instead of
being wound on a barrel, the velocity of W is half that of AF.

A case containing several sheaves is called a block. A fall-block
is attached to a fixed point; a running-block is movable to and from
a fall-block, with which it is connected by two or more plies of a
rope. The whole combination constitutes a tackle or purchase. (See
Pulleys for practical applications of these principles.)

§ 74. Differential Screw.—On the same axis let there be two screws
of the respective pitches p1 and p2, made in one piece, and rotating
with the angular velocity α. Let this piece be called B. Let the
first screw turn in a fixed nut C, and the second in a sliding nut A.
The velocity of advance of B relatively to C is (according to § 32)
αp1, and of A relatively to B (according to § 57) −αp2; hence the
velocity of A relatively to C is

α (p1 − p2),

(46)

being the same with the velocity of advance of a screw of the pitch
p1 − p2. This combination, called Hunter’s or the differential screw,
combines the strength of a large thread with the slowness of motion
due to a small one.

§ 75. Epicyclic Trains.—The term epicyclic train is used by Willis
to denote a train of wheels carried by an arm, and having certain
rotations relatively to that arm, which itself rotates. The arm may
either be driven by the wheels or assist in driving them. The comparative
motions of the wheels and of the arm, and the aggregate
paths traced by points in the wheels, are determined by the principles
of the composition of rotations, and of the description of rolling
curves, explained in §§ 30, 31.

§ 76. Link Motion.—A slide valve operated by a link motion
receives an aggregate motion from the mechanism driving it. (See
Steam-engine for a description of this and other types of mechanism
of this class.)
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§ 77. Parallel Motions.—A parallel motion is a combination of
turning pieces in mechanism designed to guide the motion of a
reciprocating piece either exactly
or approximately in a straight line,
so as to avoid the friction which
arises from the use of straight guides
for that purpose.

Fig. 113 represents an exact
parallel motion, first proposed, it is
believed, by Scott Russell. The
arm CD turns on the axis C, and
is jointed at D to the middle of the
bar ADB, whose length is double
of that of CD, and one of whose
ends B is jointed to a slider, sliding
in straight guides along the line
CB. Draw BE perpendicular to
CB, cutting CD produced in E, then
E is the instantaneous axis of the bar ADB; and the direction of
motion of A is at every instant perpendicular to EA—that is, along
the straight line ACa. While the stroke of A is ACa, extending to
equal distances on either side of C, and equal to twice the chord
of the arc Dd, the stroke of B is only equal to twice the sagitta; and
thus A is guided through a comparatively long stroke by the sliding
of B through a comparatively short stroke, and by rotatory motions
at the joints C, D, B.


	

	 Fig. 114.
	 Fig. 115.


§ 78.* An example of an approximate straight-line motion composed
of three bars fixed to a frame is shown in fig. 114. It is due
to P. L. Tchebichev of St Petersburg. The links AB and CD are
equal in length and are centred respectively at A and C. The
ends D and B are joined by a link DB. If the respective lengths
are made in the proportions AC : CD : DB = 1 : 1.3 : 0.4 the middle
point P of DB will describe an approximately straight line parallel
to AC within limits of length about equal to AC. C. N. Peaucellier,
a French engineer officer, was the first, in 1864, to invent a linkwork
with which an exact straight line could be drawn. The linkwork
is shown in fig. 115, from which it will be seen that it consists of a
rhombus of four equal bars ABCD, jointed at opposite corners with
two equal bars BE and DE. The seventh link AF is equal in length
to halt the distance EA when the mechanism is in its central position.
The points E and F are fixed. It can be proved that the point C
always moves in a straight line at right angles to the line EF. The
more general property of the mechanism corresponding to proportions
between the lengths FA and EF other than that of equality
is that the curve described by the point C is the inverse of the curve
described by A. There are other arrangements of bars giving
straight-line motions, and these arrangements together with the
general properties of mechanisms of this kind are discussed in How
to Draw a Straight Line by A. B. Kempe (London, 1877).
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§ 79.* The Pantograph.—If a parallelogram of links (fig. 116), be
fixed at any one point a in any one of the links produced in either
direction, and if any straight
line be drawn from this point
to cut the links in the points
b and c, then the points a, b, c
will be in a straight line for
all positions of the mechanism,
and if the point b be guided
in any curve whatever, the
point c will trace a similar
curve to a scale enlarged
in the ratio ab : ac. This property of the parallelogram
is utilized in the construction of the pantograph, an instrument
used for obtaining a copy of a map or drawing on a different scale.
Professor J. J. Sylvester discovered that this property of the
parallelogram is not confined to points lying in one line with the
fixed point. Thus if b (fig. 117) be
any point on the link CD, and if a
point c be taken on the link DE such
that the triangles CbD and DcE are
similar and similarly situated with
regard to their respective links, then
the ratio of the distances ab and
ac is constant, and the angle bac
is constant for all positions of the
mechanism; so that, if b is guided in
any curve, the point c will describe a similar curve turned through
an angle bac, the scales of the curves being in the ratio ab to ac.
Sylvester called an instrument based on this property a plagiograph
or a skew pantograph.

The combination of the parallelogram with a straight-line motion,
for guiding one of the points in a straight line, is illustrated in Watt’s
parallel motion for steam-engines. (See Steam-engine.)

§ 80.* The Reuleaux System of Analysis.—If two pieces, A and B,
(fig. 118) are jointed together by a pin, the pin being fixed, say, to A,
the only relative motion possible between the pieces is one of turning
about the axis of the pin. Whatever motion the pair of pieces may
have as a whole each separate piece shares in common, and this
common motion in no way affects the relative motion of A and B.
The motion of one piece is said to be completely constrained relatively
to the other piece. Again, the pieces A and B (fig. 119) are paired
together as a slide, and the only relative motion possible between
them now is that of sliding, and therefore the motion of one relatively
to the other is completely constrained. The pieces may be paired

together as a screw and nut, in which case the relative motion is
compounded of turning with sliding.
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These combinations of pieces are known individually as kinematic
pairs of elements, or briefly kinematic pairs. The three pairs mentioned
above have each the peculiarity that contact between the two
pieces forming the pair is distributed over a surface. Kinematic
pairs which have surface contact are classified as lower pairs. Kinematic
pairs in which contact takes place along a line only are classified
as higher pairs. A pair of spur wheels in gear is an example of a
higher pair, because the wheels have contact between their teeth
along lines only.

A kinematic link of the simplest form is made by joining up the
halves of two kinematic pairs by means of a rigid link. Thus if
A1B1 represent a turning pair, and A2B2 a second turning pair, the
rigid link formed by joining B1 to B2 is a kinematic link. Four
links of this kind are shown in fig. 120 joined up to form a closed
kinematic chain.
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In order that a kinematic chain may be made the basis of a
mechanism, every point in any link of it must be completely constrained
with regard to every other link. Thus in fig. 120 the motion
of a point a in the link
A1A2 is completely constrained
with regard to the
link B1B4 by the turning
pair A1B1, and it can be
proved that the motion
of a relatively to the
non-adjacent link A3A4 is
completely constrained,
and therefore the four-bar
chain, as it is called,
can be and is used as the
basis of many mechanisms. Another way of considering the question
of constraint is to imagine any one link of the chain fixed; then,
however the chain be moved, the path of a point, as a, will always
remain the same. In a five-bar chain, if a is a point in a link non-adjacent
to a fixed link, its path is indeterminate. Still another
way of stating the matter is to say that, if any one link in the chain
be fixed, any point in the chain must have only one degree of
freedom. In a five-bar chain a point, as a, in a link non-adjacent to
the fixed link has two degrees of freedom and the chain cannot
therefore be used for a mechanism. These principles may be
applied to examine any possible combination of links forming a
kinematic chain in order to test its suitability for use as a
mechanism. Compound chains are formed by the superposition
of two or more simple chains, and in these more complex chains
links will be found carrying three, or even more, halves of kinematic
pairs. The Joy valve gear mechanism is a good example of
a compound kinematic chain.
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A chain built up of three turning pairs and one sliding pair, and
known as the slider crank chain, is shown in fig. 121. It will be seen
that the piece A1 can
only slide relatively
to the piece B1, and
these two pieces
therefore form the
sliding pair. The
piece A1 carries the
pin B4, which is one
half of the turning
pair A4 B4. The
piece A1 together
with the pin B4 therefore form a kinematic link A1B4. The other
links of the chain are, B1A2, B2B3, A3A4. In order to convert a
chain into a mechanism it is necessary to fix one link in it. Any
one of the links may be fixed. It follows therefore that there are
as many possible mechanisms as there are links in the chain. For
example, there is a well-known mechanism corresponding to the
fixing of three of the four links of the slider crank chain (fig. 121).
If the link d is fixed the chain at once becomes the mechanism of the
ordinary steam engine; if the link e is fixed the mechanism obtained
is that of the oscillating cylinder steam engine; if the link c is fixed
the mechanism becomes either the Whitworth quick-return motion
or the slot-bar motion, depending upon the proportion between the
lengths of the links c and e. These different mechanisms are called
inversions of the slider crank chain. What was the fixed framework
of the mechanism in one case becomes a moving link in an
inversion.

The Reuleaux system, therefore, consists essentially of the analysis
of every mechanism into a kinematic chain, and since each link
of the chain may be the fixed frame of a mechanism quite diverse
mechanisms are found to be merely inversions of the same kinematic
chain. Franz Reuleaux’s Kinematics of Machinery, translated by
Sir A. B. W. Kennedy (London, 1876), is the book in which the system
is set forth in all its completeness. In Mechanics of Machinery,
by Sir A. B. W. Kennedy (London, 1886), the system was used
for the first time in an English textbook, and now it has found
its way into most modern textbooks relating to the subject of
mechanism.

§ 81.* Centrodes, Instantaneous Centres, Velocity Image, Velocity
Diagram.—Problems concerning the relative motion of the several
parts of a kinematic chain may be considered in two ways, in addition
to the way hitherto used in this article and based on the principle
of § 34. The first is by the method of instantaneous centres, already
exemplified in § 63, and rolling centroids, developed by Reuleaux
in connexion with his method of analysis. The second is by means
of Professor R. H. Smith’s method already referred to in § 23.

Method 1.—By reference to § 30 it will be seen that the motion
of a cylinder rolling on a fixed cylinder is one of rotation about an
instantaneous axis T, and that the velocity both as regards direction
and magnitude is the same as if the rolling piece B were for the
instant turning about a fixed axis coincident with the instantaneous
axis. If the rolling cylinder B and its path A now be assumed to
receive a common plane motion, what was before the velocity of
the point P becomes the velocity of P relatively to the cylinder A,
since the motion of B relatively to A still takes place about the
instantaneous axis T. If B stops rolling, then the two cylinders
continue to move as though they were parts of a rigid body. Notice
that the shape of either rolling curve (fig. 91 or 92) may be found by
considering each fixed in turn and then tracing out the locus of the
instantaneous axis. These rolling cylinders are sometimes called
axodes, and a section of an axode in a plane parallel to the plane of
motion is called a centrode. The axode is hence the locus of the
instantaneous axis, whilst the centrode is the locus of the instantaneous
centre in any plane parallel to the plane of motion. There
is no restriction on the shape of these rolling axodes; they may have
any shape consistent with rolling (that is, no slipping is permitted),
and the relative velocity of a point P is still found by considering
it with regard to the instantaneous centre.

Reuleaux has shown that the relative motion of any pair of non-adjacent
links of a kinematic chain is determined by the rolling
together of two ideal cylindrical surfaces (cylindrical being used here
in the general sense), each of which may be assumed to be formed
by the extension of the material of the link to which it corresponds.
These surfaces have contact at the instantaneous axis, which is
now called the instantaneous axis of the two links concerned. To
find the form of these surfaces corresponding to a particular pair
of non-adjacent links, consider each link of the pair fixed in turn,
then the locus of the instantaneous axis is the axode corresponding
to the fixed link, or, considering a plane of motion only, the locus
of the instantaneous centre is the centrode corresponding to the fixed
link.

To find the instantaneous centre for a particular link corresponding
to any given configuration of the kinematic chain, it is only necessary
to know the direction of motion of any two points in the link, since
lines through these points respectively at right angles to their directions
of motion intersect in the instantaneous centre.


	

	Fig. 122.


To illustrate this principle, consider the four-bar chain shown in
fig. 122 made up of the four links, a, b, c, d. Let a be the fixed link,
and consider the link
c. Its extremities are
moving respectively in
directions at right
angles to the links b
and d; hence produce
the links b and d to
meet in the point Oac.
This point is the instantaneous
centre of
the motion of the link
c relatively to the fixed
link a, a fact indicated
by the suffix ac placed
after the letter O. The
process being repeated
for different values of
the angle θ the curve through the several points Oac is the
centroid which may be imagined as formed by an extension
of the material of the link a. To find the corresponding centroid
for the link c, fix c and repeat the process. Again, imagine
d fixed, then the instantaneous centre Obd of b with regard to
d is found by producing the links c and a to intersect in Obd,
and the shapes of the centroids belonging respectively to the
links b and d can be found as before. The axis about which a pair
of adjacent links turn is a permanent axis, and is of course the axis

of the pin which forms the point. Adding the centres corresponding
to these several axes to the figure, it will be seen that there are six
centres in connexion with the four-bar chain of which four are permanent
and two are instantaneous or virtual centres; and, further,
that whatever be the configuration of the chain these centres group
themselves into three sets of three, each set lying on a straight line.
This peculiarity is not an accident or a special property of the four-bar
chain, but is an illustration of a general law regarding the subject
discovered by Aronhold and Sir A. B. W. Kennedy independently,
which may be thus stated: If any three bodies, a, b, c, have
plane motion their three virtual centres, Oab, Obc, Oac, are three
points on one straight line. A proof of this will be found in The
Mechanics of Machinery quoted above. Having obtained the set
of instantaneous centres for a chain, suppose a is the fixed link of
the chain and c any other link; then Oac is the instantaneous centre
of the two links and may be considered for the instant as the trace
of an axis fixed to an extension of the link a about which c is turning,
and thus problems of instantaneous velocity concerning the link c
are solved as though the link c were merely rotating for the instant
about a fixed axis coincident with the instantaneous axis.


	

	Fig. 123.
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Method 2.—The second method is based upon the vector representation
of velocity, and may be illustrated by applying it to the
four-bar chain. Let AD (fig. 123) be the fixed link. Consider the
link BC, and let it be required to find the velocity of the point B
having given the velocity of the point C. The principle upon which
the solution is based is that the only motion which B can have relatively
to an axis through C fixed to the link CD is one of turning about
C. Choose any pole O (fig. 124). From this pole set out Oc to represent
the velocity of the point C. The direction of this must be at
right angles to the line CD, because this is the only direction possible
to the point C. If the link BC moves without turning, Oc will also
represent the velocity of the point B; but, if the link is turning, B
can only move about the axis C, and its direction of motion is therefore
at right angles to the line CB. Hence set out the possible
direction of B′s motion in the velocity diagram, namely cb1, at right
angles to CB. But the point B must also move at right angles to
AB in the case under consideration. Hence draw a line through
O in the velocity diagram at right angles to AB to cut cb1 in b. Then
Ob is the velocity of the point b in magnitude and direction, and cb
is the tangential velocity of B relatively to C. Moreover, whatever
be the actual magnitudes of the velocities, the instantaneous velocity
ratio of the points C and B is given by the ratio Oc/Ob.

A most important property of the diagram (figs. 123 and 124)
is the following: If points X and x are taken dividing the link BC
and the tangential velocity cb, so that cx:xb = CX:XB, then Ox
represents the velocity of the point X in magnitude and direction.
The line cb has been called the velocity image of the rod, since it may
be looked upon as a scale drawing of the rod turned through 90°
from the actual rod. Or, put in another way, if the link CB is drawn
to scale on the new length cb in the velocity diagram (fig. 124), then
a vector drawn from O to any point on the new drawing of the rod
will represent the velocity of that point of the actual rod in magnitude
and direction. It will be understood that there is a new velocity
diagram for every new configuration of the mechanism, and that
in each new diagram the image of the rod will be different in scale.
Following the method indicated above for a kinematic chain in
general, there will be obtained a velocity diagram similar to that of
fig. 124 for each configuration of the mechanism, a diagram in which
the velocity of the several points in the chain utilized for drawing
the diagram will appear to the same scale, all radiating from the pole
O. The lines joining the ends of these several velocities are the
several tangential velocities, each being the velocity image of a link
in the chain. These several images are not to the same scale, so
that although the images may be considered to form collectively
an image of the chain itself, the several members of this chain-image
are to different scales in any one velocity diagram, and thus the chain-image
is distorted from the actual proportions of the mechanism
which it represents.
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§ 82.* Acceleration Diagram. Acceleration Image.—Although it is
possible to obtain the acceleration of points in a kinematic chain
with one link fixed by methods which utilize the instantaneous
centres of the chain, the vector method more readily lends itself
to this purpose. It should be understood that the instantaneous
centre considered in the preceding paragraphs is available only for
estimating relative velocities; it cannot be used in a similar manner
for questions regarding acceleration. That is to say, although the
instantaneous centre is a centre of no velocity for the instant, it
is not a centre of no acceleration, and in fact the centre of no acceleration
is in general a quite different point. The general principle on
which the method of drawing an acceleration diagram depends is
that if a link CB (fig. 125) have plane motion and the acceleration
of any point C be given in magnitude
and direction, the acceleration of any
other point B is the vector sum of
the acceleration of C, the radial
acceleration of B about C and the
tangential acceleration of B about C.
Let A be any origin, and let Ac
represent the acceleration of the
point C, ct the radial acceleration of
B about C which must be in a direction
parallel to BC, and tb the tangential
acceleration of B about C,
which must of course be at right
angles to ct; then the vector sum of
these three magnitudes is Ab, and this vector represents the
acceleration of the point B. The directions of the radial and
tangential accelerations of the point B are always known when the
position of the link is assigned, since these are to be drawn
respectively parallel to and at right angles to the link itself. The
magnitude of the radial acceleration is given by the expression
v2/BC, v being the velocity of the point B about the point C. This
velocity can always be found from the velocity diagram of the chain
of which the link forms a part. If dw/dt is the angular acceleration
of the link, dw/dt × CB is the tangential acceleration of the point
B about the point C. Generally this tangential acceleration is
unknown in magnitude, and it becomes part of the problem to find
it. An important property of the diagram is that if points X and x
are taken dividing the link CB and the whole acceleration of B about
C, namely, cb in the same ratio, then Ax represents the acceleration
of the point X in magnitude and direction; cb is called the acceleration
image of the rod. In applying this principle to the drawing of
an acceleration diagram for a mechanism, the velocity diagram
of the mechanism must be first drawn in order to afford the means
of calculating the several radial accelerations of the links. Then
assuming that the acceleration of one point of a particular link of
the mechanism is known together with the corresponding configuration
of the mechanism, the two vectors Ac and ct can be drawn.
The direction of tb, the third vector in the diagram, is also known, so
that the problem is reduced to the condition that b is somewhere
on the line tb. Then other conditions consequent upon the fact that
the link forms part of a kinematic chain operate to enable b to be
fixed. These methods are set forth and exemplified in Graphics,
by R. H. Smith (London, 1889). Examples, completely worked out,
of velocity and acceleration diagrams for the slider crank chain,
the four-bar chain, and the mechanism of the Joy valve gear will
be found in ch. ix. of Valves and Valve Gear Mechanism, by W. E.
Dalby (London, 1906).

Chapter II. On Applied Dynamics.

§ 83. Laws of Motion.—The action of a machine in transmitting
force and motion simultaneously, or performing work, is governed,
in common with the phenomena of moving bodies in general, by two
“laws of motion.”

Division 1. Balanced Forces in Machines of Uniform Velocity.

§ 84. Application of Force to Mechanism.—Forces are applied in
units of weight; and the unit most commonly employed in Britain
is the pound avoirdupois. The action of a force applied to a body
is always in reality distributed over some definite space, either a
volume of three dimensions or a surface of two. An example of a
force distributed throughout a volume is the weight of the body
itself, which acts on every particle, however small. The pressure
exerted between two bodies at their surface of contact, or between
the two parts of one body on either side of an ideal surface of separation,
is an example of a force distributed over a surface. The mode
of distribution of a force applied to a solid body requires to be considered
when its stiffness and strength are treated of; but, in questions
respecting the action of a force upon a rigid body considered
as a whole, the resultant of the distributed force, determined according
to the principles of statics, and considered as acting in a single
line and applied at a single point, may, for the occasion, be substituted
for the force as really distributed. Thus, the weight of each
separate piece in a machine is treated as acting wholly at its centre
of gravity, and each pressure applied to it as acting at a point called
the centre of pressure of the surface to which the pressure is really
applied.

§ 85. Forces applied to Mechanism Classed.—If θ be the obliquity
of a force F applied to a piece of a machine—that is, the angle made
by the direction of the force with the direction of motion of its point
of application—then by the principles of statics, F may be resolved
into two rectangular components, viz.:—

Along the direction of motion, P = F cos θ

Across the direction of motion, Q = F sin θ

(49)



If the component along the direction of motion acts with the
motion, it is called an effort; if against the motion, a resistance.
The component across the direction of motion is a lateral pressure;
the unbalanced lateral pressure on any piece, or part of a piece, is
deflecting force. A lateral pressure may increase resistance by causing
friction; the friction so caused acts against the motion, and
is a resistance, but the lateral pressure causing it is not a resistance.
Resistances are distinguished into useful and prejudicial, according
as they arise from the useful effect produced by the machine or from
other causes.

§ 86. Work.—Work consists in moving against resistance. The
work is said to be performed, and the resistance overcome. Work is
measured by the product of the resistance into the distance through
which its point of application is moved. The unit of work commonly
used in Britain is a resistance of one pound overcome through a
distance of one foot, and is called a foot-pound.

Work is distinguished into useful work and prejudicial or lost
work, according as it is performed in producing the useful effect of
the machine, or in overcoming prejudicial resistance.

§ 87. Energy: Potential Energy.—Energy means capacity for performing
work. The energy of an effort, or potential energy, is measured
by the product of the effort into the distance through which its point
of application is capable of being moved. The unit of energy is the
same with the unit of work.

When the point of application of an effort has been moved through
a given distance, energy is said to have been exerted to an amount
expressed by the product of the effort into the distance through
which its point of application has been moved.

§ 88. Variable Effort and Resistance.—If an effort has different
magnitudes during different portions of the motion of its point of
application through a given distance, let each different magnitude
of the effort P be multiplied by the length Δs of the corresponding
portion of the path of the point of application; the sum

Σ · PΔs

(50)

is the whole energy exerted. If the effort varies by insensible
gradations, the energy exerted is the integral or limit towards
which that sum approaches continually as the divisions of the path
are made smaller and more numerous, and is expressed by

∫ P ds.

(51)

Similar processes are applicable to the finding of the work performed
in overcoming a varying resistance.

The work done by a machine can be actually measured by means
of a dynamometer (q.v.).

§ 89. Principle of the Equality of Energy and Work.—From the
first law of motion it follows that in a machine whose pieces move
with uniform velocities the efforts and resistances must balance each
other. Now from the laws of statics it is known that, in order that
a system of forces applied to a system of connected points may be
in equilibrium, it is necessary that the sum formed by putting together
the products of the forces by the respective distances through which
their points of application are capable of moving simultaneously,
each along the direction of the force applied to it, shall be zero,—products
being considered positive or negative according as the
direction of the forces and the possible motions of their points of
application are the same or opposite.

In other words, the sum of the negative products is equal to the
sum of the positive products. This principle, applied to a machine
whose parts move with uniform velocities, is equivalent to saying
that in any given interval of time the energy exerted is equal to the work
performed.

The symbolical expression of this law is as follows: let efforts be
applied to one or any number of points of a machine; let any one
of these efforts be represented by P, and the distance traversed by
its point of application in a given interval of time by ds; let resistances
be overcome at one or any number of points of the same
machine; let any one of these resistances be denoted by R, and the
distance traversed by its point of application in the given interval
of time by ds′; then

Σ · P ds = Σ · R ds′.


(52)

The lengths ds, ds′ are proportional to the velocities of the points
to whose paths they belong, and the proportions of those velocities
to each other are deducible from the construction of the machine
by the principles of pure mechanism explained in Chapter I.

§ 90. Static Equilibrium of Mechanisms.—The principle stated in
the preceding section, namely, that the energy exerted is equal to
the work performed, enables the ratio of the components of the
forces acting in the respective directions of motion at two points of
a mechanism, one being the point of application of the effort, and the
other the point of application of the resistance, to be readily found.
Removing the summation signs in equation (52) in order to restrict
its application to two points and dividing by the common time
interval during which the respective small displacements ds and ds′
were made, it becomes P ds/dt = R ds′/dt, that is, Pv = Rv′, which shows
that the force ratio is the inverse of the velocity ratio. It follows
at once that any method which may be available for the determination
of the velocity ratio is equally available for the determination
of the force ratio, it being clearly understood that the forces involved
are the components of the actual forces resolved in the direction
of motion of the points. The relation between the effort and the
resistance may be found by means of this principle for all kinds of
mechanisms, when the friction produced by the components of the
forces across the direction of motion of the two points is neglected.
Consider the following example:—


	

	Fig. 126.


A four-bar chain having the configuration shown in fig. 126
supports a load P at the point x. What load is required at the point y
to maintain the configuration
shown, both
loads being supposed to
act vertically? Find
the instantaneous centre
Obd, and resolve each
load in the respective
directions of motion of
the points x and y;
thus there are obtained
the components P cos
θ and R cos φ. Let
the mechanism have a
small motion; then, for
the instant, the link b
is turning about its
instantaneous centre
Obd, and, if ω is its
instantaneous angular
velocity, the velocity
of the point x is ωr,
and the velocity of the
point y is ωs. Hence,
by the principle just
stated, P cos θ × ωr =
R cos φ × ωs. But, p
and q being respectively
the perpendiculars to
the lines of action of
the forces, this equation
reduces to Pp = Rq,
which shows that the
ratio of the two forces may be found by taking moments about the
instantaneous centre of the link on which they act.

The forces P and R may, however, act on different links. The
general problem may then be thus stated: Given a mechanism of
which r is the fixed link, and s and t any other two links, given also a
force ƒs, acting on the link s, to find the force ƒt acting in a given
direction on the link t, which will keep the mechanism in static
equilibrium. The graphic solution of this problem may be effected
thus:—


(1) Find the three virtual centres Ors, Ort, Ost, which must be
three points in a line.

(2) Resolve ƒs into two components, one of which, namely, ƒq,
passes through Ors and may be neglected, and the other ƒp
passes through Ost.

(3) Find the point M, where ƒp joins the given direction of ƒt, and
resolve ƒp into two components, of which one is in the direction
MOrt, and may be neglected because it passes through
Ort, and the other is in the given direction of ƒt and is therefore
the force required.




	

	Fig. 127.


This statement of the problem and the solution is due to Sir A. B.
W. Kennedy, and is given in ch. 8 of his Mechanics of Machinery.
Another general solution of
the problem is given in the
Proc. Lond. Math. Soc. (1878-1879),
by the same author.
An example of the method of
solution stated above, and
taken from the Mechanics of
Machinery, is illustrated by
the mechanism fig. 127, which
is an epicyclic train of three
wheels with the first wheel r
fixed.  Let it be required to
find the vertical force which
must act at the pitch radius
of the last wheel t to balance
exactly a force ƒs acting vertically
downwards on the arm
at the point indicated in the
figure. The two links concerned
are the last wheel t
and the arm s, the wheel r being the fixed link of the mechanism.
The virtual centres Ors, Ost are at the respective axes of the wheels
r and t, and the centre Ort divides the line through these two points
externally in the ratio of the train of wheels. The figure sufficiently
indicates the various steps of the solution.

The relation between the effort and the resistance in a machine
to include the effect of friction at the joints has been investigated in
a paper by Professor Fleeming Jenkin, “On the application of graphic
methods to the determination of the efficiency of machinery”

(Trans. Roy. Soc. Ed., vol. 28). It is shown that a machine may
at any instant be represented by a frame of links the stresses in
which are identical with the pressures at the joints of the mechanism.
This self-strained frame is called the dynamic frame of the machine.
The driving and resisting efforts are represented by elastic links
in the dynamic frame, and when the frame with its elastic links is
drawn the stresses in the several members of it may be determined
by means of reciprocal figures. Incidentally the method gives the
pressures at every joint of the mechanism.

§ 91. Efficiency.—The efficiency of a machine is the ratio of the
useful work to the total work—that is, to the energy exerted—and
is represented by


	Σ · Ruds′
	= 	Σ · Ru ds′
	= 	Σ · Ru ds′
	= 	U
	.

	Σ · R ds′ 	Σ · Ru ds′ + Σ · Rp ds′
	Σ · P ds 	E


(53)

Ru being taken to represent useful and Rp prejudicial resistances.
The more nearly the efficiency of a machine approaches to unity
the better is the machine.

§ 92. Power and Effect.—The power of a machine is the energy
exerted, and the effect the useful work performed, in some interval
of time of definite length, such as a second, an hour, or a day.

The unit of power, called conventionally a horse-power, is 550
foot-pounds per second, or 33,000 foot-pounds per minute, or
1,980,000 foot-pounds per hour.

§ 93. Modulus of a Machine.—In the investigation of the properties
of a machine, the useful resistances to be overcome and the useful
work to be performed are usually given. The prejudicial resistances
arc generally functions of the useful resistances of the weights of
the pieces of the mechanism, and of their form and arrangement;
and, having been determined, they serve for the computation of
the lost work, which, being added to the useful work, gives the
expenditure of energy required. The result of this investigation,
expressed in the form of an equation between this energy and the
useful work, is called by Moseley the modulus of the machine. The
general form of the modulus may be expressed thus—

E = U + φ (U, A) + ψ (A),

(54)

where A denotes some quantity or set of quantities depending on the
form, arrangement, weight and other properties of the mechanism.
Moseley, however, has pointed out that in most cases this equation
takes the much more simple form of

E = (1 + A) U + B,

(55)

where A and B are constants, depending on the form, arrangement
and weight of the mechanism. The efficiency corresponding to the
last equation is


	U
	= 	1
	.

	E 	1 + A + B/U


(56)

§ 94. Trains of Mechanism.—In applying the preceding principles
to a train of mechanism, it may either be treated as a whole, or
it may be considered in sections consisting of single pieces, or of
any convenient portion of the train—each section being treated as
a machine, driven by the effort applied to it and energy exerted
upon it through its line of connexion with the preceding section,
performing useful work by driving the following section, and losing
work by overcoming its own prejudicial resistances. It is evident
that the efficiency of the whole train is the product of the efficiencies of
its sections.

§ 95. Rotating Pieces: Couples of Forces.—It is often convenient
to express the energy exerted upon and the work performed by a
turning piece in a machine in terms of the moment of the couples
of forces acting on it, and of the angular velocity. The ordinary
British unit of moment is a foot-pound; but it is to be remembered
that this is a foot-pound of a different sort from the unit of energy
and work.

If a force be applied to a turning piece in a line not passing
through its axis, the axis will press against its bearings with an
equal and parallel force, and the equal and opposite reaction of the
bearings will constitute, together with the first-mentioned force, a
couple whose arm is the perpendicular distance from the axis to the
line of action of the first force.

A couple is said to be right or left handed with reference to the
observer, according to the direction in which it tends to turn the
body, and is a driving couple or a resisting couple according as its
tendency is with or against that of the actual rotation.

Let dt be an interval of time, α the angular velocity of the piece;
then αdt is the angle through which it turns in the interval dt, and ds = v dt = rα dt
is the distance through which the point of application
of the force moves. Let P represent an effort, so that Pr is a driving
couple, then

P ds = Pv dt = Prα dt = Mα dt

(57)

is the energy exerted by the couple M in the interval dt; and a
similar equation gives the work performed in overcoming a resisting
couple. When several couples act on one piece, the resultant
of their moments is to be multiplied by the common angular velocity
of the whole piece.

§ 96. Reduction of Forces to a given Point, and of Couples to the
Axis of a given Piece.—In computations respecting machines it is
often convenient to substitute for a force applied to a given point,
or a couple applied to a given piece, the equivalent force or couple
applied to some other point or piece; that is to say, the force or
couple, which, if applied to the other point or piece, would exert
equal energy or employ equal work. The principles of this reduction
are that the ratio of the given to the equivalent force is the reciprocal
of the ratio of the velocities of their points of application, and the
ratio of the given to the equivalent couple is the reciprocal of the
ratio of the angular velocities of the pieces to which they are applied.

These velocity ratios are known by the construction of the
mechanism, and are independent of the absolute speed.

§ 97. Balanced Lateral Pressure of Guides and Bearings.—The
most important part of the lateral pressure on a piece of mechanism
is the reaction of its guides, if it is a sliding piece, or of the bearings
of its axis, if it is a turning piece; and the balanced portion of this
reaction is equal and opposite to the resultant of all the other forces
applied to the piece, its own weight included. There may be or
may not be an unbalanced component in this pressure, due to the
deviated motion. Its laws will be considered in the sequel.

§ 98. Friction. Unguents.—The most important kind of resistance
in machines is the friction or rubbing resistance of surfaces which
slide over each other. The direction of the resistance of friction is
opposite to that in which the sliding takes place. Its magnitude
is the product of the normal pressure or force which presses the
rubbing surfaces together in a direction perpendicular to themselves
into a specific constant already mentioned in § 14, as the coefficient
of friction, which depends on the nature and condition of the surfaces
of the unguent, if any, with which they are covered. The total
pressure exerted between the rubbing surfaces is the resultant of
the normal pressure and of the friction, and its obliquity, or inclination
to the common perpendicular of the surfaces, is the angle of
repose formerly mentioned in § 14, whose tangent is the coefficient
of friction. Thus, let N be the normal pressure, R the friction, T
the total pressure, ƒ the coefficient of friction, and φ the angle of
repose; then

ƒ = tan φ

R = ƒN = N tan φ = T sin φ

(58)

Experiments on friction have been made by Coulomb, Samuel
Vince, John Rennie, James Wood, D. Rankine and others. The
most complete and elaborate experiments are those of Morin, published
in his Notions fondamentales de mécanique, and republished
in Britain in the works of Moseley and Gordon.

The experiments of Beauchamp Tower (“Report of Friction
Experiments,” Proc. Inst. Mech. Eng., 1883) showed that when oil
is supplied to a journal by means of an oil bath the coefficient
of friction varies nearly inversely as the load on the bearing, thus
making the product of the load on the bearing and the coefficient
of friction a constant. Mr Tower’s experiments were carried out
at nearly constant temperature. The more recent experiments of
Lasche (Zeitsch, Verein Deutsche Ingen., 1902, 46, 1881) show that
the product of the coefficient of friction, the load on the bearing, and
the temperature is approximately constant. For further information
on this point and on Osborne Reynolds’s theory of lubrication see
Bearings and Lubrication.

§ 99. Work of Friction. Moment of Friction.—The work performed
in a unit of time in overcoming the friction of a pair of surfaces is
the product of the friction by the velocity of sliding of the surfaces
over each other, if that is the same throughout the whole extent of
the rubbing surfaces. If that velocity is different for different portions
of the rubbing surfaces, the velocity of each portion is to be
multiplied by the friction of that portion, and the results summed
or integrated.

When the relative motion of the rubbing surfaces is one of rotation,
the work of friction in a unit of time, for a portion of the rubbing
surfaces at a given distance from the axis of rotation, may be found
by multiplying together the friction of that portion, its distance
from the axis, and the angular velocity. The product of the force
of friction by the distance at which it acts from the axis of rotation
is called the moment of friction. The total moment of friction of a
pair of rotating rubbing surfaces is the sum or integral of the moments
of friction of their several portions.

To express this symbolically, let du represent the area of a portion
of a pair of rubbing surfaces at a distance r from the axis of their
relative rotation; p the intensity of the normal pressure at du per
unit of area; and ƒ the coefficient of friction. Then the moment of
friction of du is ƒpr du;


the total moment of friction is ƒ ∫ pr·du;

and the work performed in a unit cf time in overcoming
friction, when the angular velocity is α, is αƒ ∫ pr·du.



(59)

It is evident that the moment of friction, and the work lost by
being performed in overcoming friction, are less in a rotating piece
as the bearings are of smaller radius. But a limit is put to the
diminution of the radii of journals and pivots by the conditions of
durability and of proper lubrication, and also by conditions of
strength and stiffness.

§ 100. Total Pressure between Journal and Bearing.—A single
piece rotating with a uniform velocity has four mutually balanced
forces applied to it: (l) the effort exerted on it by the piece
which drives it; (2) the resistance of the piece which follows it—which
may be considered for the purposes of the present question
as useful resistance; (3) its weight; and (4) the reaction of its own
cylindrical bearings. There are given the following data:—




The direction of the effort.

The direction of the useful resistance.

The weight of the piece and the direction in which it acts.

The magnitude of the useful resistance.

The radius of the bearing r.

The angle of repose φ, corresponding to the friction of the journal
    on the bearing.



And there are required the following:—


The direction of the reaction of the bearing.

The magnitude of that reaction.

The magnitude of the effort.



Let the useful resistance and the weight of the piece be compounded
by the principles of statics into one force, and let this
be called the given force.


	

	Fig. 128.


The directions of the effort and of the given force are either
parallel or meet in a point. If they are parallel, the direction of
the reaction of the bearing is also parallel to them; if they meet
in a point, the direction of the reaction traverses the same point.

Also, let AAA, fig. 128, be a section of the bearing, and C its axis;
then the direction of the reaction, at the point where it intersects
the circle AAA, must make the angle φ
with the radius of that circle; that is to say,
it must be a line such as PT touching the
smaller circle BB, whose radius is r · sin φ.
The side on which it touches that circle
is determined by the fact that the obliquity
of the reaction is such as to oppose the
rotation.

Thus is determined the direction of the
reaction of the bearing; and the magnitude
of that reaction and of the effort are then
found by the principles of the equilibrium
of three forces already stated in § 7.

The work lost in overcoming the friction of the bearing is the same
as that which would be performed in overcoming at the circumference
of the small circle BB a resistance equal to the whole pressure between
the journal and bearing.

In order to diminish that pressure to the smallest possible amount,
the effort, and the resultant of the useful resistance, and the weight
of the piece (called above the “given force”) ought to be opposed
to each other as directly as is practicable consistently with the
purposes of the machine.

An investigation of the forces acting on a bearing and journal
lubricated by an oil bath will be found in a paper by Osborne
Reynolds in the Phil. Trans. pt. i. (1886). (See also Bearings.)

§ 101. Friction of Pivots and Collars.—When a shaft is acted upon
by a force tending to shift it lengthways, that force must be balanced
by the reaction of a bearing against a pivot at the end of the shaft;
or, if that be impossible, against one or more collars, or rings projecting
from the body of the shaft. The bearing of the pivot is called a step
or footstep. Pivots require great hardness, and are usually made of
steel. The flat pivot is a cylinder of steel having a plane circular
end as a rubbing surface. Let N be the total pressure sustained by
a flat pivot of the radius r; if that pressure be uniformly distributed,
which is the case when the rubbing surfaces of the pivot and its step
are both true planes, the intensity of the pressure is

p = N / πr2;

(60)

and, introducing this value into equation 59, the moment of friction
of the flat pivot is found to be

2⁄3ƒNr

(61)

or two-thirds of that of a cylindrical journal of the same radius under
the same normal pressure.

The friction of a conical pivot exceeds that of a flat pivot of the
same radius, and under the same pressure, in the proportion of the
side of the cone to the radius of its base.

The moment of friction of a collar is given by the formula—


	2⁄3 ƒN 	r3 − r′3
	,

	r2 − r′2


(62)

where r is the external and r′ the internal radius.


	

	Fig. 129.


In the cup and ball pivot the end of the shaft
and the step present two recesses facing each
other, into which art fitted two shallow cups
of steel or hard bronze. Between the concave
spherical surfaces of those cups is placed a steel
ball, being either a complete sphere or a lens
having convex surfaces of a somewhat less radius
than the concave surfaces of the cups. The
moment of friction of this pivot is at first almost
inappreciable from the extreme smallness of the
radius of the circles of contact of the ball and
cups, but, as they wear, that radius and the
moment of friction increase.

It appears that the rapidity with which a
rubbing surface wears away is proportional to
the friction and to the velocity jointly, or nearly
so. Hence the pivots already mentioned wear
unequally at different points, and tend to alter their figures. Schiele
has invented a pivot which preserves its original figure by wearing
equally at all points in a direction parallel to its axis. The following
are the principles on which this equality of wear depends:—

The rapidity of wear of a surface measured in an oblique direction
is to the rapidity of wear measured normally as the secant of the
obliquity is to unity. Let OX (fig. 129) be the axis of a pivot, and
let RPC be a portion of a curve such that at any point P the secant
of the obliquity to the normal of the curve of a line parallel to the
axis is inversely proportional to the ordinate PY, to which the
velocity of P is proportional. The rotation of that curve round OX
will generate the form of pivot required. Now let PT be a tangent to
the curve at P, cutting OX in T; PT = PY × secant obliquity, and
this is to be a constant quantity; hence the curve is that known as
the tractory of the straight line OX, in which PT = OR = constant.
This curve is described by having a fixed straight edge parallel to
OX, along which slides a slider carrying a pin whose centre is T. On
that pin turns an arm, carrying at a point P a tracing-point, pencil
or pen. Should the pen have a nib of two jaws, like those of an
ordinary drawing-pen, the plane of the jaws must pass through PT.
Then, while T is slid along the axis from O towards X, P will be drawn
after it from R towards C along the tractory. This curve, being an
asymptote to its axis, is capable of being indefinitely prolonged
towards X; but in designing pivots it should stop before the angle
PTY becomes less than the angle of repose of the rubbing surfaces,
otherwise the pivot will be liable to stick in its bearing. The moment
of friction of “Schiele’s anti-friction pivot,” as it is called, is equal
to that of a cylindrical journal of the radius OR = PT the constant
tangent, under the same pressure.

Records of experiments on the friction of a pivot bearing will be
found in the Proc. Inst. Mech. Eng. (1891), and on the friction of a
collar bearing ib. May 1888.

§ 102. Friction of Teeth.—Let N be the normal pressure exerted
between a pair of teeth of a pair of wheels; s the total distance
through which they slide upon each other; n the number of pairs
of teeth which pass the plane of axis in a unit of time; then

nƒNs

(63)

is the work lost in unity of time by the friction of the teeth. The
sliding s is composed of two parts, which take place during the
approach and recess respectively. Let those be denoted by s1 and
s2, so that s = s1 + s2. In § 45 the velocity of sliding at any instant
has been given, viz. u = c (α1 + α2), where u is that velocity, c the
distance T1 at any instant from the point of contact of the teeth to
the pitch-point, and α1, α2 the respective angular velocities of the
wheels.

Let v be the common velocity of the two pitch-circles, r1, r2, their
radii; then the above equation becomes


	u = cv ( 	1
	+ 	1
	).

	r1 	r2


To apply this to involute teeth, let c1 be the length of the approach,
c2 that of the recess, u1, the mean volocity of sliding during the
approach, u2 that during the recess; then


	u1 = 	c1v
	( 	1
	+ 	1
	);   u2 = 	c2v
	( 	1
	+ 	1
	)

	2 	r1
	r2 	2
	r1 	r2


also, let θ be the obliquity of the action; then the times occupied
by the approach and recess are respectively


	c1
	,    	c2
	;

	v cos θ 	v cos θ


giving, finally, for the length of sliding between each pair of teeth,


	s = s1 + s2 = 	c12 + c22
	( 	1
	+ 	1
	)

	2 cos θ 	r1
	r2


(64)

which, substituted in equation (63), gives the work lost in a unit of
time by the friction of involute teeth. This result, which is exact
for involute teeth, is approximately true for teeth of any figure.

For inside gearing, if r1 be the less radius and r2 the greater,
1/r1 − 1/r2 is to be substituted for 1/r1 + 1/r2.

§ 103. Friction of Cords and Belts.—A flexible band, such as a
cord, rope, belt or strap, may be used either to exert an effort or a
resistance upon a pulley round which it wraps. In either case the
tangential force, whether effort or resistance, exerted between the
band and the pulley is their mutual friction, caused by and proportional
to the normal pressure between them.

Let T1 be the tension of the free part of the band at that side
towards which it tends to draw the pulley, or from which the pulley
tends to draw it; T2 the tension of the free part at the other side;
T the tension of the band at any intermediate point of its arc of
contact with the pulley; θ the ratio of the length of that arc to the
radius of the pulley; dθ the ratio of an indefinitely small element
of that arc to the radius; F = T1 − T2 the total friction between the
band and the pulley; dF the elementary portion of that friction
due to the elementary arc dθ; ƒ the coefficient of friction between
the materials of the band and pulley.

Then, according to a well-known principle in statics, the normal
pressure at the elementary arc dθ is T dθ, T being the mean tension
of the band at that elementary arc; consequently the friction on
that arc is dF = ƒT dθ. Now that friction is also the difference

between the tensions of the band at the two ends of the elementary
arc, or dT = dF = ƒT dθ; which equation, being integrated throughout
the entire arc of contact, gives the following formulae:—


	hyp log. 	T1 
	= ƒθ

	T2



	T1
	= eƒθ

	T2


F = T1 − T2 = T1 (1 − e − ƒθ) = T2 (eƒθ − 1)

(65)

When a belt connecting a pair of pulleys has the tensions of its
two sides originally equal, the pulleys being at rest, and when the
pulleys are next set in motion, so that one of them drives the other
by means of the belt, it is found that the advancing side of the
belt is exactly as much tightened as the returning side is slackened,
so that the mean tension remains unchanged. Its value is given by
this formula—


	T1 + T2
	= 	eƒθ + 1


	2 	2 (eƒθ − 1)


(66)

which is useful in determining the original tension required to enable
a belt to transmit a given force between two pulleys.

The equations 65 and 66 are applicable to a kind of brake called
a friction-strap, used to stop or moderate the velocity of machines
by being tightened round a pulley. The strap is usually of iron,
and the pulley of hard wood.

Let α denote the arc of contact expressed in turns and fractions
of a turn; then

θ = 6.2832a

eƒθ = number whose common logarithm is 2.7288ƒa

(67)

See also Dynamometer for illustrations of the use of what are
essentially friction-straps of different forms for the measurement of
the brake horse-power of an engine or motor.

§ 104. Stiffness of Ropes.—Ropes offer a resistance to being bent,
and, when bent, to being straightened again, which arises from the
mutual friction of their fibres. It increases with the sectional area
of the rope, and is inversely proportional to the radius of the curve
into which it is bent.

The work lost in pulling a given length of rope over a pulley is
found by multiplying the length of the rope in feet by its stiffness
in pounds, that stiffness being the excess of the tension at the
leading side of the rope above that at the following side, which is
necessary to bend it into a curve fitting the pulley, and then to
straighten it again.

The following empirical formulae for the stiffness of hempen ropes
have been deduced by Morin from the experiments of Coulomb:—

Let F be the stiffness in pounds avoirdupois; d the diameter of
the rope in inches, n = 48d2 for white ropes and 35d2 for tarred ropes;
r the effective radius of the pulley in inches; T the tension in pounds.
Then


	For white ropes, F = 	n
	(0.0012 + 0.001026n + 0.0012T).

	r



	For tarred ropes, F = 	n
	(0.006 + 0.001392n + 0.00168T).

	r


(68)

§ 105. Friction-Couplings.—Friction is useful as a means of communicating
motion where sudden changes either of force or velocity
take place, because, being limited in amount, it may be so adjusted
as to limit the forces which strain the pieces of the mechanism
within the bounds of safety. Amongst contrivances for effecting
this object are friction-cones. A rotating shaft carries upon a cylindrical
portion of its figure a wheel or pulley turning loosely on it,
and consequently capable of remaining at rest when the shaft is
in motion. This pulley has fixed to one side, and concentric with
it, a short frustum of a hollow cone. At a small distance from the
pulley the shaft carries a short frustum of a solid cone accurately
turned to fit the hollow cone. This frustum is made always to turn
along with the shaft by being fitted on a square portion of it, or by
means of a rib and groove, or otherwise, but is capable of a slight
longitudinal motion, so as to be pressed into, or withdrawn from,
the hollow cone by means of a lever. When the cones are pressed
together or engaged, their friction causes the pulley to rotate along
with the shaft; when they are disengaged, the pulley is free to stand
still. The angle made by the sides of the cones with the axis should
not be less than the angle of repose. In the friction-clutch, a pulley
loose on a shaft has a hoop or gland made to embrace it more or less
tightly by means of a screw; this hoop has short projecting arms or
ears. A fork or clutch rotates along with the shaft, and is capable
of being moved longitudinally by a handle. When the clutch is
moved towards the hoop, its arms catch those of the hoop, and
cause the hoop to rotate and to communicate its rotation to the pulley
by friction. There are many other contrivances of the same class,
but the two just mentioned may serve for examples.

§ 106. Heat of Friction: Unguents.—The work lost in friction is
employed in producing heat. This fact is very obvious, and has
been known from a remote period; but the exact determination of
the proportion of the work lost to the heat produced, and the experimental
proof that that proportion is the same under all circumstances
and with all materials, solid, liquid and gaseous, are comparatively
recent achievements of J. P. Joule. The quantity of work which
produces a British unit of heat (or so much heat as elevates the
temperature of one pound of pure water, at or near ordinary atmospheric
temperatures, by 1° F.) is 772 foot-pounds. This constant,
now designated as “Joule’s equivalent,” is the principal experimental
datum of the science of thermodynamics.

A more recent determination (Phil. Trans., 1897), by Osborne
Reynolds and W. M. Moorby, gives 778 as the mean value of Joule’s
equivalent through the range of 32° to 212° F. See also the papers
of Rowland in the Proc. Amer. Acad. (1879), and Griffiths, Phil.
Trans. (1893).

The heat produced by friction, when moderate in amount, is useful
in softening and liquefying thick unguents; but when excessive it is
prejudicial, by decomposing the unguents, and sometimes even by
softening the metal of the bearings, and raising their temperature
so high as to set fire to neighbouring combustible matters.

Excessive heating is prevented by a constant and copious supply
of a good unguent. The elevation of temperature produced by the
friction of a journal is sometimes used as an experimental test of
the quality of unguents. For modern methods of forced lubrication
see Bearings.

§ 107. Rolling Resistance.—By the rolling of two surfaces over
each other without sliding a resistance is caused which is called
sometimes “rolling friction,” but more correctly rolling resistance.
It is of the nature of a couple, resisting rotation. Its moment is
found by multiplying the normal pressure between the rolling surfaces
by an arm, whose length depends on the nature of the rolling
surfaces, and the work lost in a unit of time in overcoming it is the
product of its moment by the angular velocity of the rolling surfaces
relatively to each other. The following are approximate values of
the arm in decimals of a foot:—


	Oak upon oak 	0.006 (Coulomb).

	Lignum vitae on oak 	0.004    ”

	Cast iron on cast iron 	0.002 (Tredgold).



§ 108. Reciprocating Forces: Stored and Restored Energy.—When
a force acts on a machine alternately as an effort and as a resistance,
it may be called a reciprocating force. Of this kind is the weight of
any piece in the mechanism whose centre of gravity alternately
rises and falls; for during the rise of the centre of gravity that weight
acts as a resistance, and energy is employed in lifting it to an amount
expressed by the product of the weight into the vertical height of
its rise; and during the fall of the centre of gravity the weight acts
as an effort, and exerts in assisting to perform the work of the
machine an amount of energy exactly equal to that which had
previously been employed in lifting it. Thus that amount of energy
is not lost, but has its operation deferred; and it is said to be stored
when the weight is lifted, and restored when it falls.

In a machine of which each piece is to move with a uniform
velocity, if the effort and the resistance be constant, the weight of
each piece must be balanced on its axis, so that it may produce
lateral pressure only, and not act as a reciprocating force. But if
the effort and the resistance be alternately in excess, the uniformity
of speed may still be preserved by so adjusting some moving weight
in the mechanism that when the effort is in excess it may be lifted,
and so balance and employ the excess of effort, and that when the
resistance is in excess it may fall, and so balance and overcome the
excess of resistance—thus storing the periodical excess of energy and
restoring that energy to perform the periodical excess of work.

Other forces besides gravity may be used as reciprocating forces
for storing and restoring energy—for example, the elasticity of a
spring or of a mass of air.

In most of the delusive machines commonly called “perpetual
motions,” of which so many are patented in each year, and which
are expected by their inventors to perform work without receiving
energy, the fundamental fallacy consists in an expectation that
some reciprocating force shall restore more energy than it has been
the means of storing.

Division 2. Deflecting Forces.

§ 109. Deflecting Force for Translation in a Curved Path.—In
machinery, deflecting force is supplied by the tenacity of some
piece, such as a crank, which guides the deflected body in its curved
path, and is unbalanced, being employed in producing deflexion,
and not in balancing another force.

§ 110. Centrifugal Force of a Rotating Body.—The centrifugal
force exerted by a rotating body on its axis of rotation is the same in
magnitude as if the mass of the body were concentrated at its centre of
gravity, and acts in a plane passing through the axis of rotation and the
centre of gravity of the body.

The particles of a rotating body exert centrifugal forces on each
other, which strain the body, and tend to tear it asunder, but these
forces balance each other, and do not affect the resultant centrifugal
force exerted on the axis of rotation.3

If the axis of rotation traverses the centre of gravity of the body,
the centrifugal force exerted on that axis is nothing.

Hence, unless there be some reason to the contrary, each piece of
a machine should be balanced on its axis of rotation; otherwise the

centrifugal force will cause strains, vibration and increased friction,
and a tendency of the shafts to jump out of their bearings.

§ 111. Centrifugal Couples of a Rotating Body.—Besides the tendency
(if any) of the combined centrifugal forces of the particles of
a rotating body to shift the axis of rotation, they may also tend to
turn it out of its original direction. The latter tendency is called
a centrifugal couple, and vanishes for rotation about a principal axis.

It is essential to the steady motion of every rapidly rotating
piece in a machine that its axis of rotation should not merely traverse
its centre of gravity, but should be a permanent axis; for otherwise
the centrifugal couples will increase friction, produce oscillation of
the shaft and tend to make it leave its bearings.

The principles of this and the preceding section are those which
regulate the adjustment of the weight and position of the counterpoises
which are placed between the spokes of the driving-wheels of
locomotive engines.


	

	(From Balancing of Engines, by
permission of Edward Arnold.)

	Fig. 130.


§ 112.* Method of computing the position and magnitudes of
balance weights which must be added to a given system of arbitrarily
chosen rotating masses in order to make the common axis of rotation
a permanent axis.—The method here briefly explained is taken
from a paper by W. E. Dalby, “The Balancing of Engines with
special reference to Marine Work,” Trans. Inst. Nav. Arch. (1899).
Let the weight (fig. 130), attached to a truly turned disk, be
rotated by the shaft OX, and conceive that the shaft is held
in a bearing at one point, O. The
force required to constrain the weight
to move in a circle, that is the deviating
force, produces an equal and
opposite reaction on the shaft, whose
amount F is equal to the centrifugal
force Wa2r/g ℔, where r is the radius
of the mass centre of the weight, and
a is its angular velocity in radians per
second. Transferring this force to
the point O, it is equivalent to, (1)
a force at O equal and parallel to
F, and, (2) a centrifugal couple of Fa
foot-pounds. In order that OX may
be a permanent axis it is necessary that there should be a
sufficient number of weights attached to the shaft and so distributed
that when each is referred to the point O

(1) ΣF  = 0

(2) ΣFa = 0


(a)

The plane through O to which the shaft is perpendicular is called
the reference plane, because all the transferred forces act in that plane
at the point O. The plane through the radius of the weight containing
the axis OX is called the axial plane because it contains the forces
forming the couple due to the transference of F to the reference plane.
Substituting the values of F in (a) the two conditions become


	(1) (W1r1 + W2r2 + W3r3 + ...) 	α2
	= 0

	g



	(2) (W1a1r1 + W2a2r2 + ... ) 	α2
	= 0

	g


(b)

In order that these conditions may obtain, the quantities in the
brackets must be zero, since the factor α2/g is not zero. Hence finally
the conditions which must be satisfied by the system of weights in
order that the axis of rotation may be a permanent axis is


	(1) (W1r1 + W2r2 + W3r3) = 0

	(2) (W1a1r1 + W2a2r2 + W3a3r3) = 0



(c)

It must be remembered that these are all directed quantities, and
that their respective sums are to be taken by drawing vector polygons.
In drawing these polygons the magnitude of the vector of
the type Wr is the product Wr, and the direction of the vector
is from the shaft outwards towards the weight W, parallel to the
radius r. For the vector representing a couple of the type War,
if the masses are all on the same side of the reference plane, the
direction of drawing is from the axis outwards; if the masses are
some on one side of the reference plane and some on the other side,
the direction of drawing is from the axis outwards towards the
weight for all masses on the one side, and from the mass inwards
towards the axis for all weights on the other side, drawing always
parallel to the direction defined by the radius r. The magnitude
of the vector is the product War. The conditions (c) may thus be
expressed: first, that the sum of the vectors Wr must form a closed
polygon, and, second, that the sum of the vectors War must form a
closed polygon. The general problem in practice is, given a system
of weights attached to a shaft, to find the respective weights and
positions of two balance weights or counterpoises which must be
added to the system in order to make the shaft a permanent axis,
the planes in which the balance weights are to revolve also being
given. To solve this the reference plane must be chosen so that it
coincides with the plane of revolution of one of the as yet unknown
balance weights. The balance weight in this plane has therefore
no couple corresponding to it. Hence by drawing a couple polygon
for the given weights the vector which is required to close the polygon
is at once found and from it the magnitude and position of the balance
weight which must be added to the system to balance the couples
follow at once. Then, transferring the product Wr corresponding
with this balance weight to the reference plane, proceed to draw
the force polygon. The vector required to close it will determine the
second balance weight, the work may be checked by taking the
reference plane to coincide with the plane of revolution of the second
balance weight and then re-determining them, or by taking a reference
plane anywhere and including the two balance weights trying
if condition (c) is satisfied.

When a weight is reciprocated, the equal and opposite force required
for its acceleration at any instant appears as an unbalanced
force on the frame of the machine to which the weight belongs. In
the particular case, where the motion is of the kind known as “simple
harmonic” the disturbing force on the frame due to the reciprocation
of the weight is equal to the component of the centrifugal
force in the line of stroke due to a weight equal to the reciprocated
weight supposed concentrated at the crank pin. Using this principle
the method of finding the balance weights to be added to a given
system of reciprocating weights in order to produce a system of
forces on the frame continuously in equilibrium is exactly the same
as that just explained for a system of revolving weights, because for
the purpose of finding the balance weights each reciprocating
weight may be supposed attached to the crank pin which operates
it, thus forming an equivalent revolving system. The balance
weights found as part of the equivalent revolving system when
reciprocated by their respective crank pins form the balance weights
for the given reciprocating system. These conditions may be exactly
realized by a system of weights reciprocated by slotted bars, the
crank shaft driving the slotted bars rotating uniformly. In practice
reciprocation is usually effected through a connecting rod, as in the
case of steam engines. In balancing the mechanism of a steam
engine it is often sufficiently accurate to consider the motion of the
pistons as simple harmonic, and the effect on the framework of the
acceleration of the connecting rod may be approximately allowed for
by distributing the weight of the rod between the crank pin and the
piston inversely as the centre of gravity of the rod divides the distance
between the centre of the cross head pin and the centre of the crank
pin. The moving parts of the engine are then divided into two
complete and independent systems, namely, one system of revolving
weights consisting of crank pins, crank arms, &c., attached to and
revolving with the crank shaft, and a second system of reciprocating
weights consisting of the pistons, cross-heads, &c., supposed to be
moving each in its line of stroke with simple harmonic motion. The
balance weights are to be separately calculated for each system, the
one set being added to the crank shaft as revolving weights, and the
second set being included with the reciprocating weights and operated
by a properly placed crank on the crank shaft. Balance weights
added in this way to a set of reciprocating weights are sometimes
called bob-weights. In the case of locomotives the balance weights
required to balance the pistons are added as revolving weights to the
crank shaft system, and in fact are generally combined with the
weights required to balance the revolving system so as to form one
weight, the counterpoise referred to in the preceding section, which
is seen between the spokes of the wheels of a locomotive. Although
this method balances the pistons in the horizontal plane, and thus
allows the pull of the engine on the train to be exerted without
the variation due to the reciprocation of the pistons, yet the force
balanced horizontally is introduced vertically and appears as a
variation of pressure on the rail. In practice about two-thirds of
the reciprocating weight is balanced in order to keep this variation
of rail pressure within safe limits. The assumption that the pistons
of an engine move with simple harmonic motion is increasingly
erroneous as the ratio of the length of the crank r, to the length of
the connecting rod l increases. A more accurate though still approximate
expression for the force on the frame due to the acceleration
of the piston whose weight is W is given by


	W
	ω2r { cos θ + 	r
	cos 2θ }

	g 	l


The conditions regulating the balancing of a system of weights
reciprocating under the action of accelerating forces given by the
above expression are investigated in a paper by Otto Schlick,
“On Balancing of Steam Engines,” Trans, Inst. Nav. Arch. (1900),
and in a paper by W. E. Dalby, “On the Balancing of the Reciprocating
Parts of Engines, including the Effect of the Connecting Rod”
(ibid., 1901). A still more accurate expression than the above is
obtained by expansion in a Fourier series, regarding which and its
bearing on balancing engines see a paper by J. H. Macalpine, “A
Solution of the Vibration Problem” (ibid., 1901). The whole subject
is dealt with in a treatise, The Balancing of Engines, by W. E. Dalby
(London, 1906). Most of the original papers on this subject of engine
balancing are to be found in the Transactions of the Institution of
Naval Architects.

§ 113.* Centrifugal Whirling of Shafts.—When a system of revolving
masses is balanced so that the conditions of the preceding section
are fulfilled, the centre of gravity of the system lies on the axis of
revolution. If there is the slightest displacement of the centre of
gravity of the system from the axis of revolution a force acts on the
shaft tending to deflect it, and varies as the deflexion and as the
square of the speed. If the shaft is therefore to revolve stably,
this force must be balanced at any instant by the elastic resistance
of the shaft to deflexion. To take a simple case, suppose a shaft,

supported on two bearings to carry a disk of weight W at its centre,
and let the centre of gravity of the disk be at a distance e from the
axis of rotation, this small distance being due to imperfections of
material or faulty construction. Neglecting the mass of the shaft
itself, when the shaft rotates with an angular velocity a, the centrifugal
force Wa2e/g will act upon the shaft and cause its axis to deflect
from the axis of rotation a distance, y say. The elastic resistance
evoked by this deflexion is proportional to the deflexion, so that if
c is a constant depending upon the form, material and method of
support of the shaft, the following equality must hold if the shaft
is to rotate stably at the stated speed—


	W
	(y + e) a2 = cy,

	g


from which y = Wa2e / (gc − Wa2).

This expression shows that as a increases y increases until when
Wa2 = gc, y becomes infinitely large. The corresponding value of
a, namely √(gc/W), is called the critical velocity of the shaft, and is the
speed at which the shaft ceases to rotate stably and at which centrifugal
whirling begins. The general problem is to find the value of
a corresponding to all kinds of loadings on shafts supported in any
manner. The question was investigated by Rankine in an article
in the Engineer (April 9, 1869). Professor A. G. Greenhill treated
the problem of the centrifugal whirling of an unloaded shaft with
different supporting conditions in a paper “On the Strength of
Shafting exposed both to torsion and to end thrust,” Proc. Inst.
Mech. Eng. (1883). Professor S. Dunkerley (“On the Whirling
and Vibration of Shafts,” Phil. Trans., 1894) investigated the question
for the cases of loaded and unloaded shafts, and, owing to the
complication arising from the application of the general theory to
the cases of loaded shafts, devised empirical formulae for the critical
speeds of shafts loaded with heavy pulleys, based generally upon the
following assumption, which is stated for the case of a shaft carrying
one pulley: If N1, N2 be the separate speeds of whirl of the shaft
and pulley on the assumption that the effect of one is neglected
when that of the other is under consideration, then the resulting
speed of whirl due to both causes combined may be taken to be of
the form N1N2 √(N21 + N12) where N means revolutions per minute.
This form is extended to include the cases of several pulleys on the
same shaft. The interesting and important part of the investigation
is that a number of experiments were made on small shafts arranged
in different ways and loaded in different ways, and the speed at
which whirling actually occurred was compared with the speed
calculated from formulae of the general type indicated above.
The agreement between the observed and calculated values of the
critical speeds was in most cases quite remarkable. In a paper by
Dr C. Chree, “The Whirling and Transverse Vibrations of Rotating
Shafts,” Proc. Phys. Soc. Lon., vol. 19 (1904); also Phil. Mag., vol. 7
(1904), the question is investigated from a new mathematical point of
view, and expressions for the whirling of loaded shafts are obtained
without the necessity of any assumption of the kind stated above.
An elementary presentation of the problem from a practical point of
view will be found in Steam Turbines, by Dr A. Stodola (London,
1905).
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§ 114. Revolving Pendulum. Governors.—In fig. 131 AO represents
an upright axis or spindle; B a weight called a bob, suspended by rod
OB from a horizontal axis at O, carried
by the vertical axis. When the spindle
is at rest the bob hangs close to it; when
the spindle rotates, the bob, being made
to revolve round it, diverges until the
resultant of the centrifugal force and the
weight of the bob is a force acting at O in
the direction OB, and then it revolves
steadily in a circle. This combination is
called a revolving, centrifugal, or conical
pendulum. Revolving pendulums are
usually constructed with pairs of rods
and bobs, as OB, Ob, hung at opposite
sides of the spindle, that the centrifugal
forces exerted at the point O may balance
each other.

In finding the position in which the
bob will revolve with a given angular
velocity, a, for most practical cases connected with machinery the
mass of the rod may be considered as insensible compared with that
of the bob. Let the bob be a sphere, and from the centre of that
sphere draw BH = y perpendicular to OA. Let OH = z; let W
be the weight of the bob, F its centrifugal force. Then the condition
of its steady revolution is W : F :: z : y; that is to say,
y/z = F/W = yα2/g; consequently

z = g/α2

(69)

Or, if n = α 2π = α/6.2832 be the number of turns or fractions of a
turn in a second,


	z = 	g
	= 	0.8165 ft.
	= 	9.79771 in.


	4π2n2 	n2
	n2


(70)

z is called the altitude of the pendulum.


	

	Fig. 132.


If the rod of a revolving pendulum be jointed, as in fig. 132, not
to a point in the vertical axis, but to the end
of a projecting arm C, the position in which
the bob will revolve will be the same as if the
rod were jointed to the point O, where its
prolongation cuts the vertical axis.

A revolving pendulum is an essential part
of most of the contrivances called governors,
for regulating the speed of prime movers,
for further particulars of which see Steam
Engine.

Division 3. Working of Machines of Varying Velocity.

§ 115. General Principles.—In order that the velocity of every
piece of a machine may be uniform, it is necessary that the forces
acting on each piece should be always exactly balanced. Also, in
order that the forces acting on each piece of a machine may be always
exactly balanced, it is necessary that the velocity of that piece should
be uniform.

An excess of the effort exerted on any piece, above that which is
necessary to balance the resistance, is accompanied with acceleration;
a deficiency of the effort, with retardation.

When a machine is being started from a state of rest, and brought
by degrees up to its proper speed, the effort must be in excess; when
it is being retarded for the purpose of stopping it, the resistance
must be in excess.

An excess of effort above resistance involves an excess of energy
exerted above work performed; that excess of energy is employed in
producing acceleration.

An excess of resistance above effort involves an excess of work
performed above energy expended; that excess of work is performed
by means of the retardation of the machinery.

When a machine undergoes alternate acceleration and retardation,
so that at certain instants of time, occurring at the end of intervals
called periods or cycles, it returns to its original speed, then in each of
those periods or cycles the alternate excesses of energy and of work
neutralize each other; and at the end of each cycle the principle of
the equality of energy and work stated in § 87, with all its consequences,
is verified exactly as in the case of machines of uniform
speed.

At intermediate instants, however, other principles have also to
be taken into account, which are deduced from the second law of
motion, as applied to direct deviation, or acceleration and retardation.

§ 116. Energy of Acceleration and Work of Retardation for a
Shifting Body.—Let w be the weight of a body which has a motion
of translation in any path, and in the course of the interval of time
Δt let its velocity be increased at a uniform rate of acceleration
from v1 to v2. The rate of acceleration will be

dv/dt = const. = (v2 − v1) Δt;

and to produce this acceleration a uniform effort will be required,
expressed by

P = w (v2 − v1) gΔt

(71)

(The product wv/g of the mass of a body by its velocity is called
its momentum; so that the effort required is found by dividing
the increase of momentum by the time in which it is produced.)

To find the energy which has to be exerted to produce the acceleration
from v1 to v2, it is to be observed that the distance through
which the effort P acts during the acceleration is

Δs = (v2 + v1) Δt/2;

consequently, the energy of acceleration is

PΔs = w (v2 − v1) (v2 + v1) / 2g = w (v22 − v12) 2g,

(72)

being proportional to the increase in the square of the velocity, and
independent of the time.

In order to produce a retardation from the greater velocity v2 to
the less velocity v1, it is necessary to apply to the body a resistance
connected with the retardation and the time by an equation identical
in every respect with equation (71), except by the substitution of a
resistance for an effort; and in overcoming that resistance the body
performs work to an amount determined by equation (72), putting
Rds for Pas.

§ 117. Energy Stored and Restored by Deviations of Velocity.—Thus
a body alternately accelerated and retarded, so as to be brought
back to its original speed, performs work during its retardation
exactly equal in amount to the energy exerted upon it during its
acceleration; so that that energy may be considered as stored during
the acceleration, and restored during the retardation, in a manner
analogous to the operation of a reciprocating force (§ 108).

Let there be given the mean velocity V = 1⁄2 (v2 + v1) of a body
whose weight is w, and let it be required to determine the fluctuation
of velocity v2 − v1, and the extreme velocities v1, v2, which that body
must have, in order alternately to store and restore an amount of
energy E. By equation (72) we have

E = w (v22 − v12) / 2g

which, being divided by V = 1⁄2(v2 + v1), gives

E/V = w (v2 − v1) / g;

and consequently

v2 − v1 = gE / Vw

(73)



The ratio of this fluctuation to the mean velocity, sometimes called
the unsteadiness of the motion of the body, is

(v2 − v1) V = gE / V2w.

(74)

§ 118. Actual Energy of a Shifting Body.—The energy which must
be exerted on a body of the weight w, to accelerate it from a state of
rest up to a given velocity of translation v, and the equal amount of
work which that body is capable of performing by overcoming resistance
while being retarded from the same velocity of translation v to
a state of rest, is

wv2 / 2g.

(75)

This is called the actual energy of the motion of the body, and is
half the quantity which in some treatises is called vis viva.

The energy stored or restored, as the case may be, by the deviations
of velocity of a body or a system of bodies, is the amount by which
the actual energy is increased or diminished.

§ 119. Principle of the Conservation of Energy in Machines.—The
following principle, expressing the general law of the action of
machines with a velocity uniform or varying, includes the law of
the equality of energy and work stated in § 89 for machines of
uniform speed.

In any given interval during the working of a machine, the energy
exerted added to the energy restored is equal to the energy stored added
to the work performed.

§ 120. Actual Energy of Circular Translation—Moment of Inertia.—Let
a small body of the weight w undergo translation in a circular
path of the radius ρ, with the angular velocity of deflexion α, so that
the common linear velocity of all its particles is v = αρ. Then the
actual energy of that body is

wv2 / 2g = wa2ρ2 / 2g.

(76)

By comparing this with the expression for the centrifugal force
(wa2ρ/g), it appears that the actual energy of a revolving body is
equal to the potential energy Fρ/2 due to the action of the deflecting
force along one-half of the radius of curvature of the path of the
body.

The product wρ2/g, by which the half-square of the angular
velocity is multiplied, is called the moment of inertia of the revolving
body.

§ 121. Flywheels.—A flywheel is a rotating piece in a machine,
generally shaped like a wheel (that is to say, consisting of a rim
with spokes), and suited to store and restore energy by the periodical
variations in its angular velocity.

The principles according to which variations of angular velocity
store and restore energy are the same as those of § 117, only substituting
moment of inertia for mass, and angular for linear velocity.

Let W be the weight of a flywheel, R its radius of gyration, a2
its maximum, a1 its minimum, and A = 1⁄2 (α2 + α1) its mean angular
velocity. Let

I/S  = (α2 − α2) / A

denote the unsteadiness of the motion of the flywheel; the denominator
S of this fraction is called the steadiness. Let e denote the
quantity by which the energy exerted in each cycle of the working
of the machine alternately exceeds and falls short of the work performed,
and which has consequently to be alternately stored by
acceleration and restored by retardation of the flywheel. The
value of this periodical excess is—

e = R2W (α22 − α12), 2g,

(77)

from which, dividing both sides by A2, we obtain the following
equations:—

e / A2 = R2W / gS

R2WA2 / 2g = Se / 2.

(78)

The latter of these equations may be thus expressed in words:
The actual energy due to the rotation of the fly, with its mean angular
velocity, is equal to one-half of the periodical excess of energy multiplied
by the steadiness.

In ordinary machinery S = about 32; in machinery for fine
purposes S = from 50 to 60; and when great steadiness is required
S = from 100 to 150.

The periodical excess e may arise either from variations in the
effort exerted by the prime mover, or from variations in the resistance
of the work, or from both these causes combined. When
but one flywheel is used, it should be placed in as direct connexion
as possible with that part of the mechanism where the greatest
amount of the periodical excess originates; but when it originates
at two or more points, it is best to have a flywheel in connexion
with each of these points. For example, in a machine-work, the
steam-engine, which is the prime mover of the various tools, has a
flywheel on the crank-shaft to store and restore the periodical
excess of energy arising from the variations in the effort exerted by
the connecting-rod upon the crank; and each of the slotting machines,
punching machines, riveting machines, and other tools has a
flywheel of its own to store and restore energy, so as to enable the
very different resistances opposed to those tools at different times
to be overcome without too great unsteadiness of motion. For
tools performing useful work at intervals, and having only their own
friction to overcome during the intermediate intervals, e should
be assumed equal to the whole work performed at each separate
operation.

§ 122. Brakes.—A brake is an apparatus for stopping and diminishing
the velocity of a machine by friction, such as the friction-strap
already referred to in § 103. To find the distance s through which a
brake, exerting the friction F, must rub in order to stop a machine
having the total actual energy E at the moment when the brake
begins to act, reduce, by the principles of § 96, the various efforts
and other resistances of the machine which act at the same time
with the friction of the brake to the rubbing surface of the brake,
and let R be their resultant—positive if resistance, negative if effort
preponderates. Then

s = E / (F + R).

(79)

§ 123. Energy distributed between two Bodies: Projection and
Propulsion.—Hitherto the effort by which a machine is moved
has been treated as a force exerted between a movable body and a
fixed body, so that the whole energy exerted by it is employed upon
the movable body, and none upon the fixed body. This conception
is sensibly realized in practice when one of the two bodies between
which the effort acts is either so heavy as compared with the other,
or has so great a resistance opposed to its motion, that it may,
without sensible error, be treated as fixed. But there are cases in
which the motions of both bodies are appreciable, and must be taken
into account—such as the projection of projectiles, where the velocity
of the recoil or backward motion of the gun bears an appreciable
proportion to the forward motion of the projectile; and such as the
propulsion of vessels, where the velocity of the water thrown backward
by the paddle, screw or other propeller bears a very considerable
proportion to the velocity of the water moved forwards and sideways
by the ship. In cases of this kind the energy exerted by the
effort is distributed between the two bodies between which the
effort is exerted in shares proportional to the velocities of the two
bodies during the action of the effort; and those velocities are to
each other directly as the portions of the effort unbalanced by resistance
on the respective bodies, and inversely as the weights of the
bodies.

To express this symbolically, let W1, W2 be the weights of the
bodies; P the effort exerted between them; S the distance through
which it acts; R1, R2 the resistances opposed to the effort overcome
by W1, W2 respectively; E1, E2 the shares of the whole energy E
exerted upon W1, W2 respectively. Then


	  	      E
	: 	E1
	: 	E2 	 

	:: 	W2 (P − R1) + W1 (P − R2)
	: 	P − R1
	: 	P − R2
	.

	W1W2 	W1
	W2


(80)

If R1 = R2, which is the case when the resistance, as well as the
effort, arises from the mutual actions of the two bodies, the above
becomes,

  E  : E1 : E2

:: W1 + W2 : W2 : W1,

(81)

that is to say, the energy is exerted on the bodies in shares inversely
proportional to their weights; and they receive accelerations inversely
proportional to their weights, according to the principle of
dynamics, already quoted in a note to § 110, that the mutual actions
of a system of bodies do not affect the motion of their common centre
of gravity.

For example, if the weight of a gun be 160 times that of its ball
160⁄161 of the energy exerted by the powder in exploding will be
employed in propelling the ball, and 1⁄161 in producing the recoil of
the gun, provided the gun up to the instant of the ball’s quitting
the muzzle meets with no resistance to its recoil except the friction
of the ball.

§ 124. Centre of Percussion.—It is obviously desirable that the
deviations or changes of motion of oscillating pieces in machinery
should, as far as possible, be effected by forces applied at their centres
of percussion.

If the deviation be a translation—that is, an equal change of
motion of all the particles of the body—the centre of percussion is
obviously the centre of gravity itself; and, according to the second
law of motion, if dv be the deviation of velocity to be produced in
the interval dt, and W the weight of the body, then


	P = 	W
	· 	dv


	g 	dt


(82)

is the unbalanced effort required.

If the deviation be a rotation about an axis traversing the centre
of gravity, there is no centre of percussion; for such a deviation
can only be produced by a couple of forces, and not by any single
force. Let dα be the deviation of angular velocity to be produced
in the interval dt, and I the moment of the inertia of the body
about an axis through its centre of gravity; then 1⁄2Id(α2) = Iα dα is
the variation of the body’s actual energy. Let M be the moment
of the unbalanced couple required to produce the deviation; then
by equation 57, § 104, the energy exerted by this couple in the
interval dt is Mα dt, which, being equated to the variation of energy,
gives


	M = I 	dα
	= 	R2W
	· 	dα
	.

	dt 	g
	dt


(83)

R is called the radius of gyration of the body with regard to an axis
through its centre of gravity.


	

	Fig. 133.


Now (fig. 133) let the required deviation be a rotation of the body
BB about an axis O, not traversing the centre of gravity G, dα

being, as before, the deviation of angular velocity to be produced
in the interval dt. A rotation with the angular velocity α about
an axis O may be considered as compounded
of a rotation with the same angular velocity
about an axis drawn through G parallel to O
and a translation with the velocity α. OG,
OG being the perpendicular distance between
the two axes. Hence the required deviation
may be regarded as compounded of a
deviation of translation dv = OG · dα, to
produce which there would be required,
according to equation (82), a force applied
at G perpendicular to the plane OG—


	P = 	W
	· OG · 	dα


	g 	dt


(84)

and a deviation dα of rotation about an
axis drawn through G parallel to O, to
produce which there would be required a
couple of the moment M given by equation (83). According to
the principles of statics, the resultant of the force P, applied
at G perpendicular to the plane OG, and the couple M is a
force equal and parallel to P, but applied at a distance GC
from G, in the prolongation of the perpendicular OG, whose
value is

GC = M / P = R2 / OG.

(85)

Thus is determined the position of the centre of percussion C,
corresponding to the axis of rotation O. It is obvious from this
equation that, for an axis of rotation parallel to O traversing C, the
centre of percussion is at the point where the perpendicular OG
meets O.

§ 125.* To find the moment of inertia of a body about an axis through
its centre of gravity experimentally.—Suspend the body from any
conveniently selected axis O (fig. 48) and hang near it a small plumb
bob. Adjust the length of the plumb-line until it and the body oscillate
together in unison. The length of the plumb-line, measured
from its point of suspension to the centre of the bob, is for all practical
purposes equal to the length OC, C being therefore the centre
of percussion corresponding to the selected axis O. From equation
(85)

R2 = CG × OG = (OC − OG) OG.

The position of G can be found experimentally; hence OG is known,
and the quantity R2 can be calculated, from which and the ascertained
weight W of the body the moment of inertia about an axis through
G, namely, W/g × R2, can be computed.


	

	Fig. 134.


§ 126.* To find the force competent to produce the instantaneous
acceleration of any link of a mechanism.—In many practical problems
it is necessary to know the magnitude and position of the forces
acting to produce the accelerations of the several links of a mechanism.
For a given link, this force is the resultant of all the accelerating
forces distributed through the substance of the material of the link
required to produce the requisite acceleration of each particle, and
the determination of this force depends upon the principles of the
two preceding sections. The investigation of the distribution of
the forces through the material and the stress consequently produced
belongs to the subject of the Strength of Materials (q.v.).
Let BK (fig. 134) be any link moving in any manner in a plane, and
let G be its centre of gravity.
Then its motion may be analysed
into (1) a translation of
its centre of gravity; and (2) a
rotation about an axis through
its centre of gravity perpendicular
to its plane of motion.
Let α be the acceleration of
the centre of gravity and let A
be the angular acceleration
about the axis through the
centre of gravity; then the
force required to produce the
translation of the centre of
gravity is F = Wα/g, and the
couple required to produce the
angular acceleration about the
centre of gravity is M = IA/g,
W and I being respectively the
weight and the moment of inertia of the link about the
axis through the centre of gravity. The couple M may
be produced by shifting the force F parallel to itself through
a distance x. such that Fx = M. When the link forms part of a
mechanism the respective accelerations of two points in the link
can be determined by means of the velocity and acceleration diagrams
described in § 82, it being understood that the motion of one
link in the mechanism is prescribed, for instance, in the steam-engine’s
mechanism that the crank shall revolve uniformly. Let the acceleration
of the two points B and K therefore be supposed known. The
problem is now to find the acceleration α and A. Take any pole O
(fig. 49), and set out Ob equal to the acceleration of B and Ok equal
to the acceleration of K. Join bk and take the point g so that KG:
GB = kg : gb. Og is then the acceleration of the centre of gravity
and the force F can therefore be immediately calculated. To find
the angular acceleration A, draw kt, bt respectively parallel to and at
right angles to the link KB. Then tb represents the angular acceleration
of the point B relatively to the point K and hence tb/KB is the
value of A, the angular acceleration of the link. Its moment
of inertia about G can be found experimentally by the method
explained in § 125, and then the value of the couple M can be
computed. The value of x is found immediately from the
quotient M/F. Hence the magnitude F and the position of F
relatively to the centre of gravity of the link, necessary to give rise
to the couple M, are known, and this force is therefore the resultant
force required.
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§ 127.* Alternative construction for finding the position of F relatively
to the centre of gravity of the link.—Let B and K be any two
points in the link which for greater
generality are taken in fig. 135, so that the
centre of gravity G is not in the line joining
them. First find the value of R experimentally.
Then produce the given
directions of acceleration of B and K to
meet in O; draw a circle through the three
points B, K and O; produce the line joining
O and G to cut the circle in Y; and
take a point Z on the line OY so that
YG × GZ = R2. Then Z is a point in the
line of action of the force F. This useful
theorem is due to G. T. Bennett, of
Emmanuel College, Cambridge. A proof
of it and three corollaries are given in appendix 4 of the second
edition of Dalby’s Balancing of Engines (London, 1906). It is to
be noticed that only the directions of the accelerations of two points
are required to find the point Z.

For an example of the application of the principles of the two
preceding sections to a practical problem see Valve and Valve Gear
Mechanisms, by W. E. Dalby (London, 1906), where the inertia
stresses brought upon the several links of a Joy valve gear, belonging
to an express passenger engine of the Lancashire & Yorkshire
railway, are investigated for an engine-speed of 68 m. an hour.
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§ 128.* The Connecting Rod Problem.—A particular problem of
practical importance is the determination of the force producing
the motion of the connecting rod of a steam-engine mechanism of
the usual type. The methods of the two preceding sections may be
used when the acceleration of two points in the rod are known.
In this problem it is usually assumed that the crank pin K (fig. 136)
moves with uniform velocity, so that if α is its angular velocity
and r its radius, the acceleration is α2r in a direction along the crank
arm from the crank pin to the centre of the shaft. Thus the acceleration
of one point K is known completely. The acceleration of a
second point, usually taken at the centre of the crosshead pin,
can be found by the principles of § 82, but several special geometrical
constructions have been devised for this purpose, notably the construction
of Klein,4 discovered also independently by Kirsch.5 But
probably the most convenient is the construction due to G. T.
Bennett6 which is as follows: Let OK be the crank and KB the connecting
rod. On the connecting rod take a point L such that
KL × KB = KO2. Then, the crank standing at any angle with the
line of stroke, draw LP at right angles to the connecting rod,
PN at right angles to the line of stroke OB and NA at right
angles to the connecting rod; then AO is the acceleration of the
point B to the scale on which KO represents the acceleration of
the point K. The proof of this construction is given in The
Balancing of Engines.

The finding of F may be continued thus: join AK, then AK is
the acceleration image of the rod, OKA being the acceleration diagram.
Through G, the centre of gravity of the rod, draw Gg parallel
to the line of stroke, thus dividing the image at g in the proportion
that the connecting rod is divided by G. Hence Og represents the
acceleration of the centre of gravity and, the weight of the connecting

rod being ascertained, F can be immediately calculated. To find
a point in its line of action, take a point Q on the rod such that
KG × GQ = R2, R having been determined experimentally by the
method of § 125; join G with O and through Q draw a line parallel
to BO to cut GO in Z. Z is a point in the line of action of the resultant
force F; hence through Z draw a line parallel to Og. The force
F acts in this line, and thus the problem is completely solved. The
above construction for Z is a corollary of the general theorem given
in § 127.

§ 129. Impact. Impact or collision is a pressure of short duration
exerted between two bodies.

The effects of impact are sometimes an alteration of the distribution
of actual energy between the two bodies, and always a loss of
a portion of that energy, depending on the imperfection of the
elasticity of the bodies, in permanently altering their figures, and
producing heat. The determination of the distribution of the
actual energy after collision and of the loss of energy is effected
by means of the following principles:—

I. The motion of the common centre of gravity of the two bodies
is unchanged by the collision.

II. The loss of energy consists of a certain proportion of that
part of the actual energy of the bodies which is due to their motion
relatively to their common centre of gravity.

Unless there is some special reason for using impact in machines,
it ought to be avoided, on account not only of the waste of energy
which it causes, but from the damage which it occasions to the frame
and mechanism.



(W. J. M. R.; W. E. D.)


 
1 In view of the great authority of the author, the late Professor
Macquorn Rankine, it has been thought desirable to retain the greater
part of this article as it appeared in the 9th edition of the Encyclopaedia
Britannica. Considerable additions, however, have been
introduced in order to indicate subsequent developments of the
subject; the new sections are numbered continuously with the old,
but are distinguished by an asterisk. Also, two short chapters
which concluded the original article have been omitted—ch. iii.,
“On Purposes and Effects of Machines,” which was really a classification
of machines, because the classification of Franz Reuleaux
is now usually followed, and ch. iv., “Applied Energetics, or Theory
of Prime Movers,” because its subject matter is now treated in
various special articles, e.g. Hydraulics, Steam Engine, Gas
Engine, Oil Engine, and fully developed in Rankine’s The Steam
Engine and Other Prime Movers (London, 1902). (Ed. E.B.)

2 Since the relation discussed in § 7 was enunciated by Rankine,
an enormous development has taken place in the subject of Graphic
Statics, the first comprehensive textbook on the subject being
Die Graphische Statik by K. Culmann, published at Zürich in 1866.
Many of the graphical methods therein given have now passed into
the textbooks usually studied by engineers. One of the most
beautiful graphical constructions regularly used by engineers and
known as “the method of reciprocal figures” is that for finding
the loads supported by the several members of a braced structure,
having given a system of external loads. The method was discovered
by Clerk Maxwell, and the complete theory is discussed and exemplified
in a paper “On Reciprocal Figures, Frames and Diagrams of
Forces,” Trans. Roy. Soc. Ed., vol. xxvi. (1870). Professor M. W.
Crofton read a paper on “Stress-Diagrams in Warren and Lattice
Girders” at the meeting of the Mathematical Society (April 13,
1871), and Professor O. Henrici illustrated the subject by a simple
and ingenious notation. The application of the method of reciprocal
figures was facilitated by a system of notation published in Economics
of Construction in relation to framed Structures, by Robert H. Bow
(London, 1873). A notable work on the general subject is that
of Luigi Cremona, translated from the Italian by Professor T. H.
Beare (Oxford, 1890), and a discussion of the subject of reciprocal
figures from the special point of view of the engineering student
is given in Vectors and Rotors by Henrici and Turner (London, 1903).
See also above under “Theoretical Mechanics,” Part 1. § 5.

3 This is a particular case of a more general principle, that the
motion of the centre of gravity of a body is not affected by the mutual
actions of its parts.

4 J. F. Klein, “New Constructions of the Force of Inertia of
Connecting Rods and Couplers and Constructions of the Pressures
on their Pins,” Journ. Franklin Inst., vol. 132 (Sept. and Oct., 1891).

5 Prof. Kirsch, “Über die graphische Bestimmung der Kolbenbeschleunigung,”
Zeitsch. Verein deutsche Ingen. (1890), p. 1320.

6 Dalby, The Balancing of Engines (London, 1906), app. 1.





MECHANICVILLE, a village of Saratoga county, New York,
U.S.A., on the west bank of the Hudson River, about 20 m. N.
of Albany; on the Delaware & Hudson and Boston & Maine
railways. Pop. (1900), 4695 (702 foreign-born); (1905, state
census), 5877; (1910) 6,634. It lies partly within Stillwater
and partly within Half-Moon townships, in the bottom-lands
at the mouth of the Anthony Kill, about 1-1/2 m. S. of the
mouth of the Hoosick River. On the north and south are hills
reaching a maximum height of 200 ft. There is ample water
power, and there are manufactures of paper, sash and blinds,
fibre, &c. From a dam here power is derived for the General
Electric Company at Schenectady. The first settlement in
this vicinity was made in what is now Half-Moon township
about 1680. Mechanicville (originally called Burrow) was
chartered by the county court in 1859, and incorporated as
a village in 1870. It was the birthplace of Colonel Ephraim
Elmer Ellsworth (1837-1861), the first Federal officer to lose
his life in the Civil War.



MECHITHARISTS, a congregation of Armenian monks in
communion with the Church of Rome. The founder, Mechithar,
was born at Sebaste in Armenia, 1676. He entered a monastery,
but under the influence of Western missionaries he became
possessed with the idea of propagating Western ideas and
culture in Armenia, and of converting the Armenian Church
from its monophysitism and uniting it to the Latin Church.
Mechithar set out for Rome in 1695 to make his ecclesiastical
studies there, but he was compelled by illness to abandon the
journey and return to Armenia. In 1696 he was ordained
priest and for four years worked among his people. In 1700
he went to Constantinople and began to gather disciples around
him. Mechithar formally joined the Latin Church, and in
1701, with sixteen companions, he formed a definitely religious
institute of which he became the superior. Their Uniat propaganda
encountered the opposition of the Armenians and they
were compelled to move to the Morea, at that time Venetian
territory, and there built a monastery, 1706. On the outbreak
of hostilities between the Turks and Venetians they migrated
to Venice, and the island of St Lazzaro was bestowed on them,
1717. This has since been the headquarters of the congregation,
and here Mechithar died in 1749, leaving his institute firmly
established. The rule followed at first was that attributed to
St Anthony; but when they settled in the West modifications
from the Benedictine rule were introduced, and the Mechitharists
are numbered among the lesser orders affiliated to the
Benedictines. They have ever been faithful to their founder’s
programme. Their work has been fourfold: (1) they have
brought out editions of important patristic works, some Armenian,
others translated into Armenian from Greek and Syriac
originals no longer extant; (2) they print and circulate Armenian
literature among the Armenians, and thereby exercise a powerful
educational influence; (3) they carry on schools both in Europe
and Asia, in which Uniat Armenian boys receive a good secondary
education; (4) they work as Uniat missioners in Armenia. The
congregation is divided into two branches, the head houses
being at St Lazzaro and Vienna. They have fifteen establishments
in various places in Asia Minor and Europe. There
are some 150 monks, all Armenians; they use the Armenian
language and rite in the liturgy.


See Vita del servo di Dio Mechitar (Venice, 1901); E. Boré,
Saint-Lazare (1835); Max Heimbucher, Orden u. Kongregationen
(1907) I. § 37; and the articles in Wetzer u. Welte, Kirchenlexicon
(ed. 2) and Herzog, Realencyklopädie (ed. 3), also articles by Sargisean,
a Mechitharist, in Rivista storica benedettina (1906), “La Congregazione
Mechitarista.”
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MECKLENBURG, a territory in northern Germany, on the
Baltic Sea, extending from 53° 4′ to 54° 22′ N. and from 10° 35′
to 13° 57′ E., unequally divided into the two grand duchies
of Mecklenburg-Schwerin and Mecklenburg-Strelitz.

Mecklenburg-schwerin is bounded N. by the Baltic Sea,
W. by the principality of Ratzeburg and Schleswig-Holstein,
S. by Brandenburg and Hanover, and E. by Pomerania and
Mecklenburg-Strelitz. It embraces the duchies of Schwerin
and Güstrow, the district of Rostock, the principality of
Schwerin, and the barony of Wismar, besides several small enclaves
(Ahrensberg, Rosson, Tretzeband, &c.) in the adjacent
territories. Its area is 5080 sq. m. Pop. (1905), 625,045.

Mecklenburg-strelitz consists of two detached parts,
the duchy of Strelitz on the E. of Mecklenburg-Schwerin,
and the principality of Ratzeburg on the W. The first is
bounded by Mecklenburg-Schwerin, Pomerania and Brandenburg,
the second by Mecklenburg-Schwerin, Lauenburg, and the
territory of the free town of Lübeck. Their joint area is 1130
sq. m. Pop. (1905), 103,451.


Mecklenburg lies wholly within the great North-European plain,
and its flat surface is interrupted only by one range of low hills,
intersecting the country from south-east to north-west, and forming
the watershed between the Baltic Sea and the Elbe. Its highest
point, the Helpter Berg, is 587 ft. above sea-level. The coast-line
runs for 65 m. along the Baltic (without including indentations),
for the most part in flat sandy stretches covered with dunes. The
chief inlets are Wismar Bay, the Salzhaff, and the roads of Warnemünde.
The rivers are numerous though small; most of them are
affluents of the Elbe, which traverses a small portion of Mecklenburg.
Several are navigable, and the facilities for inland water traffic are
increased by canals. Lakes are numerous; about four hundred,
covering an area of 500 sq. m., are reckoned in the two duchies.
The largest is Lake Müritz, 52 sq. m. in extent. The climate
resembles that of Great Britain, but the winters are generally more
severe; the mean annual temperature is 48° F., and the annual
rainfall is about 28 in. Although there are long stretches of marshy
moorland along the coast, the soil is on the whole productive.
About 57% of the total area of Mecklenburg-Schwerin consists of
cultivated land, 18% of forest, and 13% of heath and pasture. In
Mecklenburg-Strelitz the corresponding figures are 47, 21 and 10%.
Agriculture is by far the most important industry in both duchies.
The chief crops are rye, oats, wheat, potatoes and hay. Smaller
areas are devoted to maize, buckwheat, pease, rape, hemp, flax,
hops and tobacco. The extensive pastures support large herds of
sheep and cattle, including a noteworthy breed of merino sheep.
The horses of Mecklenburg are of a fine sturdy quality and highly
esteemed. Red deer, wild swine and various other game are found
in the forests. The industrial establishments include a few iron-foundries,
wool-spinning mills, carriage and machine factories, dyeworks,
tanneries, brick-fields, soap-works, breweries, distilleries,
numerous limekilns and tar-boiling works, tobacco and cigar factories,
and numerous mills of various kinds. Mining is insignificant, though
a fair variety of minerals is represented in the district. Amber is
found on and near the Baltic coast. Rostock, Warnemünde and
Wismar are the principal commercial centres. The chief exports
are grain and other agricultural produce, live stock, spirits, wood
and wool; the chief imports are colonial produce, iron, coal, salt,
wine, beer and tobacco. The horse and wool markets of Mecklenburg
are largely attended by buyers from various parts of Germany.
Fishing is carried on extensively in the numerous inland lakes.

In 1907 the grand dukes of both duchies promised a constitution
to their subjects. The duchies had always been under a government
of feudal character, the grand dukes having the executive entirely
in their hands (though acting through ministers), while the duchies
shared a diet (Landtag), meeting for a short session each year, and at
other times represented by a committee, and consisting of the
proprietors of knights’ estates (Rittergüter), known as the Ritterschaft,
and the Landschaft or burgomasters of certain towns.

Mecklenburg-Schwerin returns six members to the Reichstag and
Mecklenburg-Strelitz one member.

In Mecklenburg-Schwerin the chief towns are Rostock (with a
university), Schwerin, and Wismar the capital. The capital of
Mecklenburg-Strelitz is Neu-Strelitz. The peasantry of Mecklenburg
retain traces of their Slavonic origin, especially in speech, but their
peculiarities have been much modified by amalgamation with German
colonists. The townspeople and nobility are almost wholly of
Saxon strain. The slowness of the increase in population is chiefly
accounted for by emigration.



History.—The Teutonic peoples, who in the time of Tacitus
occupied the region now known as Mecklenburg, were succeeded
in the 6th century by some Slavonic tribes, one of these being
the Obotrites, whose chief fortress was Michilenburg, the modern
Mecklenburg, near Wismar; hence the name of the country.
Though partly subdued by Charlemagne towards the close
of the 8th century, they soon regained their independence,
and until the 10th century no serious effort was made by their
Christian neighbours to subject them. Then the German
king, Henry the Fowler, reduced the Slavs of Mecklenburg to
obedience and introduced Christianity among them. During
the period of weakness through which the German kingdom
passed under the later Ottos, however, they wrenched themselves
free from this bondage; the 11th and the early part of the 12th
century saw the ebb and flow of the tide of conquest, and then
came the effective subjugation of Mecklenburg by Henry the
Lion, duke of Saxony. The Obotrite prince Niklot was killed
in battle in 1160 whilst resisting the Saxons, but his son
Pribislaus (d. 1178) submitted to Henry the Lion, married his
daughter to the son of the duke, embraced Christianity, and was
permitted to retain his office. His descendants and successors,
the present grand dukes of Mecklenburg, are the only ruling
princes of Slavonic origin in Germany. Henry the Lion introduced
German settlers and restored the bishoprics of Ratzeburg
and Schwerin; in 1170 the emperor Frederick I. made Pribislaus
a prince of the empire. From 1214 to 1227 Mecklenburg was
under the supremacy of Denmark; then, in 1229, after it had
been regained by the Germans, there took place the first of the
many divisions of territory which with subsequent reunions constitute
much of its complicated history. At this time the country
was divided between four princes, grandsons of duke Henry
Borwin, who had died two years previously. But in less than
a century the families of two of these princes became extinct,
and after dividing into three branches a third family suffered
the same fate in 1436. There then remained only the line
ruling in Mecklenburg proper, and the princes of this family, in
addition to inheriting the lands of their dead kinsmen, made
many additions to their territory, including the counties of
Schwerin and of Strelitz. In 1352 the two princes of this
family made a division of their lands, Stargard being separated
from the rest of the country to form a principality for John
(d. 1393), but on the extinction of his line in 1471 the whole
of Mecklenburg was again united under a single ruler. One
member of this family, Albert (c. 1338-1412), was king of
Sweden from 1364 to 1389. In 1348 the emperor Charles IV.
had raised Mecklenburg to the rank of a duchy, and in 1418 the
university of Rostock was founded.

The troubles which arose from the rivalry and jealousy of
two or more joint rulers incited the prelates, the nobles and the
burghers to form a union among themselves, and the results
of this are still visible in the existence of the Landesunion for
the whole country which was established in 1523. About the same
time the teaching of Luther and the reformers was welcomed
in Mecklenburg, although Duke Albert (d. 1547) soon reverted
to the Catholic faith; in 1549 Lutheranism was recognized as
the state religion; a little later the churches and schools were
reformed and most of the monasteries were suppressed. A
division of the land which took place in 1555 was of short
duration, but a more important one was effected in 1611,
although Duke John Albert I. (d. 1576) had introduced the
principle of primogeniture and had forbidden all further divisions
of territory. By this partition John Albert’s grandson
Adolphus Frederick I. (d. 1658) received Schwerin, and another
grandson John Albert II. (d. 1636) received Güstrow. The
town of Rostock “with its university and high court of justice”
was declared to be common property, while the Diet or Landtag
also retained its joint character, its meetings being held alternately
at Sternberg and at Malchin.

During the early part of the Thirty Years’ War the dukes
of Mecklenburg-Schwerin and Mecklenburg-Güstrow were on
the Protestant side, but about 1627 they submitted to the
emperor Ferdinand II. This did not prevent Ferdinand from
promising their land to Wallenstein, who, having driven out
the dukes, was invested with the duchies in 1629 and ruled them
until 1631. In this year the former rulers were restored by
Gustavus Adolphus of Sweden, and in 1635 they came to terms
with the emperor and signed the peace of Prague, but their
land continued to be ravaged by both sides until the conclusion
of the war. In 1648 by the Treaty of Westphalia, Wismar
and some other parts of Mecklenburg were surrendered to
Sweden, the recompense assigned to the duchies including
the secularized bishoprics of Schwerin and of Ratzeburg. The
sufferings of the peasants in Mecklenburg during the Thirty
Years’ War were not exceeded by those of their class in any
other part of Germany; most of them were reduced to a state
of serfdom and in some cases whole villages vanished. Christian
Louis who ruled Mecklenburg-Schwerin from 1658 until his
death in 1692 was, like his father Adolphus Frederick, frequently
at variance with the estates of the land and with members of
his family. He was a Roman Catholic and a supporter of
Louis XIV., and his country suffered severely during the wars
waged by France and her allies in Germany.

In June 1692 when Christian Louis died in exile and without
sons, a dispute arose about the succession to his duchy between
his brother Adolphus Frederick and his nephew Frederick
William. The emperor and the rulers of Sweden and of Brandenburg
took part in this struggle which was intensified when,
three years later, on the death of Duke Gustavus Adolphus,
the family ruling over Mecklenburg-Güstrow became extinct.
At length the partition Treaty of Hamburg was signed on the
8th of March 1701, and a new division of the country was made.
Mecklenburg was divided between the two claimants, the
shares given to each being represented by the existing duchies of
Mecklenburg-Schwerin, the part which fell to Frederick William,
and Mecklenburg-Strelitz, the share of Adolphus Frederick.
At the same time the principle of primogeniture was again
asserted, and the right of summoning the joint Landtag was
reserved to the ruler of Mecklenburg-Schwerin.

Mecklenburg-Schwerin began its existence by a series of constitutional
struggles between the duke and the nobles. The
heavy debt incurred by Duke Charles Leopold (d. 1747), who
had joined Russia in a war against Sweden, brought matters
to a crisis; the emperor Charles VI. interfered and in 1728 the
imperial court of justice declared the duke incapable of governing
and his brother Christian Louis was appointed administrator
of the duchy. Under this prince, who became ruler de jure
in 1747, there was signed in April 1755 the convention of Rostock
by which a new constitution was framed for the duchy. By
this instrument all power was in the hands of the duke, the
nobles and the upper classes generally, the lower classes being
entirely unrepresented. During the Seven Years’ War Duke
Frederick (d. 1785) took up a hostile attitude towards Frederick
the Great, and in consequence Mecklenburg was occupied by
Prussian troops, but in other ways his rule was beneficial to
the country. In the early years of the French revolutionary
wars Duke Frederick Francis I. (1756-1837) remained neutral,
and in 1803 he regained Wismar from Sweden, but in 1806
his land was overrun by the French and in 1808 he joined the
Confederation of the Rhine. He was the first member of the
confederation to abandon Napoleon, to whose armies he had
sent a contingent, and in 1813-1814 he fought against France.
In 1815 he joined the Germanic Confederation (Bund) and took
the title of grand duke. In 1819 serfdom was abolished in his
dominions. During the movement of 1848 the duchy witnessed
a considerable agitation in favour of a more liberal constitution,
but in the subsequent reaction all the concessions which had been

made to the democracy were withdrawn and further restrictive
measures were introduced in 1851 and 1852.

Mecklenburg-Strelitz adopted the constitution of the sister
duchy by an act of September 1755. In 1806 it was spared
the infliction of a French occupation through the good offices
of the king of Bavaria; in 1808 its duke, Charles (d. 1816),
joined the confederation of the Rhine, but in 1813 he withdrew
therefrom. Having been a member of the alliance against
Napoleon he joined the Germanic confederation in 1815 and
assumed the title of grand duke.

In 1866 both the grand dukes of Mecklenburg joined the
North German confederation and the Zollverein, and began
to pass more and more under the influence of Prussia, who in
the war with Austria had been aided by the soldiers of Mecklenburg-Schwerin.
In the Franco-German War also Prussia
received valuable assistance from Mecklenburg, Duke Frederick
Francis II. (1823-1883), an ardent advocate of German unity,
holding a high command in her armies. In 1871 the two grand
duchies became states of the German Empire. There was now
a renewal of the agitation for a more democratic constitution,
and the German Reichstag gave some countenance to this
movement. In 1897 Frederick Francis IV. (b. 1882) succeeded
his father Frederick Francis III. (1851-1897) as grand duke of
Mecklenburg-Schwerin, and in 1904 Adolphus Frederick (b. 1848)
a son of the grand duke Frederick William (1819-1904) and
his wife Augusta Carolina, daughter of Adolphus Frederick,
duke of Cambridge, became grand duke of Mecklenburg-Strelitz.
The grand dukes still style themselves princes of
the Wends.


See F. A. Rudloff, Pragmatisches Handbuch der mecklenburgischen
Geschichte (Schwerin, 1780-1822); C. C. F. von Lützow, Versuch einer
pragmatischen Geschichte von Mecklenburg (Berlin, 1827-1835);
Mecklenburgische Geschichte in Einzeldarstellungen, edited by R.
Beltz, C. Beyer, W. P. Graff and others; C. Hegel, Geschichte der
mecklenburgischen Landstände bis 1555 (Rostock, 1856); A. Mayer,
Geschichte des Grossherzogtums Mecklenburg-Strelitz 1816-1890 (New
Strelitz, 1890); Tolzien, Die Grossherzöge von Mecklenburg-Schwerin
(Wismar, 1904); Lehsten, Der Adel Mecklenburgs seit dem landesgrundgesetslichen
Erbvergleich (Rostock, 1864); the Mecklenburgisches
Urkundenbuch in 21 vols. (Schwerin, 1873-1903); the Jahrbücher
des Vereins für mecklenburgische Geschichte und Altertumskunde
(Schwerin, 1836 fol.); and W. Raabe, Mecklenburgische Vaterlandskunde
(Wismar, 1894-1896); von Hirschfeld, Friedrich Franz II.,
Grossherzog von Mecklenburg-Schwerin und seine Vorgänger (Leipzig,
1891); Volz, Friedrich Franz II. (Wismar, 1893); C. Schröder,
Friedrich Franz III. (Schwerin, 1898); Bartold, Friedrich Wilhelm,
Grossherzog von Mecklenburg-Strelitz und Augusta Carolina (New
Strelitz, 1893); and H. Sachsse, Mecklenburgische Urkunden und
Daten (Rostock, 1900).
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