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1. La Cosmographie a pour objet la description des corps
célestes, c'est-à-dire des corps répandus dans l'espace indéfini,
de leurs positions relatives, de leurs mouvements, et en général
de tous les phénomènes qu'ils peuvent nous présenter.


Nous nous occuperons de ces corps dans l'ordre suivant: les
étoiles, la Terre, le Soleil, la Lune, les planètes et les comètes.












CHAPITRE  PREMIER.


LES  ÉTOILES.








2. On donne, en général, le nom d'étoiles à cette multitude de
corps célestes que, durant les nuits sereines, nous apercevons dans
l'espace sous la forme de points lumineux, brillants.


3. Sphère céleste. Les étoiles sont isolées les unes des autres;
leurs distances à la terre doivent être différentes; cependant elles
nous paraissent également éloignées; elles nous font l'effet d'être
attachées à une sphère immense dont notre œil serait le centre.
Pour plus de simplicité dans l'étude des positions relatives et des
mouvements des corps célestes, on considère, en cosmographie,
cette sphère, apparente sous le nom de sphère céleste, comme si
elle existait réellement.


La sphère céleste est donc une sphère idéale de rayon immense,
ayant pour centre l'œil de l'observateur, à la surface de laquelle
on suppose placées toutes les étoiles.


[image: ]O étant le lieu d'observation, OE, OE', OE",..., les directions
dans lesquelles sont vues les
étoiles E, E', E",.,.,(fig. 1),
on imagine sur ces directions
de très-grandes distances
Oe, Oe', Oe",... égales
entre elles. Au lieu des positions
réelles E, E',E",... des
étoiles, on considère leurs
projections e', e", e?,... sur
la sphère céleste.


4. Distances angulaires. Cette conception de la sphère céleste
n'a que des avantages sans inconvénients; car les distances rectilignes
absolues OE, OE',... des étoiles à la terre nous étant en général
inconnues, on ne considère que leurs distances angulaires.


[image: ]


La distance angulaire de deux étoiles E, E', est l'angle EOE' des
directions dans lesquelles on les voit. Or, cet angle EOE' est précisément
le même que la distance angulaire eoe' de leurs projections
sur la sphère céleste.


Pour déterminer les distances angulaires on se sert d'un cercle
divisé (fig.2 sur lequel se meut une alidade, c'est-à-dire une
règle qui tourne autour du centre. Cette alidade porte une lunette
astronomique avec laquelle on vise successivement les deux étoiles,
après avoir disposé le cercle de manière à ce que son plan passe à
la fois par les deux astres. L'arc qui sépare les deux lignes de visée
mesure la distance angulaire cherchée.


C'est par les distances angulaires que nous nous rendons compte
des positions relatives des étoiles; ce sont les arcs ee', e'e",... (fig. 1)
qui forment sur la voûte céleste les figures, telles que ee'e"e?, que
nous attribuons aux groupes d'étoiles nommés constellations.


5. Mouvement diurne apparent des étoiles. Au premier abord
les étoiles nous paraissent immobiles. Mais prenons des points de
repère, une maison, un arbre, au-dessus desquels se trouvent des
étoiles, et observons celles-ci pendant un temps assez long, une
heure par exemple. Au bout de ce temps, ces étoiles ne sont plus
au-dessus de l'arbre ou de la maison; elles s'en sont éloignées
d'une manière sensible, toutes ensemble et du même côté. Le
même mode d'observation, appliqué à tous les astres, nous les fait
voir animés, relativement à nous, d'un mouvement continu, plus
ou moins rapide.


Ce mouvement des astres n'est pas réel; ce n'est qu'une
apparence due, comme nous l'expliquerons plus tard, à ce que
la terre tourne sur elle-même. Mais ce qui est vrai, c'est que les
positions des étoiles, relativement à nous et aux objets qui nous
environnent, changent continuellement, et de la même manière
que si ces astres se mouvaient réellement autour de la terre immobile. Étudier le mouvement apparent des astres comme nous allons
le faire, c'est tout simplement étudier de la manière la plus commode
ces changements de positions relatives.


Voici d'abord la description générale de ce mouvement apparent,
tel que chacun en France peut l'observer sans instruments,
en se plaçant le soir, par un temps serein, dans un lieu
découvert.


6. Description générale du mouvement diurne. La terre nous présente
l'aspect d'une grande surface plane, terminée de tous côtés
par une courbe circulaire qu'on appelle l'horizon, sur laquelle
semble s'appuyer la voûte céleste parsemée d'un nombre immense
d'étoiles 
1). Tournons le dos à l'endroit du ciel où est le soleil à
midi; le côté de l'horizon qui est à notre droite s'appelle l'orient;
à gauche est l'occident, devant le nord, derrière le sud ou le midi.
A notre droite des étoiles se lèvent, c'est-à-dire apparaissent au
bord de l'horizon, montent progressivement dans le ciel jusqu'à
une certaine hauteur, puis s'abaissent vers l'occident, jusqu'au bord
de l'horizon où elles se couchent, c'est-à-dire disparaissent. Le
lendemain, à la même heure de l'horloge astronomique, les mêmes
étoiles se lèvent à l'orient, aux mêmes points, décrivent la même
courbe dans le ciel, et se couchent aux mêmes endroits que la
veille.


Note 1:
(retour)  Il est à peu près inutile de dire que cette voûte n'existe pas, que c'est
une simple apparence. Les étoiles sont répandues dans l'espace infini, à des
distances de la terre très-grandes, et généralement très-différentes les unes
des autres.



Si nous considérons des points de lever de plus en plus avancés
vers le nord, à partir de notre droite, nous remarquons que les
étoiles observées restent de plus en plus longtemps au-dessus de
l'horizon dans leur course diurne. L'intervalle entre le lever et le
coucher devient de plus en plus court et, à une certaine distance,
les étoiles sont à peine couchées qu'elles reparaissent pour recommencer
la même course au-dessus de l'horizon.


Plus loin encore, vis-à-vis de nous, vers le nord, il y a des étoiles
qui ne se lèvent ni ne se couchent, mais restent perpétuellement
au-dessus de l'horizon. Ces étoiles se meuvent néanmoins dans le
même sens que les autres; chacune d'elles décrit en vingt-quatre
heures, une courbe fermée. Toutes ensemble nous paraissent
tourner autour d'un point central du ciel, très-voisin de l'étoile
vulgairement connue sous le nom d'étoile polaire. Celle-ci, à première
vue, paraît immobile dans ce mouvement général, mais en
l'observant, d'une manière plus précise, on reconnaît qu'elle se
meut comme les autres, mais très-lentement.


Voilà ce qu'on remarque vers le nord. Tournons-nous vers le
midi. De ce côté aussi, les étoiles se lèvent à l'orient (qui est à
notre gauche) tous les jours, aux mêmes points et aux mêmes
heures, décrivent chacune une courbe au-dessus de l'horizon, et
vont se coucher à l'occident. Si nous considérons des points de
lever de plus en plus avancés vers le sud, nous voyons que les
étoiles observées restent de moins en moins longtemps au-dessus
de l'horizon dans leur course diurne. Au plus loin, devant nous,
les étoiles décrivent un très-petit arc au-dessus de l'horizon et se
couchent très-peu de temps après s'être levées.


Telles sont les apparences du mouvement diurne observé dans
ses détails. Ce mouvement, considéré dans son ensemble, est tel
que la voûte céleste, comme une sphère immense couverte de points
étincelants, paraît tourner tout d'une pièce autour d'une droite
fixe allant à peu près de l'œil de l'observateur à l'étoile polaire.


Toutes les phases de ce mouvement général s'accomplissent
dans l'intervalle d'un jour et d'une nuit; de là son nom, mouvement
diurne. Si on observe une étoile à partir d'une certaine position
précise (au-dessus d'une maison, d'un arbre), on la voit revenir
au même point, au bout de vingt-quatre heures; elle nous paraît
ainsi décrire dans cet intervalle, autour de la terre, une courbe
fermée qui n'est autre chose qu'une circonférence de cercle comme
nous le verrons bientôt
2.


Note 2:
(retour)  L'aspect du ciel, le spectacle qu'offre le mouvement diurne, ne varient
jamais pour l'observateur qui ne change pas de résidence. Il en est autrement
dès qu'il se transporte dans un lieu plus méridional. Du côté du nord, quelques-unes
des étoiles, qui restaient perpétuellement au-dessus de l'horizon du
premier lieu, se lèvent et se couchent sur le nouvel horizon. Du côté du midi,
on aperçoit de nouvelles étoiles invisibles dans la première résidence. Les étoiles
visibles à la fois de l'un et de l'autre lieu ne restent pas les mêmes temps au-dessus
des deux horizons.



Nous venons de décrire le mouvement diurne tel qu'on peut
l'observer sans instruments. On se rend compte de la nature
précise de ce mouvement et de ses principales circonstances,
à l'aide de quelques instruments que nous allons décrire, après
avoir défini certains termes d'astronomie que nous aurons besoin
d'employer.


7. Verticale. On appelle verticale d'un lieu la direction de la
pesanteur en ce lieu; cette direction est indiquée par le fil à plomb,
petit appareil que tout le monde connaît.


Zénith, Nadir. La verticale prolongée perce la sphère céleste en
deux points opposés, l'un situé au-dessus de nos têtes et visible,
appelé zénith; l'autre invisible, appelé nadir.


Plan vertical. On nomme plan vertical, ou simplement vertical,
tout plan qui passe par la verticale.


Plan horizontal. On appelle ainsi tout plan perpendiculaire à
la verticale; toute droite située dans un pareil plan est une horizontale.


Horizon. On appelle horizon d'un lieu la courbe circulaire qui,
limite sur la terre la vue de l'observateur. Quand celui-ci est à la
surface même de la terre, cette courbe est l'intersection de la
sphère céleste par le plan horizontal qui passe par l'œil de l'observateur.


Quand on s'élève à une certaine hauteur, la partie visible de la
terre s'agrandit; les rayons visuels qui vont aux divers points de
l'horizon apparent ne sont plus dans le plan horizontal qui passe
par l'œil de l'observateur, mais au-dessous, et forment avec ce
plan un angle qui est toujours très-petit; cet angle s'appelle la
dépression de l'horizon apparent.


Le plan parallèle à l'horizon, qui passe par le centre de la terre,
se nomme l'horizon rationnel ou astronomique.


En cherchant à connaître avec précision les lois du mouvement
diurne on est naturellement conduit à considérer les diverses positions
que prend une étoile au-dessus de l'horizon. Ces positions
se déterminent à l'aide d'un instrument nommé théodolithe.


Avant de décrire le théodolithe, nous dirons quelques mots de
la lunette astronomique qui fait partie de cet appareil comme de
plusieurs autres instruments d'observation.



[image: ]


8. Lunette astronomique. Elle se compose d'un tube aux extrémités
duquel sont deux verres lenticulaires (fig. 3), un grand
verre O dirigé vers l'objet, et qui, pour cette raison, se nomme
objectif; l'autre, très-petit, derrière lequel on place l'œil, et qu'on
nomme oculaire. Les rayons lumineux envoyés par un objet se
brisent en traversant l'objectif, et viennent former dans l'intérieur
de la lunette, à l'endroit qu'on nomme foyer, une image renversée
de l'objet; à l'aide de l'oculaire on regarde cette image comme
avec une loupe
3.


Réticule. Afin de donner plus de précision à la visée, on place
au foyer de la lunette, en a, près de l'oculaire, une petite plaque
percée d'un trou circulaire dans lequel sont tendus deux fils
très-fins, perpendiculaires entre eux, qui se croisent au centre
(V. dans la figure le cercle rr'); ce petit appareil se nomme
réticule. Quand on vise une étoile, on fait mouvoir la lunette
de manière que l'image de l'astre, venant se placer exactement
au point a de croisement des fils du réticule, soit occultée par ce
point a.


La direction du rayon visuel suivant lequel nous voyons l'étoile,
coïncide alors avec l'axe optique de la lunette. Cet axe optique, aO,
qui joint le point a, de croisée des fils, à un point déterminé O de
l'objectif, a une position précise par rapport aux parois solides du
tube. Il est donc facile de suivre la direction du rayon visuel sur
un cercle divisé placé à côté de la lunette, parallèlement à cet axe;
il est également facile de donner à la ligne de visée une direction
indiquée, à priori, sur le cercle
4.


Note 3:
(retour)  V. les Traités de physique pour la description plus détaillée des lunettes
et l'explication des phénomènes de la vision.



Note 4:
(retour)  Quand nous parlerons de l'axe d'une lunette astronomique, il s'agira
toujours de l'axe optique qu'il ne faut pas confondre avec, son axe géométrique;
mais, comme il importe pour la netteté de la vision que ces deux axes
soient aussi rapprochés que possible, on peut fort bien, quand il ne s'agit que
de se figurer approximativement la direction des rayons visuels, les supposer
dirigés suivant l'axe géométrique de la lunette.



L'emploi de la lunette astronomique augmente la puissance de
la vision et fait connaître avec une très-grande précision les directions
dans lesquelles se trouvent les objets observés.


Dans les observations de nuit on est obligé d'éclairer le
réticule. Pour cela on dispose, à l'extrémité de la lunette,
en avant de l'objectif, une plaque inclinée, percée d'une ouverture
circulaire qui laisse entrer dans la lunette les rayons
lumineux émanés de l'astre. Une lampe placée à côté, à une certaine
distance de la lunette, éclaire cette plaque qui, recouverte
d'une couche d'un blanc mat, éclaire légèrement par réflexion le
réticule.





[image: ]9. Théodolithe. Le théodolithe se compose essentiellement
d'un cercle vertical divisé, qu'on nomme limbe vertical, mobile
autour d'un axe vertical AB qui passe par son centre O, et d'un
autre cercle horizontal, également divisé, ayant son centre I sur
l'axe (fig. 4); une lunette astronomique
L'L est mobile autour d'un
axe gOg' perpendiculaire au limbe
vertical. L'axe de la lunette perpendiculaire
à gOg' se meut parallèlement
au limbe vertical. Une vis de
pression permet de fixer la lunette
quand on veut, de manière que, immobile
sur le limbe, elle soit seulement
emportée par lui dans un mouvement
commun autour de l'axe AB.
Une ligne horizontale H'OH est gravée
sur le limbe vertical; le zéro des
divisions est en H. Le cercle horizontal
peut être rendu fixe; à l'enveloppe
mobile de l'axe AB est
attachée une aiguille IE qui se meut
avec le limbe vertical, dans le plan duquel elle se trouve et reste
constamment. Le mouvement angulaire de cette aiguille IE sur le
limbe horizontal mesure le mouvement angulaire du limbe vertical
autour de l'axe. Par exemple, supposons que l'aiguille ait
la position IE, au commencement d'un mouvement du limbe vertical;
si, à la fin de ce mouvement, elle a la position ID, l'angle
DIE mesure l'angle dièdre des deux positions extrêmes du limbe
vertical (V. la note ci-après).


On peut, au commencement du mouvement, faire tourner le
limbe horizontal de manière à amener le zéro de ce limbe sous
l'aiguille; alors on fixe le limbe horizontal; puis on fait mouvoir
comme il convient le limbe vertical; il est clair qu'on pourra lire
alors immédiatement sur le limbe horizontal l'angle décrit par
le limbe vertical. Le limbe horizontal est souvent appelé cercle
azimutal
5.


Le théodolithe peut d'abord nous servir à mesurer la hauteur
d'une étoile au-dessus de l'horizon.



10. Hauteur d'une étoile. On appelle hauteur d'une étoile E,
(fig. 5) au-dessus de l'horizon d'un lieu, l'angle EOC que fait
avec le plan horizontal le rayon visuel allant du lieu à l'étoile;
ou bien c'est l'arc de grand cercle, EC, de la sphère céleste qui
mesure cet angle. La hauteur d'une étoile varie de 0 à 90°.


Note 5:
(retour) [image: ] Nous avons réduit le théodolithe à sa plus simple expression, afin de
mieux faire comprendre ses usages. Pour plus de commodité dans la manœuvre
de l'instrument, il est en réalité disposé comme il suit (fig. 4 bis);
le limbe vertical est fixé perpendiculairement,
et par son centre, à
l'extrémité d'une barre horizontale.
Cette barre s'appuie par son milieu
sur le haut d'une colonne verticale
AB, de l'autre côté de laquelle elle
porte un contre-poids à sa deuxième
extrémité. On fait tourner le limbe
vertical autour de cette colonne AB,
en poussant la barre ou le limbe
lui-même. Le mouvement angulaire
de ce limbe autour d'une verticale
quelconque est exactement le même
que celui d'un limbe vertical fictif,
qui passant, comme dans notre première
description ci-dessus,par l'axe
AB, serait dans toutes ses positions
parallèle au limbe réel. L'aiguille IE
du limbe horizontal, qui est et reste
toujours parallèle au limbe vertical
réel, mesure donc par son mouvement
angulaire celui de ce limbe
vertical.










Distance zénithale. La distance zénithale d'une étoile, E, est
l'angle EOZ de la verticale et du rayon visuel OE allant du lieu à
l'étoile (fig. 5) ; ou bien c'est l'arc de grand cercle ZE qui mesure
cet angle. La hauteur et la distance
zénithale sont des angles complémentaires;
EC + EZ = 90°. L'un
d'eux étant connu, l'autre s'en déduit.


[image: ]Azimuth d'une étoile. On nomme
azimuth d'une étoile l'angle que fait
le demi-cercle vertical ZEN qui contient
cette étoile avec un plan vertical
convenu, nommé premier vertical,
que nous supposerons être ZOH
(fig. 5). Cet angle dièdre est mesuré
par l'angle HOC des traces horizontales de ces plans; l'azimuth
est donc aussi l'arc HC qui sépare sur l'horizon le premier vertical
et le vertical de l'étoile.



11. Les trois angles que nous venons de définir peuvent se mesurer
en même temps avec le théodolithe.




On fait tourner le limbe vertical jusqu'à ce que son plan passe
par l'étoile. Cela étant, on fait tourner la lunette
jusqu'à ce qu'on voie l'étoile arriver,
dans le champ de l'instrument, à la croisée
des fils, en E. L'angle EOC, ou l'arc EC, est
la hauteur cherchée (fig. 6).


[image: ]La distance zénithale s'obtient par la même
opération; c'est l'angle AOE ou l'arc AE.


Supposons que le limbe horizontal étant
maintenu fixe, le zéro de ses divisions, que
nous supposerons en h, soit dans le premier
vertical qui est alors Zoh; l'étoile étant vue
en E, l'azimuth est l'angle hoc ou l'arc hc.


La hauteur ainsi observée est ce qu'on
appelle la hauteur apparente de l'étoile; la
hauteur vraie est altérée par la réfraction qui est une déviation des
rayons lumineux, due à l'interposition de l'air atmosphérique entre
nous et l'étoile. Il y a des tables pour corriger l'erreur ainsi commise
et déduire la hauteur vraie de la hauteur apparente observée
(V. la réfraction).


L'azimuth et la hauteur d'une étoile déterminent sa position par
rapport à l'observateur au moment de l'observation; c'est ce que
montre la figure 5 (l'observateur est placé en O).


À l'aide du théodolithe on peut déjà étudier quelques circonstances
importantes du mouvement diurne.



CULMINATION  DES  ÉTOILES; PLAN MÉRIDIEN; PASSAGE AU MÉRIDIEN.



12. Quand un observateur suit avec le théodolithe le mouvement
d'une étoile qui s'élève, à partir d'une certaine hauteur, 15°
par exemple, l'aiguille du limbe horizontal (fig. 8) ayant la position
IE, il voit cet astre monter constamment jusqu'à une certaine hauteur,
puis, au delà de ce point culminant, descendre continuellement.
D'après le mouvement de la lunette sur le limbe vertical, il
remarque que les hauteurs de l'étoile, dans le mouvement descendant,
sont égales chacune à chacune à celles du mouvement
ascendant, mais se retrouvent dans un ordre inverse; cette circonstance
attire naturellement son attention sur la position culminante
de l'étoile. Supposons qu'il cesse d'observer quand l'étoile est revenue
à la hauteur de 15°, l'aiguille du limbe horizontal ayant la
position ID; la position culminante de l'étoile qui paraît tenir le
milieu entre toutes les positions observées doit se trouver dans le
plan vertical moyen, celui dont la trace sur le limbe horizontal
divise l'angle DIE en deux parties égales. En effet, si l'observateur,
ayant tracé sur le limbe cette bissectrice IM, recommence le lendemain
à observer l'étoile, il la voit constamment monter jusqu'à
ce que l'aiguille ait la direction IM, puis descendre continuellement,
et cela, quelle que soit la hauteur à laquelle il recommence
l'observation.


Bien plus, s'il observe ensuite de la même manière le mouvement
d'une autre étoile quelconque, à partir d'une de ses positions
les plus rapprochées de l'horizon, il la voit monter constamment
jusqu'à ce qu'elle soit arrivée dans ce même plan vertical AIM,
puis descendre continuellement quand elle l'a traversée.


De semblables observations constatent ce qui suit:



13. Plan méridien. Il existe pour chaque lieu un plan vertical,
nommé plan méridien, qui contient les positions culminantes de toutes
les étoiles, et divise en deux parties égales et symétriques chacune
des courbes qu'elles décrivent au-dessus de l'horizon.



14. Passages au méridien. Chaque étoile dans sa révolution diurne
traverse deux fois le plan méridien: la première fois au point le
plus élevé de sa courbe diurne, c'est le passage supérieur ou la
culmination de l'étoile; la seconde fois au point le plus bas de la
même courbe, c'est le passage inférieur.


Si on observe une étoile qui se lève, on la voit monter depuis
son lever jusqu'à son passage supérieur, puis descendre jusqu'à
son coucher; son passage inférieur a lieu au-dessus de l'horizon.


Si on observe une étoile circumpolaire, c'est-à-dire une des étoiles
qui ne se lèvent ni ne se couchent, à partir d'un passage inférieur,
on la voit monter à l'orient, d'un côté du plan méridien, jusqu'à
son passage supérieur, puis descendre de l'autre côté de ce plan
jusqu'à un nouveau passage inférieur
6.


Note 6:
(retour)  Dans l'une et l'autre observations, la durée du mouvement descendant
est précisément égale à celle du mouvement ascendant.



15. On appelle méridienne d'un lieu l'intersection du plan méridien
et du plan horizontal.


Le plan méridien joue un très-grand rôle en astronomie; pour
le connaître, il suffit de déterminer la méridienne, puisque ce plan
passe par une ligne déjà connue, la verticale.


La manière de déterminer la méridienne est, à la rigueur, suffisamment
indiquée nº 12; mais à cause de l'importance de cette
détermination, nous croyons devoir l'exposer à part, pour plus de
précision.


[image: ]16. Détermination de la méridienne. On vise, avec la lunette du
théodolithe, une étoile déjà arrivée à une certaine hauteur au-dessus
de l'horizon du lieu, à 15° par exemple, mais non encore
parvenue à sa culmination. On serre la vis de pression de manière
que la lunette conserve sa position actuelle, LOH = 15°, sur le
limbe vertical (fig. 8); en même temps on note bien exactement
la position de l'aiguille sur le
limbe horizontal; soit IE, par
exemple. Puis, l'étoile continuant
son mouvement, on la suit des
yeux, jusqu'à ce que, ayant dépassé
son point de culmination,
elle soit sur le point de revenir
à la même hauteur de 15°. Alors
on fait mouvoir le limbe vertical
de manière à être en mesure de
viser l'étoile quand elle sera revenue
à cette hauteur, ce qui
arrive quand le plan vertical passant
par l'étoile, on retrouve
celle-ci à la croisée des fils de la
lunette dont la direction est toujours
telle que LOH = 15°.

[Illustration: 018, Fig. 8.]


L'aiguille horizontale occupe
alors une certaine position ID sur le limbe horizontal. On divise
l'arc ED en deux parties égales au point M; on tire IM; la ligne
IM est la direction de la méridienne.


Si on recommence l'opération en visant l'étoile à une hauteur
différente de 15°, on trouvera un angle horizontal différent D'IE';
mais cet angle a la même bissectrice IM que DIE. En observant de
la même manière une étoile quelconque, on trouve toujours la
même bissectrice IM.


La méthode que nous venons d'indiquer pour trouver la méridienne
est connue sous le nom de méthode des hauteurs égales
ou correspondantes
7.


Note 7:
(retour)  La méridienne peut aussi se déterminer à l'aide du gnomon. (V. à l'article
des cadrans.)



17. Passage d'un astre au méridien. Une des opérations les plus
importantes de l'astronomie consiste à déterminer exactement
l'heure du passage d'une étoile ou d'un astre quelconque au méridien
d'un lieu.


On se sert pour cela de la lunette méridienne et de l'horloge
sidérale.


Lunette méridienne. Cet instrument se compose essentiellement
d'une lunette fixée au milieu d'un axe de rotation horizontal, dont
les extrémités s'appuient par deux tourillons, sur deux massifs de
pierre (fig. 11). C'est à peu près comme un canon sur son affût.


[image: ]


La lunette est disposée de manière que son axe, perpendiculaire
à l'axe de suspension, décrive un plan vertical qui n'est autre que
le plan méridien du lieu; on conçoit alors qu'en inclinant convenablement
la lunette, l'observateur puisse apercevoir les différents
astres à mesure qu'ils arrivent dans le plan méridien.


Quand une étoile arrive dans le champ de la lunette, on fait
mouvoir celle-ci jusqu'à ce que l'étoile touche le fil horizontal;
quand elle arrive à la croisée des fils, elle est à son point précis
de culmination, elle passe au méridien. On note l'heure que marque
en ce moment une horloge sidérale placée à côté de la lunette méridienne.



Une mire, ou ligne de visée verticale, dont la direction est rencontrée par
la méridienne, est ordinairement gravée sur une colonne ou monument solide
quelconque, à une assez grande distance de l'observatoire. Pour être sûr que
l'axe de la lunette méridienne décrit exactement le plan méridien, on dirige
horizontalement cette lunette vers la mire; puis on la fait tourner dans les
deux sens; la mire doit toujours être vis-à-vis de la croisée des fils. Si on la
voit à droite ou à gauche, c'est que la lunette ne décrit pas exactement le plan
méridien.


Cette vérification s'applique à toute lunette qui doit décrire le plan méridien,
soit d'une manière permanente, soit momentanément pour une observation
particulière; exemples: le cercle mural et le théodolithe.



18. Remarque. Un moyen précis de déterminer l'heure du passage d'un
astre au méridien, consiste à l'observer, le même jour, à des hauteurs égales
au-dessus de l'horizon, à 15° par exemple, en notant l'heure de chaque observation
à l'horloge sidérale. La moyenne arithmétique, c'est-à-dire la demi-somme
des deux heures ainsi remarquées, est l'heure précise du passage de
l'étoile au méridien. Cette observation peut se faire avec le théodolithe.




19. Horloge sidérale. On nomme ainsi une horloge d'une grande
précision disposée de manière à marquer le temps sidéral. Un
cadran divisé en vingt-quatre parties égales est parcouru par une
aiguille dans l'espace d'un jour sidéral; cette aiguille parcourt donc
une division dans une heure sidérale. Deux autres aiguilles marquent
les minutes et les secondes sidérales; leurs extrémités se
meuvent sur une circonférence divisée en soixante parties égales,
que la première parcourt en entier dans une heure sidérale (une
division par minute), et la seconde en une minute sidérale (une
division par seconde). Chaque oscillation du pendule s'effectue
en une seconde, en sorte que le commencement des secondes successives
est marqué par le bruit que fait l'échappement de l'horloge
à chaque oscillation du pendule. L'observateur qui a l'œil à la lunette
méridienne, et qui a regardé d'avance la position qu'occupaient
les aiguilles de l'horloge, peut compter les secondes successives
à l'aide de ce bruit, et connaître a chaque instant l'heure
marquée par l'horloge sans se déranger de son observation.


En outre de la lunette méridienne et de l'horloge sidérale, chaque
observatoire possède principalement un cercle mural.



20. Cercle mural. Cet instrument se compose d'un cercle très-exactement
divisé, situé précisément dans le plan méridien. Il
porte à son centre une lunette astronomique qui, tournant autour
d'un axe horizontal, décrit ce même plan méridien comme la lunette
des passages; ce cercle est fixé contre un mur d'une grande
solidité; de là son nom de cercle mural.


[image: ]


[image: ]La trace de l'horizon, H'H, étant invariablement marquée sur le
mural (fig. 13), cet instrument
peut servir, comme le théodolithe,
à mesurer la hauteur EOH
d'une étoile, E, au-dessus de
l'horizon, quand elle passe au
méridien, ce qu'on nomme la
hauteur méridienne de l'astre;
par suite, il sert au même instant
à déterminer la distance
zénithale méridienne.





21. Axe du monde.--Vérification des lois du mouvement diurne.--Nous
avons dit, en finissant la description générale du mouvement
diurne, que les étoiles nous paraissent tourner autour d'une
ligne droite idéale allant à peu près de l'œil de l'observateur à
l'étoile polaire.


On appelle axe du monde la ligne droite idéale autour de laquelle
nous paraissent tourner tous les corps célestes.


On peut déterminer, comme il suit, sa direction à l'aide du
mura.


[image: ]On vise une étoile circompolaire à son passage inférieur, puis
à son passage supérieur au méridien; on marque chaque fois la
division précise du limbe rencontrée
par la direction de l'axe de la
lunette; soient N et L (fig. 14) les
deux points marqués; on divise
l'arc LN en deux parties égales au
point P; puis on tire le rayon OP
qui est la direction de l'axe du
monde.




On peut observer pour cette détermination
telle étoile circompolaire
que l'on veut; on trouve toujours
la même bissectrice OP. C'est
ordinairement l'étoile polaire qu'on observe en cette occasion.


Le point P et par suite la direction de l'axe du monde peuvent
être marqués invariablement sur le cercle mural; c'est ce que nous
supposerons.


22. Lois du mouvement diurne. La direction de l'axe du monde
étant connue, on peut vérifier les lois du mouvement diurne dont
voici l'énoncé:


Tous les corps célestes paraissent tourner autour d'une droite fixe
qu'on appelle axe du monde. Chaque étoile paraît décrire une circonférence
dont le centre est sur cet axe et dont le plan est perpendiculaire
à cette ligne. Tous ces cercles sont décrits d'un mouvement
uniforme, et la révolution entière s'effectue dans un temps, le même
pour toutes les étoiles, qu'on nomme jour sidéral. De là le nom de
mouvement diurne donné à ce mouvement général de tous les corps
célestes.


On peut vérifier ces lois à l'aide d'un instrument connu sous le
nom de machine parallactique ou équatorial, qui n'est autre chose.
qu'un théolodithe dont l'axe, au lieu d'être vertical, est dirigé
parallèlement à l'axe du monde (fig. 15 bis).


On vise une étoile E avec la lunette de cet appareil (fig. 15);
l'étoile étant derrière la croisée des fils, on serre la vis de pression,
afin que, durant le mouvement imprimé au limbe vertical, l'angle
AOL reste invariable. En même temps on met l'appareil en communication
avec un mécanisme d'horlogerie, identiquement le même
que celui qui met en mouvement l'aiguille des secondes d'une horloge
sidérale; ce mécanisme fait tourner le limbe vertical ALC et
tous les points invariablement liés à ce limbe, ex. la lunette, autour
de l'axe, d'un mouvement de révolution tel que chaque point du
système mobile décrit un arc de 15? à chaque battement du pendule
(observez le mouvement de l'aiguille IL sur le limbe inférieur);
15? en une seconde sidérale, cela fait une circonférence
en 24 heures. Après chaque mouvement de la lunette, on retrouve
constamment l'étoile E derrière la croisée des fils, sur la
direction de l'axe optique L'L; soit e le point de cet axe OL prolongé
avec lequel coïncide d'abord l'étoile; après chaque seconde
sidérale, nous retrouvons toujours l'étoile sur la direction OLe,
coïncidant avec le point e (sphère céleste, nº 3). Le point e tournant
autour de l'axe AB, l'étoile E nous paraît donc tourner avec
lui autour de cet axe, décrivant un arc de 15? en une seconde de
temps, par suite une circonférence tout entière en 86400 secondes,
ou un jour sidéral
8.


[image: ]


Note 8:
(retour)  L'extrémité L de l'aiguille IL décrit sur le limbe horizontal des arcs exactement
égaux (en degrés) à ceux que décrit le point e; il suffit donc d'observer
le mouvement de cette aiguille sur le limbe pour déterminer la vitesse et constater
l'uniformité du mouvement apparent de l'étoile.




L'expérience donne le même résultat à quelque point de son
cercle diurne que l'on commence à observer l'étoile; les résultats
obtenus sont également les mêmes pour toute étoile observée. Le
mouvement diurne apparent des étoiles est donc uniforme; les
lois de ce mouvement sont bien celles que nous avons exposées
tout à l'heure, nº 22.


[image: ]



23. Jour sidéral. Nous avons appelé jour sidéral le temps que
met une étoite à décrire une circonférence autour de l'axe du
monde.


Afin de pouvoir comparer le jour sidéral à d'autres jours qui
seront indiqués plus tard, on le définit souvent ainsi :


On appelle jour sidéral le temps qui s'écoule entre deux passages
consécutifs de la même étoile au même point du méridien
d'un lieu.


Le jour sidéral ainsi défini a toujours été trouvé le même, depuis
les plus anciennes observations astronomiques jusqu'à nos
jours. Il se subdivise en 24 heures sidérales, l'heure en 60 minutes,
la minute en 60 secondes. Le jour et ses subdivisions s'indiquent
par leurs initiales j., h., m., s. Exemple: 10 heures 42 minutes
31 secondes s'écrivent ainsi : 10h 42m 31s.


Il ne faut pas confondre le jour sidéral avec le jour vulgaire,
qui est le jour solaire; nous verrons que le jour solaire surpasse
le jour sidéral d'environ 4 minutes. Il importe donc, en astronomie,
de préciser l'espèce des jours, heures, minutes qui expriment
un temps indiqué.


24. Pôles. On appelle pôle du monde chacun des deux points
où la direction de l'axe du monde va percer la sphère céleste.


Le pôle visible pour nous (à Paris et en France) s'appelle pôle
boréal ou arctique; le pôle qui nous est caché par la Terre s'appelle
pôle austral ou antarctique.


Parallèles célestes. Les cercles décrits par les étoiles étant tous
perpendiculaires à une même droite, sont parallèles; on leur
donne le nom de parallèles célestes. V. fig. 16.


Équateur céleste. On nomme équateur céleste le parallèle qui
passe par le centre de la sphère céleste; il divise celle-ci en
deux hémisphères, l'hémisphère boréal et l'hémisphère austral.
V. fig. 16.


On nomme étoile polaire une étoile de deuxième grandeur qui
nous paraît actuellement la plus voisine du pôle boréal; elle en
est distante de 1° 1/2 environ. Nous apprendrons à la distinguer
(n° 45); quand nous saurons la reconnaître à première vue, elle
nous servira à nous orienter en nous faisant connaître à peu près
la position du pôle boréal. Au lieu de pôle boréal, on dit souvent
le pôle, sans autre désignation.


25. Hauteur du pôle. La hauteur du pôle au-dessus de l'horizon
d'un lieu est l'angle que fait l'axe du monde avec le plan horizontal,
ou bien c'est l'angle aigu de cet axe avec la méridienne du
lieu. C'est l'angle POH, fig. 16, ci-après.


Dans les observatoires où il y a un mural, cette hauteur se
trouve indiquée sur le limbe; c'est l'arc qui sépare l'extrémité de
la méridienne (horizontale du mural) de l'extrémité de la ligne des
pôles (axe du monde).


La hauteur du pôle, à l'Observatoire de Paris, est de 48° 50' 11" 5
(d'après MM. Mauvais et Laugier).


Pour déterminer cette hauteur en un lieu quelconque, par une
observation directe, on détermine la hauteur, au-dessus de l'horizon,
d'une étoile circumpolaire quelconque à son passage supérieur
au méridien, puis au passage inférieur; la demi-somme de
ces deux hauteurs est la hauteur cherchée du pôle au-dessus de
l'horizon du lieu.


Cette méthode se fonde sur ce que le pôle P est le milieu de
l'arc du méridien qui sépare le passage supérieur, I' (fig. 16),
d'une étoile circompolaire quelconque de son passage inférieur
I (nº 23). PI' = PI; alors IH = PH — PI; I'H = PH + PI; d'où
IH + I'H = 2 PH, et enfin PH = (IH + I'H)/2
9




Note 9:
(retour)  [image: ]On peut indiquer sur une figure la disposition apparente de la sphère
céleste par rapporta l'horizon d'un lieu,
cette figure fera comprendre ce qui a été
dit relativement au mouvement diurne
apparent des astres (fig. 46).


Le cercle PEP'E', vu de face, est le méridien
céleste d'un lieu m, dont nous supposerons
le zénith à gauche en M. L'horizon
de m est le cercle HCH'L perpendiculaire
au méridien PEP'E', qui contient la verticale
OM. Nous avons figuré quelques parallèles
célestes, parmi lesquels l'équateur
céleste EC'E'L', tous perpendiculaires au
méridien PEP'E' qui contient l'axe du
monde PP'.


On voit tout de suite, sur cette figure, que la sphère céleste se partage en
trois zones: 1º la zone HPF' au-dessus du parallèle HF', dite de perpétuelle
apparition, parce que toutes les étoiles de cette zone sont toujours visibles
pour le lieu m; 2º la zone intermédiaire HFH'F', où sont les étoiles qui ont
un lever L et un coucher C. On peut se figurer l'une de ces étoiles circulant
sur cette zone dans le sens LD'CD, se levant sous nos yeux en L, parcourant
l'arc LD'C au-dessus de l'horizon, se couchant en C ; puis, invisible pour nous,
parcourant l'arc CDL au-dessous de l'horizon; 3º enfin on remarque la zone
FP'H' où se trouvent les étoiles constamment invisibles pour le lieu m, parce
qu'elles décrivent leurs cercles diurnes tout entiers au-dessous de l'horizon H'H
de ce lieu m.


La même figure montre que le méridien divise par moitié, en D', l'arc que
décrit une étoile au-dessus de l'horizon; que ce milieu D' est le point de l'arc
visible LD'C le plus élevé au-dessus de l'horizon HCH'L.


Enfin, il est facile de voir que le pôle P est le milieu de l'arc I'PI de méridien
qui sépare le passage supérieur, I', et le passage inférieur, I, d'une étoile circompolaire
quelconque.




MOUVEMENT DE ROTATION DE LA TERRE.


26. Les étoiles ne tournent pas réellement autour de la terre,
avons-nous dit précédemment, leur mouvement diurne n'est
qu'une apparence produite par le mouvement de rotation de la
terre. C'est ce que nous allons essayer d'expliquer.


Nous dirons d'abord comment on est conduit à mettre en doute
la réalité du mouvement diurne des étoiles, puis les raisons qui
nous portent à croire au mouvement de la terre. Enfin nous montrerons
que toutes les apparences du mouvement diurne s'expliquent
parfaitement dans l'hypothèse que voici:


La terre tourne sur elle-même autour d'un axe central; elle
effectue, d'un mouvement uniforme, une révolution entière en 24
heures sidérales.


1º Le mouvement diurne des étoiles est invraisemblable.


En effet, le nombre des étoiles, que nous voyons, ou que les
télescopes nous laissent apercevoir, est incalculable; les distances
qui nous en séparent sont d'une grandeur incommensurable. Eu
égard à ces distances, il faut attribuer à la sphère céleste un rayon
immense; il en résulte que les cercles que les étoiles nous paraissent
décrire ont des étendues excessivement diverses; petits
relativement, aux environs des pôles, leurs périmètres deviennent,
pour ainsi dire, infinis quand on arrive à l'équateur céleste. Pour
que ces périmètres si différents soient parcourus dans le même
temps, dans un jour sidéral, il faut que les vitesses réelles des
étoiles, modérées relativement aux. environs des pôles, aillent en
augmentant jusqu'à devenir d'une grandeur excessive sur l'équateur
céleste. Néanmoins ces mouvements, si divers dans leurs
rapidité, doivent être tellement réglés, tellement mesurés, que
ces corps répandus en nombre infini dans l'espace, immensément
éloignés les uns des autres, ne paraissant liés par aucune dépendance
mutuelle, conservent invariablement leurs positions relatives,
puisque la sphère céleste, gardant toujours le même aspect,
semble se mouvoir tout d'une pièce. Quelle force, quelle influence
produirait un pareil mouvement général? Cette influence devrait
être en grande partie attribuée à la terre, puisque ce mouvement
aurait lieu autour d'un axe dont la position paraît dépendre uniquement
de celle de la terre. Mais comment concevoir qu'une
pareille influence puisse être exercée par notre globe, dont la petitesse
est inappréciable relativement aux espaces célestes à travers
lesquels il lui faudrait agir sur des corps qui, à en juger par
les dimensions connues de quelques-uns, sont beaucoup plus considérables
que lui. Toutes ces considérations rendent aussi incompréhensible
qu'invraisemblable le mouvement diurne des étoiles
10.


2º Au contraire, bien des analogies et des faits observés nous portent
à croire au mouvement de rotation de la terre.


Il y a d'abord des analogies frappantes. Tous les corps célestes
qui sont assez près de nous pour que nous puissions distinguer
quelque chose de leur aspect extérieur, par exemple, le soleil, la
lune, les planètes, tournent tous sans exception sur eux-mêmes
autour d'un axe central. Il est naturel de penser que la terre, qui
nous paraît dans les mêmes conditions que les planètes, tourne de.
la même manière. Ce mouvement d'un corps solide, isolé de toutes
parts
11, est plus simple et plus naturel que celui qu'il nous faudrait
attribuer à une multitude de corps isolés, indépendants les
uns des autres comme les étoiles.


Note 10:
(retour)  Les mêmes objections peuvent être exposées avec plus de précision comme
il suit:

1º L'observation nous montre les étoiles répandues par millions dans l'espace,
isolées, indépendantes et immensément éloignées les unes des autres; il est
peu vraisemblable que cette multitude innombrable de corps isolés, indépendants,
tournent autour de la même droite avec autant d'ensemble, autant
d'accord que s'ils étaient liés invariablement les uns aux autres.


2º Eu égard à l'indépendance des étoiles, on ne pourrait expliquer le mouvement
circulaire de chacun de ces astres que par l'action d'un corps placé au
centre de son cercle diurne. Il devrait donc y avoir sur l'axe du monde autant
de corps capables d'exercer une pareille influence qu'il y a d'étoiles; or, l'observation
ne nous en montre aucun; nous n'y voyons que la terre.


L'observation nous apprend aussi que les distances qui séparent les étoiles
de la terre sont immenses, tellement grandes qu'on ne peut les évaluer. La plus
petite de ces distances surpasse 8 trillions de lieues; c'est donc là le plus petit
rayon que nous puissions attribuer à la sphère céleste. Les étoiles qui nous paraissent
décrire l'équateur céleste parcourraient donc en 24 heures une circonférence
de plus de 50 trillions de lieues de longueur; plus de 500000 lieues par seconde.
Comment la terre, dont la petitesse est inappréciable par rapport à ces
espaces célestes, pourrait-elle imprimer à plus de 8 millions de millions de lieues
de distance un pareil mouvement à des corps plus considérables qu'elle-même?




Note 11:
(retour)  V. le commencement du chapitre II.



Comme faits observés, nous citerons la diminution de la pesanteur
à la surface de la terre quand on descend du pôle vers l'équateur,
qui ne peut être, attribuée qu'à l'augmentation de la force
centrifuge due à la rotation de la terre; nous citerons encore la
belle expérience de M. Foucault sur le mouvement du pendule, la
forme même de la terre renflée à l'équateur, aplatie vers les pôles,
puis les vents alisés, etc.


3º Toutes les apparences du mouvement diurne des corps célestes
s'expliquent parfaitement dans l'hypothèse que la terre, animée d'un
mouvement uniforme de rotation autour d'un axe central, effectuerait
une révolution entière en 24 heures sidérales
12.


Note 12:
(retour)  Les étoiles nous paraissent s'élever au-dessus de l'horizon; elles nous
semblent décrire des cercles autour d'un axe dont la direction nous est connue.
Ça apparences peuvent fort bien se produire sans que ce mouvement soit réel?
Est-ce que les arbres d'une route ne paraissent pas fuir, et se mouvoir tous
ensemble avec rapidité, devant un voyageur qui passe sur un chemin de fer?
Est-ce que le rivage et les personnes qui s'y trouvent ne paraissent pas se mouvoir
devant un voyageur qui s'éloigne en bateau?

Si le mouvement réel du voyageur produit l'apparence d'un mouvement en
sens contraire des corps extérieurs qui ne participent pas à ce mouvement, ne
peut-il pas se faire que le mouvement circulaire des corps célestes soit simplement
une apparence due à un mouvement circulaire de l'observateur, dirigé en
sens contraire de celui dont nous paraissent animées les étoiles? L'apparence
étant la même pour les habitants de tous les lieux de la terre, doit pouvoir
s'expliquer par un mouvement de rotation du globe terrestre tout entier autour
de la ligne que nous avons appelée axe du monde. Or, rien de plus facile que
cette explication.




C'est ce que nous allons démontrer.



[image: ]Nous voyons des étoiles se lever à l'orient, monter, puis s'abaisser
et se coucher à l'occident.


C'est que notre horizon,
que l'on peut se figurer
comme un plan matériel
attaché à la terre au
point où nous sommes,
tourne avec elle autour
d'un axe, oblique à ce
plan. Le côté est de cet
horizon s'abaisse dans le sens du mouvement (M1H1), (fig. 17),
tandis que le côté ouest se relève (M1H'1). Durant ce mouvement,
l'étoile E, dont la hauteur se comptait à l'est, nous a paru monter
en se dirigeant de l'est vers l'ouest; l'étoile E' qui se trouvait
au-dessous de l'horizon, invisible pour nous est devenue visible;
elle s'est levée. L'étoile E?, dont la hauteur se comptait déjà à
l'ouest, nous a paru descendre. L'étoile E?, qui était visible, a
disparu et s'est couchée à l'occident. Toutes nous ont paru s'avancer
de l'est à l'ouest, tandis que c'est l'horizon qui a marché en sens
contraire.


Ces premières apparences s'expliquent donc par le mouvement
de rotation de la terre.


Le mouvement diurne étudié avec précision se résume ainsi:


Toutes les étoiles nous paraissent décrire des circonférences de
cercle autour d'une même droite fixe PP'
13.


Note 13:
(retour)  On peut à la rigueur se borner à expliquer ce mouvement circulaire autour
de l'axe du monde; mais nous avons cru bien faire d'expliquer aussi le
lever et le coucher des étoiles, et leur mouvement au-dessus de l'horizon qui
frappe immédiatement tout le monde et avec lequel on est le plus familiarisé.



Expliquons ce qui se passe quand on étudie ces phénomènes.




[image: ]L'observateur, muni d'une
lunette astronomique, vise
une étoile E dans la direction
Oe (fig. 18). La terre
tourne de l'ouest à l'est autour
d'un axe dont la direction
est PP', par exemple,
entraînant avec elle dans ce
mouvement tous les objets
qui lui sont invariablement
liés; l'observateur et sa lunette
sont dans ce cas. La
lunette tourne donc; bientôt
la ligne de visée (axe optique)
au lieu de la direction Oe, a
pris la direction Oe'; l'étoile
E qui est restée en e, n'est
plus derrière la croisée des
fils; elle nous paraît s'être avancée de l'est à l'ouest, décrivant
l'arc e'e. La lunette (que nous supposons réduite à son axe optique)
a quitté l'étoile, et nous croyons que l'étoile a quitté la lunette. Si
nous voulons retrouver l'astre derrière la croisée des fils, nous
sommes obligé d'imprimer à l'instrument avec la main, ou autrement
(machine parallactique), un mouvement de rotation qui le
ramène à l'étoile, vers l'ouest. À peine la lunette a-t-elle rejoint
l'étoile, que le mouvement de la terre l'en éloigne de nouveau; la
main de l'observateur ou un mécanisme la ramène vers l'étoile, et
ainsi de suite.


En résumé, la lunette a un double mouvement de va-et-vient
continuel, de e vers e' et de e' vers e. L'observateur qui n'a conscience
que du mouvement qu'il imprime lui-même, ne tient compte
que du chemin e'e, et croit que l'instrument fait ce chemin pour
suivre l'étoile; celle-ci lui paraît en conséquence tourner de l'est à
l'ouest autour de PP'.


En définitive la somme des chemins ee', dus à la rotation de la
terre étant précisément égale à la somme des chemins e'e, dus à
la main de l'observateur, si la terre, comme nous le supposons,
imprime à chaque point de la direction de la lunette un mouvement
uniforme tel qu'il décrive de l'ouest à l'est (sens ee') une circonférence
en 24 heures sidérales, l'étoile doit nous paraître décrire
dans le même temps, et aussi d'un mouvement uniforme,
une circonférence de l'est à l'ouest (sens e'e).


Les apparences du mouvement diurne des étoiles s'expliquent
donc parfaitement dans l'hypothèse du mouvement indiqué de rotation
de la terre. Il faut donc laisser ces apparences de côté quand
on veut peser les raisons qui militent pour et contre l'existence du
mouvement diurne de tous les corps célestes autour d'un axe traversant
la terre, pour et contre le mouvement de rotation de la
terre autour du même axe en face des étoiles immobiles; ces apparences
pouvant être attribuées à l'un ou à l'autre de ces mouvements.


Or, ces apparences mises de côté, il n'y a plus que des invraisemblances
dans le mouvement général des corps célestes, tandis
qu'il y a un grand nombre d'analogies et de faits observés qui nous
portent à croire au mouvement de la terre.


Nous devons donc admettre comme certain que c'est la terre
qui tourne uniformément autour d'un axe central; parce que ce
mouvement de la terre explique des faits observés et certains qui
sans lui seraient inexplicables, parce qu'il explique parfaitement
toutes les apparences, et qu'il est conforme au mouvement que
nous voyons aux corps célestes assez voisins pour que nous distinguions
quelque chose de leur aspect extérieur.


Nous n'envisagerons donc-plus désormais le mouvement général
de la sphère céleste autour de l'axe de la terre que comme une
simple apparence.



27. Néanmoins, cela bien établi, et toutes réserves faites en conséquence,
nous continuerons à parler le même langage qu'avant
cette discussion, à indiquer le phénomène apparent au lieu du phénomène
réel correspondant; à cela nous ne voyons aucun inconvénient
pour un lecteur averti par la discussion précédente et la
conclusion que nous en avons tirée.


Si nous voulons indiquer l'heure du jour par un phénomène
astronomique, il n'y a évidemment aucun inconvénient à dire: il
est 7 heures quand telle étoile passe au méridien, au lieu de dire,
il est 7 heures, quand le méridien du lieu passe par l'étoile. Il en
est toujours de même quand la question pratique que l'on traite a
pour objet l'heure d'un phénomène, puisque le phénomène apparent
arrive identiquement à la même heure que le phénomène réel;
or, chaque phénomène réel ou apparent; dépendant du mouvement
diurne, se distingue généralement par l'heure à laquelle il
arrive. De même, quand nous observons une étoile dans le plan
méridien, par exemple, pour connaître sa position précise dans ce
plan, il nous importe peu de savoir comment elle se trouve là: si
c'est l'étoile qui est venue trouver le plan, ou le plan qui est allé
trouver l'étoile.


Or, dès qu'il n'y a pas inconvénient, il y avantage à parler
suivant les apparences, parce que ce sont les apparences que l'on
observe, c'est avec elles qu'on est familiarisé. C'est sur elles qu'on
se guide quand on veut tirer parti de l'aspect du ciel pour se
diriger sur la terre; ce qui est un des principaux usages que nous
voulons faire de la cosmographie. Pourquoi dès lors astreindre
l'esprit à un travail le plus souvent inutile?


NOTIONS DIVERSES SUR LES ÉTOILES CONSIDÉRÉES EN ELLES-MÊMES
ET INDÉPENDAMMENT DU MOUVEMENT DIURNE.



28. Coordonnées célestes des étoiles. Ascension droite et déclinaison.
Pour distinguer les étoiles les unes des autres, et fixer d'une
manière précise leurs positions relatives sur la sphère céleste, on
emploie les coordonnées célestes.

Les coordonnées célestes les plus usitées sont, d'une part, l'ascension
droite et la déclinaison; d'une autre part, la longitude et la
latitude célestes. Pour le moment, nous ne nous occuperons que
de l'ascension droite et de la déclinaison, lesquelles suffisent, ainsi
qu'on va le voir, pour déterminer la position apparente de chaque
étoile sur la sphère céleste.



[image: ]29. Considérons la sphère céleste en elle-même, indépendamment
de tout mouvement réel ou apparent; les étoiles sont pour
nous comme autant de points brillants
semés sur sa surface. Figurons-nous
marqués sur cette
sphère les deux pôles du monde,
P et P', aux deux extrémités d'un
même diamètre PP', axe du monde
(fig. 20); puis également tracée
sur la même sphère la circonférence
E'nE de l'équateur céleste,
grand cercle perpendiculaire à
l'axe PP'.




On a fait choix d'un point de cette circonférence, celui où passe
constamment le soleil quittant chaque année l'hémisphère austral
pour l'hémisphère boréal
14; ce point est celui qu'on nomme
équinoxe ou point équinoxial du printemps; il se désigne habituellement
par ce signe ?. Ce point équinoxial du printemps, disons-nous,
a été choisi pour origine des ascensions droites que nous
allons définir.


Note 14:
(retour)  V. chapitre III le mouvement propre du soleil.



30. Par chaque étoile N et par les deux pôles P, P' on imagine
un demi grand cercle de la sphère céleste.


On nomme cercle horaire d'une étoile N le demi grand cercle
PNP' qui passe par cette étoile et les deux pôles du monde P, P'
15.


Note 15:
(retour)  Ce nom vient de ce que chacun de ces demi-cercles passe au méridien
d'un lieu donné tous les jours, à la même heure sidérale; de sorte que son
passage peut servir à faire connaître cette heure même.



31. On nomme ascension droite d'une étoile, N, l'arc d'équateur
céleste compris entre son cercle horaire et le point équinoxial
du printemps, l'arc ?n; cet arc étant compté à partir du
point équinoxial, de l'ouest à l'est, en sens contraire du mouvement
diurne.


On peut, si on veut, imaginer un cercle horaire passant par
l'origine ? des ascensions droites; alors on définit ainsi l'ascension
droite: l'angle dièdre compris entre le cercle horaire, PNP', de
l'étoile, et le cercle horaire, F?P', de l'origine, mesuré de l'ouest
à l'est, dans le sens ?n'n.


L'ascension droite se compte de 0° à 360°.


32. On appelle déclinaison d'une étoile le nombre de degrés du
plus petit des arcs de son cercle horaire qui vont de l'étoile à l'équateur.
Exemple : la déclinaison de l'étoile N (fig. 20) est Nn.


Plus précisément: la déclinaison d'une étoile N, est l'angle
NOn que fait avec le rayon visuel, ON, la trace du cercle horaire
de l'étoile sur l'équateur céleste; ces deux définitions rentrent évidemment
l'une dans l'autre.


La déclinaison est boréale ou australe, suivant que l'étoile est
située sur l'hémisphère boréal ou sur l'hémisphère austral. Elle se
compte de 0° à 90° dans l'un ou l'autre cas.


Ces mots, ascension droite et déclinaison, étant très-souvent
employés en astronomie, on les écrit en abrégé de cette manière:
AR, ascension droite (ascensio recta); D, déclinaison.


33. L'AR et la D d'une étoile suffisent évidemment pour déterminer
sa position apparente sur la sphère céleste ; l'AR, ?n, d'une étoile
N, portée sur l'équateur céleste, de l'ouest à l'est, à partir de l'origine
?, fait connaître le cercle horaire PnP' de cette étoile (fig. 20),
ensuite la D, nN, boréale ou australe, fait connaître la position précise,
N, de cette étoile sur ce cercle horaire. On a coutume de dire
que l'étoile est à l'intersection de son cercle horaire et du parallèle
céleste qui correspond à sa déclinaison.



Remarque. L'AR et la D ne déterminent pas la position précise qu'un astre
occupe par rapport à la terre, mais seulement la direction de la droite qui joint
ces deux corps. Ce que nous venons d'appeler l'étoile N, ou sa position sur la
sphère céleste, n'est autre chose que la projection perspective de l'astre sur
cette sphère, dont le rayon ON est tout à fait indéterminé. C'est le point e de
la figure 1, page 2; l'AR et la D ne nous font pas connaître la distance réelle OE
qui achèverait de déterminer la position réelle, E , de l'étoile par rapport à la
terre. Mais connaissant les directions OE, OE', on peut trouver la distance angulaire
EOE'; etc. (V. le nº 4).




34. Problème. Déterminer l'AR d'une étoile N.


On a une horloge sidérale réglée de telle manière qu'elle marque
0h 0m 0s à l'instant précis où, dans le mouvement diurne de
la sphère céleste, l'origine ? des AR vient passer au méridien du
lieu. Alors pour déterminer l'AR d'une étoile quelconque, il suffit
de déterminer l'heure précise de son passage au méridien nº 20).
Cette heure convertie en degrés, minutes, secondes, à raison de
15° pour une heure, est l'AR cherchée
16.


Note 16:
(retour)  (V. dans l'Appendice la manière d'effectuer simplement ce calcul.) Pour comprendre l'application de cette règle à la détermination de l'AR d'une étoile;
il suffit de jeter les yeux sur une sphère céleste (fig. 20). L'AR de l'étoile N est
?n. Dans le mouvement diurne, tous les points du cercle horaire PNP' décrivent
des parallèles célestes avec la même vitesse de 15° par heure, et tous
arrivent ensemble au méridien d'un lieu quelconque, le point N avec le point n.
Or, quand le point ? passe au méridien du lieu, à 0h 0m 0s de l'horloge sidérale,
le point n est évidemment en arrière d'un arc ?n; mais il y arrive, par hypothèse, à 7h 29m 43s; donc ce point n parcourt un arc égal à ?n en
7h 29m 43s. Il parcourt 15° par heure; on calcule d'après cela le nombre de
degrés de cet arc ?n (qui n'est autre que l'AR de l'étoile N).




35. Remarque. Le point équinoxial ?, origine des AR, n'est pas
un point visible de la sphère céleste, c'est-a-dire que sa position
sur cette sphère n'est indiquée par aucune étoile remarquable; on
peut auxiliairement le remplacer par une étoile.


On fait choix d'une étoile remarquable N', voisine du cercle
horaire P?P', de l'origine (fig. 20), et dont l'AR a été déterminée
directement; par exemple: a d'Andromède. Cela posé, pour
connaître l'AR d'une autre étoile quelconque N, on détermine la
différence n'n, d'AR de cette étoile et de N'; en ajoutant le résultat
à l'AR connue de N', on a l'AR de N. (?n = ?n' + nn'.)



36. Différences d'AR. Pour déterminer la différence d'AR, nn' de
deux étoiles N, N' (fig. 20), il suffit évidemment de les regarder
passer toutes deux successivement au méridien, de noter les heures
des passages, et enfin de convertir en degrés la différence de ces
heures.




37. Déterminer la D d'une étoile. En jetant les yeux sur la
figure 20, on voit que la déclinaison Nn d'une étoile est le complément
de l'angle NOP que fait le rayon visuel allant à l'étoile
avec la ligne des pôles PP'. De sorte que si la direction de l'axe
du monde est gravée sur le mural, il suffit pour obtenir la D d'une
étoile, en l'observant à son passage au méridien, de lire sur le limbe
du mural le nombre de degrés de l'angle NOP, et d'en prendre le
complément à 90°.



38. Autre méthode. La D d'une étoile est égale à la hauteur du
pôle au-dessus de l'horizon du lieu, plus ou moins la distance zénithale
méridienne de l'étoile, suivant que cette étoile, à son passage
supérieur au méridien, se trouve entre le zénith et le pôle, ou entre
le zénith et l'équateur. Or on connaît la hauteur du pôle et l'on
sait trouver la distance zénithale méridienne d'une étoile à l'aide
du théodolithe ou du cercle mural.


Pour vérifier la proposition précédente


D = hauteur du pôle ± dist. zénith. mérid.


il suffit de jeter les yeux sur la figure 21.




[image: ]Le cercle PEP'E' est le méridien du lieu; HH' la trace de
l'horizon du lieu sur ce cercle;
E'E la trace de l'équateur id.;
OZ la verticale du lieu et Z son
zénith.


E'P = 1quadr. ou 90°; ZH = 90°;


d'où


E'P = ZH.


Otant de part et d'autre la
partie commune ZP, on trouve
ZE' = PH, hauteur du pôle. Si le passage supérieur de l'étoile a
lieu en N, on voit que


Décl. NE' = NZ + ZE' = NZ + PH = distance zénith. + haut. du pôle.


Si le passage supérieur a lieu en N', on a


Décl. N'E' = ZE' - ZN' = PH - ZN' = haut. du pôle - dist. zénith.


La déclinaison peut être australe; le rayon visuel passe au-dessous
de l'équateur par rapport à la ligne OP; on voit aisément ce
qui arrive dans ce cas.



39. Remarque. La D et l'AR d'une étoile ne varient pas durant
son mouvement diurne apparent; cela est évident à priori, puisque
ces coordonnées sont choisies sur la sphère céleste indépendamment
de tout mouvement réel ou apparent relatif à la terre.




40. Catalogues d'étoiles. Les astronomes ont consigné dans des catalogues
spéciaux les AR et les D observées d'un très-grand nombre d'étoiles plus ou
moins remarquables.


À l'aide de ces catalogues on construit des globes et des cartes célestes plus
commodes que les catalogues quand on veut se faire des idées d'ensemble sur
les positions relatives des étoiles et apprendre à les retrouver les unes par les
autres. Nous allons dire comment se construit un globe céleste; quant aux
cartes célestes, elles se construisent comme les cartes terrestres géographiques.
V. chapitre II le mode de construction du planisphère céleste dont nous
allons nous servir.



41. Globe céleste. Sa construction.


On appelle globe céleste une sphère de carton représentant la sphère céleste,
sur laquelle on a figuré exactement les positions relatives d'un certain nombre
d'étoiles ou d'autres points remarquables du ciel. Les points qui représentent
les étoiles, vus du centre du globe, ont exactement entre eux les mêmes distances
angulaires que les étoiles elles-mêmes. Cette représentation de la sphère
céleste est donc on ne peut plus exacte.


Pour construire un globe céleste, on commence par marquer les deux pôles P
et P' aux deux extrémités d'un même diamètre; puis on dessine l'équateur en
traçant un cercle de l'un de ses points, P, comme pôle, avec une ouverture de
compas sphérique égale à la corde d'un quadrant de cette sphère. On marque
un point de cet équateur comme devant représenter le point équinoxial du
printemps, origine des AR. À partir de ce point marqué 0° ou ?, l'équateur est
divisé en degrés, minutes, secondes, de 0° à 360°, de gauche à droite. Pour
plus de commodité, on adapte provisoirement au globe un demi-cercle de
cuivre qui peut tourner autour d'un axe passant par les pôles P, P'. Chaque
quadrant de ce demi-cercle est divisé en 90°, de 0° à 90° en allant de l'équateur
à chaque pôle; dans la demi-circonférence est pratiquée une rainure dans laquelle
se meut un style.


Pour marquer la position d'une étoile sur le globe, on fait tourner le cercle
de cuivre jusqu'à ce que son AR, lue sur l'équateur, soit celle de l'étoile considérée.
Arrêtant le cercle dans cette position, on fait mouvoir le style dans la
rainure, vers le pôle boréal ou vers le pôle austral, jusqu'au point indiqué par
la déclinaison donnée; on presse alors le style sur la sphère; le point marqué
est la position cherchée de l'étoile sur le globe. On met à côté, si l'on
veut, un nom ou une notation indicative. On répète cette opération pour les
diverses étoiles que l'on veut représenter sur le globe céleste. Cela fait, on
enlève, si l'on veut, le limbe de cuivre.




42. Constellations. Pour plus de commodité dans l'observation
de la sphère étoilée, on a d'abord distribué les étoiles en un certain
nombre de groupes principaux, de grandeurs diverses et de
formes plus ou moins remarquables, qu'on a nommés constellations.


Les anciens avaient couvert le ciel de figures allégoriques de
héros et d'animaux, ils distinguaient les étoiles d'une même constellation
par la place qu'elles occupaient sur la figure; ainsi ils
disaient l'œil du Taureau, le cœur du Lion, l'épaule droite d'Orion,
son pied gauche, etc.


Les modernes ont conservé les noms des constellations, mais
en abandonnant ces figures arbitraires.


On distingue les étoiles de chaque constellation, à commencer
par les plus brillantes, d'abord par des lettres grecques, a, ß, ?, d,...
puis par des lettres romaines, et aussi par des chiffres ou numéros
d'ordre. Cependant les étoiles les plus remarquables ont encore
des noms particuliers presque tous d'origine arabe; nous en citons
quelques-uns plus bas.



43. Étoiles de diverses grandeurs. Les étoiles ont d'ailleurs été
distribuées par classes suivant leur éclat apparent qu'on a appelé
grandeur.


Les étoiles les plus brillantes sont dites de 1re grandeur ou primaires.
On s'accorde généralement à ne comprendre dans cet ordre
qu'une vingtaine d'étoiles, dont 14 seulement sont visibles en Europe.
Voici les noms de ces dernières, en commençant par les
plus brillantes
17.


Note 17:
(retour)  Les noms soulignés sur le planisphère désignent les étoiles de première
grandeur; les autres des constellations.




Étoiles de 1re grandeur visibles en Europe.



Sirius ou a du Grand Chien.

Arcturus ou a du Bouvier.

Rigel ou ß d'Orion.

La Chèvre ou a du Cocher.

Wéga ou a de la Lyre.

Procyon ou a du Petit Chien.

Betelgeuze ou a d'Orion.

Aldébaran ou a du Taureau.

Antarès ou a du Scorpion.

Altaïr ou a de l'Aigle.

L'Épi ou a de la Vierge.

Fomalhaut ou a du Poisson austral.

Pollux ou ß des Gémeaux.

Régulus ou a du Lion.





Viennent ensuite 65 étoiles d'un éclat assez notablement inférieur
pour qu'on les comprenne dans une 2e classe: ce sont les
étoiles de 2e grandeur ou secondaires.


On compte ensuite environ 200 étoiles de 3e grandeur ou tertiaires,
et ainsi de suite; les nombres augmentent très-rapidement
à mesure qu'on descend dans l'échelle des grandeurs.


4e grandeur, 425 étoiles; 5e, 1100; 6e, 3200; 7e, 13000;
8e, 40000; 9e, 142000.


Le ciel entier contient environ 5000 étoiles visibles à l'œil nu
(de la 1re à la 6e grandeur inclusivement).


On n'en voit à Paris que 4000; 1000 restent au-dessous de notre
horizon.


Au delà du 9e ordre viennent des étoiles, en nombre toujours
croissant, du 10e ordre, du 11e ordre, etc., jusqu'au 16e
18.


Note 18:
(retour)  On conçoit que cette classification est assez arbitraire, et qu'il doit être
difficile d'établir une ligne de démarcation tranchée d'une classe ou grandeur à
une autre; aussi les astronomes ne sont-ils pas d'accord sur les grandeurs de
toutes les étoiles; de là ces nombres indiqués par approximation.



Il n'y a pas de raison pour assigner une limite à cette progression,
chaque accroissement dans les dimensions et le pouvoir des
instruments ayant fait apercevoir une multitude innombrable de
corps célestes invisibles auparavant.


On compte aujourd'hui 109 constellations dénommées. Nous
allons indiquer quelques-unes de celles qui sont visibles à Paris,
et apprendre à les retrouver dans le ciel.



Description du ciel.



44. Pour retrouver dans le ciel les étoiles les plus remarquables,
on emploie la méthode des alignements. Cette méthode consiste
à faire passer une ligne droite par deux étoiles que l'on connaît,
puis à la prolonger dans un sens ou dans l'autre, afin de
trouver une ou plusieurs étoiles remarquables situées dans cette
direction. On peut, si l'on veut, s'aider d'un fil tendu dans la
direction considérée; tous les points de la sphère céleste, recouverts
par le fil, sont dans un même plan passant par l'œil, par
conséquent sur un même grand cercle de la sphère céleste. Pour
avoir une base dans l'évaluation approximative; à vue d'œil, des
distances angulaires, on pourra se rappeler que la distance, ßa,
des gardes de la grande Ourse (dont il va être question) est d'environ
5°, et que le diamètre apparent du soleil ou de la lune est
d'environ un demi-degré.



[image: ]45. Nous allons, dans une description succincte, indiquer les
principales constellations visibles au-dessus de l'horizon de Paris;
nous donnons le moyen de les retrouver dans le ciel en partant
d'une belle constellation que chacun peut facilement reconnaître à
priori. (Suivez sur le planisphère.)


Grande Ourse. Il y a vers le nord une constellation très-belle, et
si remarquable qu'elle est connue même des personnes qui ne s'occupent
ni d'astronomie, ni de cosmographie.



C'est la grande Ourse ou le Chariot de David (fig. 22). Elle se
compose de 7 étoiles (6 de 2e grandeur
et 1 de 3e), dont 4 forment un quadrilatère;
les 3 autres, disposées sur une ligne
un peu courbe dans le prolongement d'une
diagonale du quadrilatère, forment la queue
de la grande Ourse; les deux étoiles ß, a,
sur le côté du quadrilatère opposé à la
queue, sont les gardes de la grande Ourse.


[image: ]


Étoile polaire, petite Ourse. La ligne ßa
des gardes de la grande Ourse prolongée au
nord, d'une quantité égale à 5 fois la distance
ßa, rencontre une étoile de 2e grandeur,
l'étoile polaire, dont il a été question
comme l'étoile visible la plus voisine du pôle boréal (1° 1/2);
l'étoile polaire fait partie de la petite Ourse, constellation composée
de 7 étoiles principales, et ayant, à très-peu près, la
même forme que la grande Ourse, mais avec des dimensions plus
petites, et dans une situation renversée (fig. 23). L'étoile polaire,
située à l'extrémité de la queue de la petite Ourse, se retrouve
facilement une fois qu'on connaît à peu près sa position, à cause
de son éclat plus vif que celui des étoiles suivantes de la même
constellation. Le pôle boréal est à côté (1° 1/2), entre la polaire et
la grande Ourse.


[image: ]


Cassiopée. La ligne qui joint la roue de devant du chariot de la
grande Ourse (d) à la polaire, prolongée au delà de celle-ci (fig. 24),
rencontre Cassiopée, formée de 5 étoiles de 3e grandeur, figurant
à peu près une M ouverte; si l'on joint l'étoile a, adjacente, les
6 étoiles figurent une chaise.


Pégase, Andromède, Persée. Les lignes droites qui joignent respectivement
a et d de la grande Ourse à la polaire, prolongées au
delà de celle-ci, comprennent entre elles, au delà de Cassiopée,
le carré de Pégase, formé de 4 étoiles de 2e grandeur. Trois de ces
étoiles appartiennent à la constellation de Pégase; la 4e fait partie
de la constellation d'Andromède.


À peu près dans le prolongement de la diagonale du carré qui
va de a de Pégase à a d'Andromède, on trouve ß et ? d'Andromède,
puis a de Persée, toutes trois de 3e grandeur. L'ensemble de
ces trois étoiles et du carré de Pégase forme une grande figure qui
a beaucoup d'analogie avec celle de la grande Ourse.


?, a, d de Persée forme un arc concave vers la grande Ourse,
facile à distinguer; du côté convexe de cet arc, on remarque Algol
ou ß de Persée, dont l'éclat varie périodiquement (nº 10).


Le Lion (fig. 26). La ligne aß des gardes de la grande Ourse,
prolongée au sud, du côté opposé à l'étoile polaire, va rencontrer
un trapèze, étroit entre les deux bases, le Lion, renfermant une
étoile primaire, Régulus, et 3 secondaires.


[image: ]


Le Bouvier, Arcturus. À peu près sur l'alignement des deux
dernières étoiles de la queue de la grande Ourse, vers le sud-est,
se trouve Arcturus, étoile primaire, faisant partie de la constellation
du Bouvier, dont les autres étoiles principales forment un
pentagone, au nord d'Arcturus. À côté du Bouvier, on voit la
couronne boréale formée de plusieurs étoiles rangées en demi-cercle,
et dont la plus grande est de 2e grandeur.


Le Cocher, la Chèvre. Le côté nord du quadrilatère de la grande
Ourse (da), prolongé vers le sud-ouest, passe tout près et à l'est du
Cocher, pentagone irrégulier à l'angle nord-ouest duquel se trouve
la Chèvre, belle étoile primaire.


Le Taureau. Au sud, et un peu à l'ouest du Cocher, tout près,
on voit le Taureau, triangle d'étoiles, dont une primaire rougeâtre,
Aldébaran.




[image: ]Orion. Le côté sud, ?ß, de la grande Ourse, prolongé vers le
sud-ouest, au delà du
Cocher, conduit sur
l'équateur, à Orion, la
constellation la plus
belle du ciel, à cause
du nombre de belles
étoiles qu'elle renferme
(fig. 25). Le contour est
un quadrilatère ayant,
à deux angles opposés,
deux primaires: a ou
l'épaule droite d'Orion; Rigel, ou son pied gauche; puis, dans
l'intérieur du quadrilatère, on remarque sur une ligne droite,
et rapprochées, trois belles étoiles, formant ce qu'on appelle le
baudrier d'Orion; à côté du baudrier sont deux étoiles moins
brillantes.


Sirius. Sur la direction du baudrier d'Orion, vers le sud-est,
on trouve Sirius, qui est aujourd'hui la plus belle étoile du ciel.
Sirius fait partie de la constellation du grand Chien.


Le Cygne. La diagonale, ?ß, de Pégase, qui se dirige du sud
vers l'ouest, prolongée, va rencontrer le Cygne ou la Croix, grande
constellation figurant une croix.


La Lyre. À côté du Cygne, vers l'ouest, et à peu près dans la
même direction, on trouve la Lyre, qui renfermé Wéga, belle
étoile primaire, à côté d'un petit triangle isocèle. Wéga passe tous
les jours au zénith de Paris.


Les Gémeaux. Le côté sud, ?ß, du quadrilatère de la grande
Ourse, prolongé vers le sud-ouest, vers Orion, passe auparavant
à côté des Gémeaux, constellation figurant un grand quadrilatère
oblique, dont le côté oriental est formé par deux belles étoiles,
Castor et Pollux.


Le dernier côté de la queue de la grande Ourse, prolongé au
sud-est, vers Arcturus, passe tout près de l'équateur à côté de la
Vierge, renfermant une étoile primaire, l'Épi.


Procyon. La ligne, menée de la polaire à Castor des Gémeaux,
va rencontrer Procyon, étoile primaire faisant partie de la constellation
du petit Chien, située à peu près entre Castor et Sirius.


Voici maintenant quelques particularités très-remarquables concernant
les étoiles.



Étoiles variables ou périodiques.



46. On nomme ainsi des étoiles qui, sans changer de places
apparentes, éprouvent des changements périodiques dans l'intensité
de leur lumière; il y en a même parmi elles-qui deviennent
quelque temps tout à fait invisibles. En voici trois ou quatre
exemples:


Algol ou ß de Persée est de 2e grandeur pendant 2j 14h; elle
décroît ensuite pendant 3h 1/2 jusqu'à la 4e grandeur, puis elle
croît de nouveau pendant 3h 1/2 pour revenir à la 2e grandeur; sa
période est de 2j 20h 48m. L'étoile, ?, du Cygne a une période de
404 jours, pendant laquelle elle passe de la 5e à la 11e grandeur.


? (omicron), de la Baleine, a une période d'environ 334 jours.
Pendant 15 jours elle a un éclat maximum qui est celui d'une
étoile de 2e ou de 3e grandeur; cet éclat décroît ensuite pendant
3 mois; elle descend à la 7e ou 8e grandeur; puis elle devient
invisible pendant 5 mois. Elle reparaît ensuite; son éclat augmentant
pendant 3 mois, revient à son maximum; puis cela recommence.
Il y a eu des irrégularités dans cette périodicité; ainsi cette
étoile est restée une fois invisible pendant 4 ans (de 1672 à 1676).


En 1596, on remarqua l'apparition et la disparition d'une étoile
du Cygne; on reconnut qu'elle avait une période de 18 ans, pendant
lesquels elle était 12 ans visible et 6 ans invisible.


Dans l'hémisphère austral, on remarque ? du Navire (Argo);
cette étoile d'éclat variable fut classée de 4e grandeur par Halley,
de 2e grandeur par Lacaille; de 1822 à 1826, elle fut de 2e grandeur;
elle fut ensuite égale à a du Centaure, étoile très-brillante
du ciel austral. En 1850, elle était égale en éclat à Sirius.


Nous parlerons d'étoiles colorées; en fait de variations de couleur,
nous citerons Sirius; cette étoile, qui paraissait rouge aux
anciens, nous paraît blanche.


Voici en tableau quelques exemples de périodes très-diverses.


NOMS DES ÉTOILES.          PÉRIODES.              VARIATIONS

	                                         de grandeurs.



ß de Persée              2 j. 20 h. 48 m.           2e à 4e

o de la Baleine          334 j.                     2e à 0

? du Cygne               404 j.                     5e à 11e

34e du Cygne             18 ans.                    6e à 0

ß de la Lyre             6 j. 9 h.                  3e, 4e, 5e.

a d'Hercule              60 j. 6h.                  3e à 4e




Étoiles temporaires.



47. On nomme ainsi des étoiles qui, après avoir brillé d'un
éclat très-vif, ont complètement disparu du ciel; quelques-unes
ont apparu tout d'un coup avec un éclat extraordinaire, et, après
une courte existence, se sont éteintes sans laisser de traces.


On peut citer d'abord celle dont l'apparition soudaine, puis la
disparition, fixèrent l'attention d'Hipparque, 128 ans avant Jésus-Christ,
et lui firent entreprendre le catalogue d'étoiles le plus anciennement
connu.


L'une des étoiles temporaires les plus remarquables et les mieux
étudiées est celle de 1572. Son apparition fut si soudaine que le
célèbre astronome Tycho Brahé, quand il la vit pour la première
fois, n'en pouvait croire ses yeux, et sortit de son observatoire
pour demander aux passants s'ils la voyaient comme lui. L'éclat
de cette nouvelle étoile surpassait celui de Sirius et de Jupiter; il
était comparable à celui de Vénus quand elle est le plus près possible
de la terre; on la voyait dans le jour, et même en plein midi,
quand le ciel était pur. En décembre de la même année, elle commença
à décroître. Jusque-là elle était blanche; en janvier 1572,
elle était jaunâtre, puis elle passa au rougeâtre d'Aldébaran, puis
au rouge de Mars; enfin elle devint blanche, d'un éclat mat comme
Saturne. En janvier 1574, elle était de 5e grandeur, et finit par
disparaître en mars de la même année. Cette étoile était dans
Cassiopée.


C'était bien une étoile, car elle conserva constamment la même
place par rapport aux étoiles; sa distance à la terre ne parut pas
moindre que la leur.


En 1604, une étoile temporaire, plus brillante que Sirius, fut
observée par Kepler dans le serpentaire.


Antelme, en 1670, découvrit dans la tête du Cygne une étoile
de 3e grandeur, qui devint ensuite complètement invisible, se
montra de nouveau, et, après avoir éprouvé en 2 ans de singulières
variations de lumière, finit par disparaître de nouveau et n'a
jamais été revue depuis.


Quand on fait une revue attentive du ciel en le comparant aux
anciens catalogues, on trouve que nombre d'étoiles manquent.
Lalande a marqué dans le catalogue de Flamsteed plus de cent
étoiles perdues. Ce mécompte doit probablement quelquefois être
attribué à des erreurs de catalogues; mais il est certain que plusieurs
étoiles observées antérieurement ont disparu du ciel.



Des étoiles doubles.



48. On nomme étoiles multiples des étoiles qui, simples à l'œil
nu ou quand on les observe avec des instruments d'une médiocre
puissance, se résolvent en 2, 3 et même plus de 3 étoiles, quand
on les examine avec des lunettes d'un fort grossissement. Nous
ne parlerons que des étoiles doubles qui se résolvent seulement
en deux étoiles; ce sont les plus nombreuses parmi les étoiles
multiples.


La distance angulaire qui sépare deux étoiles peut, par deux
causes différentes, être assez petite pour qu'elles se confondent à
l'œil nu. Elles peuvent se trouver à très-peu près sur la direction du
même rayon visuel, issu de la terre, bien que réellement très-distantes
l'une de l'autre, et alors on ne les regarde pas comme
de véritables étoiles doubles; ce sont des couples optiques. Ou
bien elles sont réellement voisines l'une de l'autre et à même distance
de la terre; ce sont les véritables étoiles doubles.


Exemples. La belle étoile Castor, des Gémeaux, fortement grossie,
est formée de deux étoiles de 3e ou de 4e grandeur.


s et ? de la Couronne sont 2 étoiles doubles.


Il en est de même de l'étoile ?, de la queue de la grande Ourse.


La 61e du Cygne est formée de deux étoiles à peu près égales,
distantes l'une de l'autre d'environ 15?.


Nous citerons encore l'étoile ? de la Vierge.


On connaît maintenant un grand nombre d'étoiles doubles, plusieurs
milliers, lesquelles ont été distribuées en 4 classes, suivant
la grandeur de la distance angulaire des deux étoiles de chaque
système.


Les deux étoiles d'un même système binaire changent quelquefois
de position l'une par rapport à l'autre. La plus petite
tourne autour de la plus grande; ce mouvement paraît elliptique
et soumis aux mêmes lois que celui des planètes autour du soleil
(Lois de Képler). On constate ainsi que les lois de la gravitation
universelle s'étendent jusqu'aux étoiles.


Lorsque les deux étoiles d'un groupe sont très-dissemblables,
on désigne quelquefois la plus petite par le nom d'étoile satellite.


M. Struve, astronome russe, a constaté ce mouvement révolutif
pour 58 étoiles doubles; il l'a trouvé probable pour 39 autres. Des
observations continuées depuis qu'on a soupçonné ces révolutions
ont permis de déterminer la durée de quelques-unes.


Voici les éléments des systèmes binaires les mieux étudiés
(d'après M. Faye):


NOM DE L'ÉTOILE DOUBLE.    GRANDEUR          DEMI-GRAND     DURÉE

	                     des                axe         de la

                         deux étoiles.      de l'ellipse  révolution

                                              décrite



? de l'Ourse              4e  et 5e           2?,44       61 ans, 6

? d'Ophiucus              5e  et 6e           4?,97       92 ans, 3

? d'Hercule               3e  et 6e           1?,25       36 ans, 4

? de la Couronne          5e  et 6e           1?,11       66 ans, 3

? de la Vierge            3e  et 3e           3?,45      153 ans, 8

a du Centaure             1re et 2e          12?,13       78 ans, 5





Étoiles colorées.



49. Les étoiles sont blanches pour la plupart, mais il y en a
de colorées. Parmi les étoiles colorées, les étoiles rougeâtres sont
en majorité; telles sont a d'Orion, Arcturus et Aldébaran. Puis
viennent les étoiles jaunes, la Chèvre et a de l'Aigle. Antarès du
Scorpion est rouge et a la forme d'un ?. Parmi les étoiles d'un
moindre éclat, on en trouve de vertes et de bleues; il y a dans
l'hémisphère austral un espace de 3' 3? où toutes les étoiles sont
bleuâtres.


Sirius, qui parut rouge aux anciens, nous paraît blanche depuis
des siècles
19.


Note 19:
(retour)  En général ces colorations si diverses ne sont pas très-tranchées, et la
planète Mars est d'un rouge bien plus sensible que celui des étoiles rougeatres
indiquées.



Le catalogue des étoiles doubles présente la plupart de ces
groupes comme composés chacun de deux étoiles diversement colorées.
En général les deux nuances sont complémentaires (on
appelle ainsi deux nuances qui, fondues ensemble, donnent à
l'œil la sensation de la lumière blanche). Ainsi, quand l'une est
rouge, ou orange, ou cramoisie, l'autre est verte, ou bleue, ou
vert foncé. Il peut arriver que la coloration de la petite étoile en
vert ou en bleu soit un effet de contraste. Lorsque l'œil est affecté
d'une manière très-vive, par la lumière rouge, par exemple, une
autre lumière qui, vue séparément, nous paraîtrait blanche, nous
semble verte. Dans a du Cancer, l'une des étoiles est jaune et
l'autre bleue; dans ? d'Andromède, l'une est orange, l'autre verte.
Quelquefois des deux étoiles la plus grande est blanche et la plus
petite néanmoins est colorée. Dans d d'Orion, la plus grande est
blanche et l'autre d'un rouge prononcé. Dans a du Bélier, la plus
grande est blanche et l'autre bleue. Il en est de même dans ß de
la Lyre.




50. Lumière des étoiles. Les étoiles sont certainement lumineuses par
elles-mêmes; quels seraient les corps lumineux assez rapprochés d'elles pour
qu'elles en tirassent leur éclat? On doit donc les considérer comme autant de
soleils, qui peut-être échauffent et vivifient des systèmes planétaires analogues
au nôtre et invisibles pour nous. Le soleil lui-même ne parait être qu'une
étoile plus rapprochée de nous que les autres.


Dimensions des étoiles. Les dimensions des étoiles sont complètement inappréciables.
Plus les lunettes, à l'aide desquelles on les observe, sont puissantes,
plus leur diamètre apparent est petit. Eu égard aux distances qui nous
séparent des étoiles (nº 54), si l'une d'elles avait seulement un diamètre apparent
bien constaté de 1?, elle serait au moins un million de fois plus grosse que
le soleil.


Scintillation ses étoiles. Quand on regarde à l'œil nu une étoile brillante
comme Sirius, Wega, etc., on remarque dans sa lumière un tremblement auquel
on a donné le nom de scintillation.


«La scintillation, dit M. Arago, consiste en changements d'éclats trèssouvent renouvelés. Les changements sont ordinairement accompagnés de variations
de couleur et de quelques effets secondaires, conséquences immédiates
de toute augmentation ou diminution d'intensité, tels que des altérations
considérables dans le diamètre apparent des astres, etc.»


Les observateurs sont, en général, d'accord pour dire que les planètes elles-mêmes
scintillent comme les étoiles; cependant la scintillation de Saturne est
fort difficile à saisir.




Distances immenses des étoiles à la terre.



51. La plus petite des distances des étoiles à la terre surpasse
206265 fois 38000000 lieues (7838070 millions de lieues). Ou bien,
en prenant pour terme de comparaison la vitesse de la lumière,
qui parcourt 77000 lieues par seconde, on peut dire que la lumière
de l'étoile la plus voisine de la terre met plus de 3 ans à nous parvenir.
C'est là un fait mathématiquement démontré, comme nous
l'expliquerons plus loin.


Voici les seules distances que l'on ait pu jusqu'ici mesurer avec
quelque précision; elles surpassent notablement le minimum
précédent.


NOMS DES ÉTOILES.             DISTANCES           TEMPS

                             en millions     que met la lumière

                              de lieues.    à venir de l'étoile.



a du Centaure                 8 603 200          3 ans, 2

61e du Cygne                 22 735 400          9 ans,43

a de la Lyre                 29 852 800         12 ans,57

Sirius                       52 174 000         21 ans,67

t de la Grande Ourse.        58 934 200         24 ans,80

Arcturus                     61 712 000         25 ans,98

La Polaire                   73 948 000         31 ans,13

La Chèvre                   170 392 000         71 ans,74




Comme on le voit, les étoiles sont immensément éloignées de la
terre; il y a de bien plus grandes distances que celles que nous
citons. Il résulte, en effet, de l'ensemble des observations astronomiques,
que, dans la quantité innombrable des étoiles visibles
au télescope, il y en a très-probablement dont la lumière met
plusieurs milliers d'années à nous parvenir.


Nous allons essayer d'expliquer succinctement comment on a
pu fixer avec certitude le minimum que nous avons cité en commençant,
et déterminer les distances inscrites dans le tableau.




[image: ]La distance d'un astre à la terre se mesure à l'aide de sa parallaxe
quand celle-ci peut être déterminée. Supposons que l'observateur
occupe successivement
dans l'espace les
positions A et B (fig. 27);
la parallaxe d'une étoile
e est l'angle AeB sous lequel
serait vue de l'étoile
la droite AB qui joint les
deux stations. Cet angle
AeB est la différence des
angles eBX, eAX que forment les rayons visuels avec la direction
ABX de la base. Si les stations A et B sont deux points de la
surface terrestre, quelle que soit leur distance, il est impossible
de trouver la moindre différence entre les angles eAX, eBX; leur
différence AeB n'est pas appréciable avec nos instruments. Ne
pouvant trouver aucune parallaxe en se déplaçant sur la terre, on
a profité de ce que la terre change elle-même de position dans
l'espace en tournant autour du soleil. Elle parcourt, dans ce mouvement,
une orbite elliptique dont le grand axe a 76000000
lieues de longueur; un astronome peut donc, à six mois d'intervalle,
observer les étoiles de deux stations. A et B, distantes
l'une de l'autre de 76000000 lieues de 4 kilomètres.


On donne le nom de parallaxe annuelle d'une étoile à l'angle
sous lequel serait vu de cette étoile le demi-grand axe de l'orbite
elliptique que décrit la terre autour du soleil. Il est facile de voir
que si la parallaxe annuelle atteignait pour une étoile la valeur
de 1?, la distance de cette étoile à la terre ne serait pas moindre
que 206265 fois 38000000 lieues, près de 8 millions de millions
de lieues (783807000000)
20. Or il n'existe pas d'étoiles ayant
une parallaxe de cette grandeur; la plus petite des distances des
étoiles à la terre est donc supérieure à 206265 fois 38000000
lieues. La lumière parcourant 77000 lieues par seconde, il suffit
de diviser 783807000000 par 77000, pour avoir, en secondes, le
minimum du temps que met à nous parvenir la lumière d'une
étoile quelconque. C'est ce minimum que nous avons cité en commençant.


Note 20:
(retour)  L'angle e (fig. 27 bis), étant 1? ou une fraction de seconde, on peut, sans
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erreur relativement sensible, regarder la ligne AB comme confondue avec le
petit arc, au plus égal à 1?, dont elle est la corde, et qui, décrit de e comme
centre avec le rayon eA = eB, mesure l'angle AeB. Or il y a dans la circonférence
entière, circ eA = 2p·eA, 1296000 arcs de 1?, tels que AB; 1296000
AB = 2p·eA; d'où on déduit eA = 1296000/2p AB; or, 1296000/2p = 206265, à moins
d'une unité: donc si la ligne AB = 38000000 lieues, et l'angle AeB = 1?, la
distance eA = 206205 × 38000000 lieues.

Si la parallaxe AeB est seulement une fraction de seconde, 0?,35, par
exemple, la distance eA sera plus grande. La circonférence qui contient
1296000?, contient 129600000 fois 0?,01, et 129600000/35 fois 0?,35; d'où l'égalité
129600000/35 AB = 2p·eA, de laquelle on déduirait eA.





M. Bessel est parvenu le premier à trouver une parallaxe annuelle
pour la 61e du Cygne; cette parallaxe est de 0?,35. Connaissant
cette parallaxe 0?,35, on en déduit, par des considérations géométriques
très-simples (indiquées dans la note ci-dessous), la distance
de cette étoile à la terre, qui est 589300 fois 38 millions de lieues.


On a calculé depuis les parallaxes annuelles des 7 autres étoiles
indiquées dans notre tableau.


Voici par ordre les parallaxes des 8 étoiles désignées:


0?,91; 0?,33; 0?,26; 0?,15; 0?,133; 0?,127; 0?,106; 0?,046.


Ces parallaxes ont servi, comme celle de la 61e du Cygne, à
calculer les distances consignées dans le tableau de la page 45.





NÉBULEUSES. VOIE LACTÉE.



52. Nébuleuses. Dans la partie du ciel la moins riche en étoiles,
on remarque des taches blanchâtres et des amas d'étoiles qui
paraissent isolés. Ex.: Les Pléiades, amas confus d'étoiles indistinctes
pour une courte vue, offrent néanmoins à une bonne vue
6, 7, et même un plus grand nombre d'étoiles distinctes, mais
très-rapprochées; les télescopes y font voir de 50 à 60 belles
étoiles, accumulées dans un très-médiocre espace, et comparativement
isolées du reste du ciel. La constellation que l'on nomme
la chevelure de Bérénice, est un autre groupe du même genre,
plus diffus et formé d'étoiles plus brillantes. Dans la constellation
du Cancer se trouve une tache lumineuse, amas confus d'étoiles
analogue aux précédents, mais moins distinct à la vue simple, et
qui demande une lunette médiocre pour être résolu en étoiles.
Une autre tache du même genre, mais qui demande une meilleure
lunette pour la séparation des étoiles, se voit sur la poignée de
l'épée de Persée. Ce sont là des nébuleuses résolues.


On donne le nom de nébuleuses à des taches blanchâtres de
formes très-variées que l'on remarque çà et là dans les parties du
ciel les moins riches en étoiles. Les nébuleuses se distinguent en
nébuleuses résolues et en nébuleuses non résolues.



53. Les nébuleuses résolues sont celles qui, examinées au
télescope, se sont résolues en un nombre plus ou moins grand
d'étoiles distinctes, mais très-rapprochées; nous venons d'en citer
des exemples. Il y a beaucoup de nébuleuses résolues, autres que
les précédentes, et qui l'ont été avec des télescopes d'un pouvoir
de plus en plus grand.


Un grand nombre de nébuleuses résolues ont la forme circulaire,
mais cette forme n'est qu'apparente; une étude attentive
porte à croire que la forme réelle est celle d'un globe rempli du
petites étoiles généralement très-nettement terminées. L'éclat de
ce globe diminue rapidement à partir du centre; mais à une certaine
distance du centre, il ne diminue plus sensiblement. Il paraît
y avoir là une sorte de condensation, due probablement à une
attraction de ces étoiles vers le centre de la nébuleuse. Ces nébuleuses
sont très-riches en étoiles; ainsi, dans une seule nébuleuse
de 10' de diamètre, c'est-à-dire dans une étendue égale à environ
la 10e partie du disque du soleil, on a aperçu jusqu'à 20000 étoiles.
Une des plus belles nébuleuses résolues se voit entre ? et ? d'Hercule;
elle est visible à l'œil nu.


Quelques nébuleuses sont perforées en forme d'anneaux; d'autres
ont la forme de spirales. On en voit une perforée entre ß et ? de
la Lyre; une autre à la place même où est ? d'Argo, qui en
occupe le milieu. On remarque une nébuleuse en spirale très-près
de ? de la grande Ourse; une autre se trouve près de la chevelure
de Bérénice.


Il y a des nébuleuses qui paraissent liées entre elles comme des
étoiles doubles.


Les nébuleuses ne sont pas uniformément répandues dans, le
ciel; elles y forment des couches plus ou moins étendues. On
remarque une de ces couches très-large dans la région du ciel
où se trouvent la grande Ourse, Cassiopée, la Vierge. Dans l'hémisphère
austral, il y a deux espaces très-riches en nébuleuses:
le petit nuage et le grand nuage de Magellan.


Les espaces célestes les plus riches en nébuleuses sont les plus
pauvres en étoiles. Ainsi, dans le corps du Scorpion, il y a un
trou de 4° de large sur lequel il n'y a pas d'étoiles; mais au bord
on aperçoit une nébuleuse. Il semble que les étoiles se soient rapprochées,
et que cette nébuleuse se soit formée des étoiles qui se
trouvaient dans cet espace.



54. Les nébuleuses non résolues ne présentent au télescope que
des taches blanchâtres, souvent mal terminées et de forme irrégulière,
quelquefois très-grandes; on en cite une de 4°,9. Il y en a
qui offrent l'aspect de nuages tourmentés par le vent. D'autres, en
petit nombre, ont l'apparence d'un disque ovale, assez bien terminé,
d'un éclat uniforme; on appelle celles-là des nébuleuses planétaires
21.
D'autres offrent l'aspect d'un étoile pâle et voilée; on les nomme
nébuleuses stellaires, ou étoiles nébuleuses. Il y en a
qui, à l'œil nu, offrent l'aspect d'une étoile ordinaire, mais qui,
au télescope, paraissent entourées d'une enveloppe sphérique
lumineuse. Enfin, entre a et ß de la Lyre, il y a une nébuleuse
qui a la forme d'un anneau.


Note 21:
(retour)  Il y en a une dans le voisinage de l'étoile ? du Verseau qui a un diamètre
de 20?. Ces nébuleuses planétaires, eu égard à leurs distances, doivent
avoir des dimensions énormes et des diamètres plus grands que plusieurs fois
la distance du soleil à la terre. Parmi ces nébuleuses, il y en a trois au moins d'une couleur bleuâtre. Quelques-unes présentent au centre une étoile très-brillante;
d'autres, légèrement aplaties, présentent au centre une étoile
double.



Ce qui est arrivé à l'égard des nébuleuses successivement résolues,
à l'aide d'instruments de plus en plus puissants, porte à
croire que la différence entre les nébuleuses résolues et les nébuleuses
non résolues, ne dépend que de la plus ou moins grande
puissance des télescopes. S'il en est ainsi, les nébuleuses non résolues
seraient, eu égard à la faible intensité de leur lumière,
des amas d'étoiles tellement éloignées de nous que leur lumière
mettrait un certain nombre de milliers d'années à nous parvenir.


55. Voie lactée. La voie lactée est une immense ceinture lumineuse,
blanchâtre, qui fait le tour du ciel, à peu près suivant un
grand cercle, en passant par le Cygne, Cassiopée, Persée, le Cocher,
les Gémeaux, la Licorne, etc. (V. le planisphère). Cette zone
blanchâtre se bifurque à peu près vers l'étoile a du Cygne, sous un
angle aigu; les deux branches restent séparées pendant 120° environ,
et vont se réunir dans l'hémisphère austral. Vue au télescope, la
voie lactée se résout en étoiles amoncelées par millions; elle fait
l'effet d'une poussière d'étoiles répandue sur le noir du firmament.



56. Herschell ayant eu l'idée, suivant son expression, de jauger
le ciel, c'est-à-dire de comparer la richesse en étoiles des différentes
parties de la sphère céleste, reconnut qu'à mesure qu'on
approche de la voie lactée, le nombre des étoiles télescopiques
augmente. Avec un télescope embrassant sur la sphère céleste
un cercle de 15' de diamètre, environ le quart du disque du soleil,
les régions les plus pauvres en étoiles lui en montraient à la fois 5,
4,.....1 ou pas du tout, et les régions les plus riches 200, 300,.....
jusqu'à 588 étoiles; dans ces dernières, il voyait ainsi passer sous
ses yeux, en un quart d'heure, jusqu'à 116000 étoiles.


57. Cette étude comparative de la voie lactée et des autres parties
du ciel, jointe à l'observation des nébuleuses, a conduit les
astronomes à cette conclusion très-probable: Les étoiles ne sont
pas uniformément répandues dans le ciel; elles y forment des
groupes analogues à ceux que nous avons désignés sous le nom
de nébuleuses résolues. Toutes les étoiles de la voie lactée, avec
celles que nous voyons isolément autour de nous, composent ensemble
un de ces groupes, au milieu duquel se trouve notre soleil
avec la terre et les planètes; ce groupe est notre nébuleuse.


Les apparences que nous présente la voie lactée s'expliquent,
en effet, assez bien, si on admet que nous nous trouvons au milieu
d'une nébuleuse ayant à peu près la forme suivante:


Forme de notre nébuleuse. C'est une couche ou strate d'étoiles
très-peu épaisse, terminée par deux surfaces planes et parallèles,
excessivement étendues dans tous les sens. Cette couche se bifurque
d'un côté, c'est-à-dire se sépare en deux couches semblables, formant
à l'intérieur un angle très-aigu, et légèrement inclinées à
l'extérieur sur la couche principale qu'elles continuent respectivement.
Le soleil, avec la terre et les planètes, se trouve au milieu de
la couche principale, c'est-à-dire à égale distance de ses faces parallèles,
tout près de l'endroit où cette couche se sépare en deux
22.


Note 22:
(retour)  Pour plus de précision, nous pourrions dire que chacune des faces extérieures
de notre nébuleuse nous fait l'effet d'un cercle de la sphère céleste
divisé en deux parties inégales par le côté d'un triangle équilatéral inscrit, et
dont la plus petite partie continuerait la grande, mais avec une légère inflexion.
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Voici une coupe de notre nébuleuse, faite par un plan perpendiculaire
au milieu de la ligne à partir de laquelle a lieu la bifurcation.
Le soleil, avec la terre, est en S, tout près de cette ligne.


Quand nos regards se dirigent vers l'une des faces parallèles,
notre ligne de visée sortant presque aussitôt de la couche, nous
voyons fort peu d'étoiles dans cette direction. Si, au contraire, nos
regards se portent autour de nous, dans des directions parallèles à
ces surfaces, nos lignes de visée se prolongeant dans la couche
elle-même, nous voyons à la fois une multitude d'étoiles. Ces
étoiles, en se projetant en masse sur la sphère céleste, nous offrent
l'aspect de cette ceinture lumineuse à laquelle on a donné le nom
de voie lactée.


Comme nous voyons des étoiles en grand nombre, dans le sens
des surfaces terminatrices, aussi loin que notre vue peut porter,
même à l'aide de télescopes, nous regardons ces surfaces comme
traversant la sphère céleste en entier, dans tous les sens; elles nous
font ainsi l'effet de grands cercles d'une immense étendue. Mais
sortons, par la pensée, de notre nébuleuse; éloignons-nous-en
progressivement, dans une direction à peu près perpendiculaire
aux surfaces terminatrices, pour gagner, par exemple, une autre
nébuleuse. La surface que nous quittons, qui, en réalité, est
limitée, et dont le contour n'est probablement pas circulaire,
nous paraîtra de plus en plus petite. Quand nous serons arrivés
dans l'autre nébuleuse, la nôtre nous apparaîtra sous le même
aspect que les autres nébuleuses vues de la terre; elle nous fera
l'effet d'une tache blanchâtre et peu étendue qui, vue au télescope,
se résout en étoiles.


Si les étoiles qui, autour de nous, nous paraissaient d'abord
isolées, composent avec celles de la voie lactée une nébuleuse
analogue aux autres, nous avons eu raison de dire tout à l'heure
que les étoiles forment dans l'espace des groupes ou amas plus ou
moins considérables, séparés les uns des autres par des distances
extrêmement grandes relativement aux distances qui séparent les
étoiles d'un même groupe
23.


Note 23:
(retour)  Nous jugeons de l'immensité des distances qui séparent les nébuleuses
les unes des autres par la faible lumière que nous envoient les nébuleuses,
comparée à celle des étoiles distinctes. A en juger par cet indice, ces distances
seraient telles, que la lumière mettrait des milliers d'années pour aller d'une
nébuleuse à une autre.



58. Mouvement propre des étoiles. Ainsi que nous l'avons dit
ailleurs, on a remarqué dans certaines nébuleuses des indices de
condensation des étoiles autour de centres d'attraction intérieurs.
Les étoiles de notre groupe ne seraient-elles pas animées d'un
mouvement analogue; ceci nous conduit à parler des mouvements
propres des étoiles.


Depuis que les moyens d'observation sont perfectionnés, on a
reconnu en effet que les étoiles ne méritent pas rigoureusement
le nom de fixes; certaines étoiles ont un mouvement propre
angulaire que l'on est parvenu à mesurer. Voici quelques exemples:


L'étoile a de Cassiopée parcourt annuellement un arc de 3",74.
Arcturus, la plus belle étoile du Bouvier, s'avance continuellement
vers le midi avec une vitesse de 2",25 par an. Sirius, la Lyre,
Aldébaran, subissent des déplacements analogues. Les deux étoiles
de la 61e du Cygne, étoiles doubles qui, observées depuis 50 ans,
sont toujours restées à la même distance, 15", l'une de l'autre, ont
parcouru ensemble, pendant ce temps, un arc de 4' 23", ou environ
5",3 par an. Vers 1718, les deux étoiles qui composent l'étoile
double ? de la Vierge étaient séparées par une distance de 6 à 7",
et il suffisait d'un télescope passable pour les voir distinctes. Depuis
elles se sont constamment rapprochées de manière à ne plus
être qu'à 1" l'une de l'autre; et on ne les voit distinctes qu'à l'aide
d'un puissant télescope. Enfin, tout porte à croire que notre soleil,
qui n'est qu'une étoile semblable aux autres, se meut avec son cortège
de planètes, se dirigeant vers une étoile de la constellation
d'Hercule.










CHAPITRE II.


DE LA TERRE.












Des phénomènes qui donnent une première idée de la forme
de la terre.



59. La surface de la terre nous apparaît comme une surface
plane d'une grande étendue sur laquelle le ciel s'appuie comme
une voûte. Mais ce n'est là qu'une illusion; les faits suivants, observés
depuis longtemps, démontrent au contraire que la terre est
un corps rond, isolé de toutes parts.


1° Quand un vaisseau s'éloigne du port, un spectateur placé sur
le rivage le voit au bout de quelque temps s'enfoncer sous l'horizon;
bientôt le corps du navire ne se voit plus même avec une lunette,
tandis que les mâts et les voiles s'aperçoivent distinctement; puis le
bas des mâts disparaît également, et enfin le haut. Pour revoir le
navire, il suffit à l'observateur de s'élever davantage au-dessus du
sol; ce sont alors les sommets des mâts qui reparaissent les premiers.
Les mêmes faits ont lieu, mais en ordre inverse, quand un navire
revient au port; on voit d'abord le haut des mâts, puis le bas, etc.


Les mêmes apparences se produisent partout en mer pour un
observateur placé sur un navire qui s'éloigne ou se rapproche d'un
autre navire.


Ces faits seraient inexplicables, impossibles, si la terre était
plane; dans ce cas, en effet, le navire serait vu tout entier tant
qu'il serait à portée de la vue distincte, et, dans le lointain, ce serait
évidemment le corps du navire qui disparaîtrait le dernier apparaîtrait
le premier.




[image: ]Tout s'explique parfaitement, au contraire, quand on admet
la convexité de la terre.
L'observateur ayant l'œil
en O (fig. 29), concevons
en ce de ce point O une
tangente à la courbe que
décrit le navire sur la
surface de la mer supposée
convexe; soit B le
point de contact. Tant
que le navire n'a pas dépassé
le point B, il est vu
tout entier du point O; au delà du point B, la partie inférieure
commence à devenir invisible; bientôt le corps du navire disparaît;
on ne voit plus que la mâture en C; plus loin, en D, une
partie des mâts seulement; enfin l'observateur ne voit plus rien du
navire quand celui-ci est en E. S'il monte alors en O', il revoit le
haut des mâts.


Les mêmes apparences se reproduisent sur le continent, quand
on s'éloigne ou qu'on se rapproche d'une tour ou d'une éminence
dont on est séparé par un terrain étendu et découvert. D'ailleurs,
si on remarque le peu de pente des fleuves qui se rendent à la mer,
et ce qui se passe à leurs embouchures où la mer montante pénètre
à une assez grande distance, on en conclura que la surface de chaque
continent diffère peu de ce que serait la surface continuée des mers
qui le baignent, si les eaux pouvaient s'étendre librement, et prendre
leur position d'équilibre en pénétrant ce continent.


2° Un autre indice analogue de la convexité de la terre, c'est
qu'en approchant du pôle nord, on voit l'étoile polaire de plus en
plus élevée au-dessus de l'horizon, et vice versa, quand on descend
vers le sud.


3° Les voyages autour du monde ont prouvé jusqu'à l'évidence
que la terre est un corps rond, isolé dans l'espace. Magellan, le
premier, quittant le Portugal, vogua vers l'ouest, rencontra l'Amérique,
la côtoya vers le sud jusqu'à ce qu'il pût continuer sa
route à l'ouest, traversa le détroit qui porte son nom, entra dans
l'océan Pacifique, et fut tué à l'île de Zébu par les naturels. Son
lieutenant voguant toujours à l'ouest, doubla le cap de Bonne-Espérance
et aborda en Europe. La terre est donc arrondie dans le
sens que nous venons d'indiquer; de nombreux voyages accomplis
depuis dans toutes les directions ont prouvé qu'elle l'est dans tous
les sens. De plus:



60. La terre est à très-peu près sphérique. En effet:


1° L'ombre portée par la terre sur la lune dans les éclipses partielles
est toujours terminée circulairement; or la géométrie nous
apprend que cela ne peut avoir lieu que si la terre est sphérique.


2° Un observateur placé à une certaine hauteur au-dessus de la
surface de la mer n'en découvre qu'une partie, laquelle est terminée
circulairement. S'il est placé au haut d'une tour très-élevée
ou d'une montagne, la partie visible de la surface terrestre lui paraît
également bornée par une courbe circulaire; il en est de même
en tout lieu de la terre. Or la géométrie nous apprend encore qu'il
n'en peut être ainsi que si la terre est sphérique.
24


Note 24:
(retour)  On appelle horizon sensible d'un observateur placé à une certaine hauteur
au-dessus du niveau de la mer la surface conique limitée circulairement
que forment tous les rayons visuels allant à la courbe à laquée s'arrête la
vue.

On conclut que cette courbe limite est circulaire des observations suivantes:


1° Les rayons visuels dirigés du même point de vue vers les différents points
de cette courbe limite font avec la verticale du lieu d'observation des angles
égaux.


2° Si l'observateur s'élève sur la même verticale, la courbe limite change:
il voit de tous côtés plus loin qu'il ne voyait à la station inférieure. Les rayons
visuels dirigés dans tous les sens vers les points de la nouvelle courbe limite
font avec la verticale des angles égaux entre eux; mais ces angles sont
moindres que ceux des rayons visuels allant aux points de la courbe précédente.


Ces faits ont été observés des diverses hauteurs auxquelles on a pu s'élever
et à tous les endroits de la terre où on a voulu les vérifier.


En admettant que ce résultat continue à être obtenu par un observateur
placé à des hauteurs de plus en plus grandes sur une verticale quelconque, ou
en conclut la sphéricité de la terre. (V. la note à la fin du chapitre.)




61. Cependant nous avons dit seulement: La terre est à peu
près sphérique. C'est qu'en effet, eu égard à ce que l'homme ne peut
s'élever qu'à des hauteurs limitées, et aux erreurs dont peuvent
être affectés les résultats des observations faites avec nos instruments
pour déterminer la forme des courbes limites dont nous
venons de parler, on ne peut pas conclure de ces observations,
d'une manière absolue, que la terre est sphérique; on peut affirmer
seulement que sa forme approche de celle d'une sphère.


Plus tard, nous dirons comment on a déterminé d'une manière
plus précise la forme de la terre en mesurant différents arcs tracés
sur sa surface.



CERCLES PRINCIPAUX; LONGITUDE ET LATITUDE GÉOGRAPHIQUES.




[image: ]62. Sachant que la terre est un corps rond, isolé dans l'espace,
on comprend plus aisément qu'elle puisse tourner sur elle-même,
autour d'un de ses diamètres comme axe. Ainsi que nous l'avons
expliqué précédemment, les étoiles doivent nous paraître tourner
autour du même axe; la ligne idéale PP'
que nous avons appelée axe du monde,
et l'axe de rotation pp' de la terre, sont
une seule et même droite (fig. 32)
25. De
plus, la terre n'étant pour ainsi dire
qu'un point dans l'espace, nous pouvons
sans inconvénient regarder son
centre comme étant celui de la sphère
céleste.


Note 25:
(retour)  La droite imaginaire que nous avons appelée axe du monde, dans le
chapitre des étoiles, passait par le lieu d'observation; cette ligne n'est, en
réalité, qu'une parallèle à l'axe de rotation de la terre qui est l'axe vrai. Le
mouvement diurne des étoiles, étudié par rapport à cet axe apparent, est tel
que le verrait un observateur placé sur l'axe réel: la distance dés deux lignes,
qui est au plus égale au rayon de la terre, étant d'une petitesse inappréciable
par rapport aux distances célestes, il ne saurait y avoir de différence appréciable
entre les observations faites par rapport à l'une et à l'autre lignes, considérées
comme axes, quand il s'agit de distances angulaires entre des points de
la sphère céleste.



63. Pôles. On nomme pôles terrestres les deux points p, p' où
la surface de la terre est rencontrée par l'axe du monde, autrement
dit, l'axe de rotation de la terre. L'un de ces pôles p, celui
qui est du côté du pôle céleste boréal, s'appelle pôle boréal; l'autre
p' est le pôle austral.


64. Équateur. On nomme équateur terrestre le grand cercle
d'intersection de la terre par un plan perpendiculaire à l'axe pp',
mené par le centre. On considère l'équateur céleste comme déterminé
par le même plan E'E.


Hémisphères. L'équateur divise la terre en deux hémisphères,
dont l'un, celui qui contient le pôle boréal, s'appelle hémisphère
boréal; l'autre est l'hémisphère austral.



65. Parallèles. On nomme parallèles terrestres les petits cercles
de la terre parallèles à l'équateur.



Chaque parallèle terrestre, gi, correspond à un parallèle céleste GI, qui est
l'intersection de la sphère céleste par un cône circulaire droit, ayant pour sommet
le centre commun, o, des deux sphères, et pour génératrices les rayons menés de
ce centre au parallèle terrestre. L'un de ces cercles est la perspective de l'autre.




66. Méridien. On appelle méridien d'un lieu g la courbe pgp'
(fig. précéd.), suivant laquelle la surface de là terre est coupée par
le plan qui passe par la ligne des pôles et le point g, limité à cet
axe pp'.


Dans l'hypothèse que la terre est exactement sphérique, le méridien
d'un lieu g est la demi-circonférence de grand cercle, pgp',
qui passe par la ligne des pôles pp' et le lieu g. Le plan de ce méridien
coupe la sphère céleste suivant un grand cercle PGP' qui
est le méridien céleste du lieu.



67. La position d'un lieu sur la terre se détermine au moyen
de sa longitude et de sa latitude géographiques.



[image: ]Longitude géographique. On fait choix d'un méridien PAP' (fig. 33)
qu'on appelle méridien principal ou premier
méridien; cela posé, on appelle longitude
d'un lieu, S, de la terre, l'angle
dièdre moindre que deux droits que fait
le méridien PSP' de ce lieu avec le méridien
principal PAP'; ou ce qui revient au
même, la longitude d'un lieu S est le
plus petit des arcs d'équateur compris
entre le méridien du lieu et le méridien
principal; c'est l'arc AB (l'arc mesure l'angle).


La longitude d'un lieu est occidentale ou orientale suivant que
l'arc d'équateur qui la mesure, compté à partir du méridien principal,
se dirige dans le sens du mouvement diurne, c'est-à-dire
de l'est à l'ouest, ou en sens contraire. Exemple:la longitude
AB du lieu S est orientale; la longitude AE' du lieu N est occidentale.
L'une ou l'autre longitude varie de 0 à 180°.


Autrefois tous les pays avaient adopté, avec Ptolémée, un premier
méridien unique, qui passe par l'île de Fer, la plus occidentale
des îles Canaries; et comme le monde connu ne s'étendait
pas au delà vers l'ouest, toutes les longitudes étaient orientales.
Aujourd'hui chaque nation a le sien: c'est celui qui passe par
le principal observatoire du pays. Pour les Français, c'est le méridien
de l'Observatoire de Paris; pour les Anglais, c'est le méridien
de Greenwich, qui est à 2° 20' 24? ouest de celui de Paris.
Il est facile de transformer une longitude anglaise en longitude
française, et vice versa (nº 74); mais il vaudrait mieux que
tous les peuples s'entendissent pour adopter un premier méridien
unique.


Latitude géographique. On appelle latitude d'un lieu S (fig. 33)
l'angle que fait la verticale OS de ce lieu avec sa projection OB
sur l'équateur; ou, ce qui revient au même, c'est le nombre de
degrés du plus petit arc de méridien, SB, qui va de ce lieu à l'équateur
(l'arc mesure l'angle).


La latitude est boréale ou australe suivant que le lieu est situé sur
l'hémisphère boréal ou sur l'hémisphère austral; elle varie de 0
à 90°, et se compte à partir de l'équateur dans l'un ou l'autre
sens. La latitude SB est boréale. La longitude et la latitude d'un
lieu S déterminent évidemment sa position sur le globe terrestre.
En effet, ce lieu est le point de rencontre du demi-méridien PBP'
qu'indique la première, et du parallèle aSb' qu'indique la seconde.
Il y a donc lieu de résoudre ce problème: Trouver la longitude et
la latitude d'un lieu de la terre.



68. Détermination de la latitude. La latitude d'un lieu est précisément
égale à la hauteur du pôle au-dessus de l'horizon de ce
lieu. Il suffit donc de déterminer cette hauteur comme il a été
indiqué nº 25.


[image: ]En effet, soit ON (fig. 33 bis) la verticale du lieu, PEP'E' son
méridien, E'E la trace de l'équateur
céleste sur ce méridien, HH' la trace
de l'horizon rationnel sur le même
plan. La latitude est NE', et la hauteur
du pôle PH; or les arcs NE' et PH sont
égaux comme compléments du même
arc PN.


Ex.: La hauteur du pôle, à l'Observatoire
de Paris, est 48° 50' 11?; telle est donc la latitude de Paris
à cet endroit
26.


En mer, on ne peut déterminer la hauteur du pôle comme il a
été indiqué, faute de pouvoir installer sur le navire un mural ou
une lunette méridienne. On fait alors usage d'un instrument qu'on
appelle sextant.


Note 26:
(retour)  La latitude varie de 1? par distance de 30m, 9 comptée du nord au sud ou
vice versa, dans le sens du méridien. Il faut donc indiquer le point de Paris
dont on considère la latitude (V. longueur du mètre).




69. Calcul de la longitude. Pour déterminer la longitude d'un
lieu, il suffit de connaître l'heure sidérale du lieu et celle qu'il est
au même instant sous le premier méridien; on convertit la différence
de ces heures en degrés à raison de 15° par heure; le résultat
est la longitude cherchée (V. les Remarques, n° 70).




[image: ]Les heures se comptent respectivement aux divers lieux de la
terre à partir du passage au méridien de chaque lieu d'un point
déterminé de la sphère céleste, d'une
étoile remarquable, par exemple. Cela
posé, soient pE'p' (fig. 34) le méridien
principal, pBp' le méridien d'un lieu
quelconque m, EBE' l'équateur céleste,
ebe' le cercle diurne de l'étoile régulatrice
qui tourne dans le sens ebe'. Supposons
qu'au même instant il soit 5 heures
au lieu m, et 2 heures sous le premier
méridien pE'p'. Quand l'étoile régulatrice se trouvait en e', il était
0h 0m 0s sous le premier méridien, et 3 heures au lieu m; c'est-à-dire qu'en ce moment il y avait 3 heures que l'étoile avait
passé en b au méridien du lieu m; elle a employé ces trois heures
à parcourir l'arc be', dont le nombre de degrés est précisément
le même que celui de la longitude E'B. Mais l'étoile parcourt
360° en 24 heures, soit 15° par heure; donc l'arc be' = BE' parcouru
en 3 heures est égal à 15° × 3 (15° multipliés par la différence
des heures). C. Q. F. D.



70. Remarques. Si c'est l'heure de Paris qu'on retranche de celle
du lieu proposé, la longitude trouvée est orientale, puisque l'étoile,
qui vient de l'est, a passé en ce lieu avant d'arriver au premier
méridien.


Si c'est l'heure du lieu qu'on retranche de celle de Paris, la longitude
trouvée est occidentale, puisque l'étoile venant de l'est passe
en ce lieu après avoir passé à Paris.


Si la différence des heures observées surpassait 12 heures, il faudrait
augmenter l'heure la plus faible de 24 heures, et retrancher
l'autre heure de la somme. La différence convertie en degrés est
encore la longitude cherchée; celle-ci est encore orientale ou occidentale,
suivant que l'heure soustraite est ou n'est pas celle de
Paris.


Ex.: L'horloge sidérale d'un lieu, m, marque 3h 24' quand celle
de Paris marque 19h 37'; quelle est la longitude du lieu m?


3h 24m + 24h = 27h 24m; 27h 24m - 19h 37m = 7h 47m; en convertissant
7h 47m en degrés, on a la longitude demandée; cette longitude
est orientale.


Pour justifier cette dernière opération, il suffit d'observer que
la différence 19h 37m — 3h 24m, plus grande que 12 heures, correspond
à un arc de cercle diurne de l'étoile régulatrice plus grand
que 180°; or la longitude doit être au plus égale à 180°; la longitude
cherchée est donc le complément de cet arc à une circonférence;
ou, ce qui revient au même, c'est le complément à
24h de la différence ci-dessus qu'il faut convertir en degrés;
24h - 19h 37' - 3h 24 = 24h + 3h 24 - 19h 37m. C'est la soustraction
que nous avons prescrite et opérée.



71. Le calcul d'une longitude se réduit donc, en définitive à
la résolution de ce problème: Trouver les heures que marquent au
même instant les horloges sidérales de deux lieux différents, réglées
sur la même étoile?
27 Il y a pour cela diverses méthodes.


Note 27:
(retour)  Au lieu d'horloges sidérales, on peut se servir d'horloges bien réglées sur
le temps moyen (V. le temps moyen).



72. 1º Méthode du chronomètre. Un observateur transporte, de
Paris au lieu dont on veut avoir la longitude, un chronomètre
ou horloge sidérale portative, réglé à l'Observatoire de Paris de
manière à marquer 0h 0m 0s à l'instant où une certaine étoile remarquable
passe au premier méridien. Il lui suffit de comparer
sur place l'heure du chronomètre à celle d'une horloge sidérale.
marquant 0h 0m 0s à l'instant où cette même étoile passe au méridien
du lieu.


S'il n'y avait pas en ce lieu d'horloge sidérale, en mer par exemple,
on y déterminerait l'heure du lieu par des observations astronomiques;
l'heure marquée en ce moment par le chronomètre ferait
connaître la différence des heures sidérales de Paris et du lieu.


73. 2º Méthode du télégraphe électrique. L'admirable et récente
invention du télégraphe électrique donne le moyen de résoudre la
question qui nous occupe pour deux lieux mis en communication
par un fil électrique. À l'instant d'un signal transmis, deux observateurs
regardent les horloges sidérales de ces lieux, réglées sur
la même étoile, puis se communiquent respectivement les heures
observées. La transmission du signal pouvant être regardée comme
instantanée, ces heures correspondent au même moment.


74. 3º Signaux de feu. Avant la découverte du télégraphe électrique,
Cassini avait employé la méthode des signaux de feu, qui
peut encore être employée à défaut de fil électrique. Deux observateurs,
séparés par une distance de 20 à 30 lieues, munis de
chronomètres et de lunettes, aperçoivent au même instant une
fusée lancée durant la nuit à une station intermédiaire; leurs
chronomètres leur indiquent alors les heures sidérales de leurs
stations respectives.


Cette méthode peut être appliquée à deux lieux, A et B, séparés
par une distance trop grande pour que le même feu soit vu à la
fois de l'un et de l'autre.


   C     C'           C?

–––––––––––...........––––––.....

A     A'     A?               B






On partage la distance AB par les stations intermédiaires A', A?, en
intervalles tels que chacun rentre dans le cas précédent; des observateurs
se placent en A, A', A?, B. Un premier signal C se produisant
entre A et A', les observateurs y notent leurs heures respectives;
supposons qu'il soit alors h heures au lieu A. Après un
temps ts que l'observateur en A' peut mesurer, un second, signal C
se produit entre A' et A?; on y note les heures. Après un nouveau
temps t's que l'observateur en A? peut mesurer, un troisième signal
C? se produit entre A? et B; on y note les heures. Supposons qu'il
soit alors h' heures au lieu B; l'heure de A au même instant est
évidemment h heures + ts + t's.



75. 4º Emploi du sextant. On se sert en mer, pour la détermination
des longitudes, d'un instrument qu'on appelle sextant.



76. 5º Signaux astronomiques. Certains phénomènes célestes,
tels que les éclipses des satellites de Jupiter, les occultations
d'étoiles par la lune, les distances angulaires de la lune au soleil
ou à certaines étoiles principales, visibles au même instant en
des points de la terre très-éloignés les uns des autres, sont
d'excellents signaux pouvant servir à la détermination des longitudes.
L'heure de chacun de ces phénomènes, en temps de
Paris, se trouve dans un livre appelé la Connaissance des temps,
publié à l'avance par le bureau des Longitudes de France; la différence
de cette heure et de celle du lieu au même instant donne
la longitude.



77. Au lieu de comparer l'heure d'un lieu à celle du premier méridien, il
est quelquefois plus commode de la comparer à celle d'un lieu dont la longitude
est déjà connue. On a aussi besoin de convertir la longitude relative à un
méridien en longitude relative à un autre méridien.


Problème. Connaissant la longitude l d'un lieu G par rapport au premier
méridien, et la longitude l' d'un lieu B par rapport au lieu G, trouver la
longitude, x, du lieu B par rapport au premier méridien.


Ex.: Connaissant la longitude de Greenwich par rapport à Paris, convertir
une longitude anglaise donnée en longitude française.


[image: ]Le second lieu peut avoir par rapport au premier, G, l'une des quatre positions
B, B', B?, B? (fig. 35). 1º Il a la position B quand les longitudes l et
l? sont de même nom et que leur somme ne dépasse
pas 180°; alors PB = PG + GB ou x = l + l'.
2º Il a la position B' quand les longitudes données
étant toujours de même nom, leur somme
PG + GB' dépasse 180°; la longitude cherchée
x = PG'B' = 360° — (l + l'); elle est de nom
contraire à l et à l'. 3º Le second lieu a la position
B?; l = PG et l' = GB? sont des longitudes de
noms différents; alors la longitude x = GB?-
GP = l' — l est de même nom que l'. 4º Enfin le
second lieu étant B?, on a x = GP-GB? =
l — l', de même nom que l.



78. Commencement du même jour sidéral en différents lieux. Le jour d'une
date précise quelconque, le 19 mai 1856 par exemple, commence d'abord pour
les lieux situés sous le méridien PA'P' opposé à celui de Paris (fig. 33), à l'instant
où l'étoile régulatrice passe à ce méridien; puis le jour de même date commence
successivement à chacun des autres lieux du globe, considérés dans le
sens A'EAE', au fur et à mesure que l'étoile, venant de PA'P', passe au méridien
de ce lieu.


Imaginons un navire parti d'un port français de l'Océan, de Brest, par
exemple, se dirigeant vers l'ouest; ayant tourné le continent américain, il a
continué à s'avancer vers l'ouest, et vient à dépasser le méridien PA'P'. Il
devra augmenter d'un jour la date du journal du bord, s'il veut être d'accord
avec les habitants du port où il arrivera postérieurement. Le contraire aurait
lieu si un navire passait ce méridien PA'P' en venant de l'ouest.



79. Problème. Trouver la plus courte distance de deux lieux, S, N de la
terre supposée sphérique, connaissant leurs longitudes et leurs latitudes (fig. 33).
Les arcs PS, PN, menés du pôle à chaque lieu, forment avec l'arc SN un
triangle sphérique dont on connaît deux côtés, PS = 90 ± latitude de S,
PN = 90° ± latitude de N (suivant que la latitude considérée est boréale ou
australe), et l'angle SPN qui est la somme ou la différence des longitudes, suivant
que les longitudes sont de noms différents ou de même nom. Tout cela se
voit à l'inspection de la figure; on calculera facilement SN.



Étude précise de la forme de la terre. Valeurs numériques des
degrés en France, en Laponie, au Pérou; leur allongement quand on
va de l'équateur vers le pôle.



80. Pendant longtemps on s'en est tenu à la première idée que
donnent de la forme de la terre les phénomènes que nous avons
indiqués au commencement de ce chapitre; jusqu'à la fin du
XVIIe siècle, on a considéré la terre comme sphérique, et on
s'est seulement occupé d'en déterminer la grandeur. Dans cette
hypothèse, il suffit évidemment de déterminer, par des mesures
exécutées sur la surface même de la terre, la longueur d'un arc
de méridien d'un nombre de degrés connu; de la longueur d'un
degré on déduit celle de la circonférence, et de celle-ci la longueur
du rayon.


Diverses mesures ont été ainsi exécutées, même dans l'antiquité
28.
Parmi les modernes, le premier qui essaya de mesurer
la longueur d'un degré fut Fernel, médecin de Henri II; il se dirigea
de Paris vers Amiens, en comptant exactement le nombre des
tours de roue de sa voiture; il trouva ainsi pour la longueur du
degré, 57070 toises.


Note 28:
(retour)  La plus remarquable des mesures exécutées dans l'antiquité est attribuée à
Ératosthène, à la fois géomètre, astronome, et géographe, qui vivait 256 ans avant
J.-C. Il trouva pour la longueur du degré 694 stades. On ne connaît pas précisément
la longueur du stade; cependant on croit ce résultat peu éloigné de la vérité.



Mais la première mesure qui ait été obtenue par des méthodes
de précision dignes, de toute confiance, est due à l'astronome
français Picard. Établissant un réseau géodésique entre Paris et
Amiens, il trouva pour la longueur du degré, 57060 toises.


81. À la fin du XVIIe siècle, Newton et Huyghens, guidés par des
considérations théoriques, émirent cette opinion: La terre n'est pas
sphérique; c'est un ellipsoïde de révolution, aplati vers les pôles et
renflé à l'équateur, c'est-à-dire que sa surface est semblable à celle
que décrit une ellipse tournant autour de son petit axe PP' (fig. 37,
ci-après). L'Académie des sciences s'occupa aussitôt de vérifier ces
indications de la théorie; la seule différence entre l'ancienne hypothèse
et la nouvelle consiste en ce que, dans la première,
chaque plan méridien, c'est-à-dire mené par l'axe, coupe la surface
de la terre suivant une circonférence de cercle (fig. 36), tandis
que dans la seconde, il la coupe suivant une ellipse aplatie vers
les pôles (fig. 37); c'était donc la forme de la courbe méridienne
qu'il fallait étudier. Pour cela, on a mesuré la longueur du. degré
à diverses latitudes (V. la note)
29.


Note 29:
(retour)  Mesure d'un arc de méridien. Définitions. On nomme méridien ou courbe
méridienne, sur la surface de la terre, la courbe suivant laquelle cette surface
est coupée par un plan mené par la ligne des pôles. Deux lieux A et B sont sur le même méridien quand la même étoile passe au méridien dans les deux lieux
à la même heure de l'horloge sidérale.

Un arc de 1°, 2°, 3°,.... du méridien est un arc A'B' (fig. 37), tel que les
deux normales à la courbe, autrement dit les verticales, A'I, B'I, menées à
ses extrémités, font entre elles un angle A'IB' de 1°, 2°, 3°...... Cet angle A'IB'
est précisément égal à la différence des latitudes des lieux A' et B', si ces lieux
sont sur le même hémisphère; puisque la latitude d'un lieu, (nº 64), est égale à
l'angle que fait la verticale du lieu avec sa projection sur l'équateur;
A'IB' = A'Ie-B'Ie.




[image: ]Le nombre des degrés d'un arc AB étant connu, il faut mesurer cet arc avec
l'unité linéaire, la toise, par exemple. Si l'arc AB est sur une surface unie,
découverte, on procède à cette mesure à la manière des arpenteurs, en employant
seulement des instruments de mesure plus
précis et plus de précautions. Mais dans le cas
d'obstacles intermédiaires s'opposant à cette mesure,
ce qui arrive presque toujours, on établit
ce qu'on nomme un réseau géodésique.


On choisit, dans le voisinage des lieux où l'on
suppose que l'arc AB doit passer, des points C,
D, E, F,...... placés de manière à pouvoir être
aperçus de loin (fig. 38). Concevons que les points
A, C, D, E, F, etc.. soient liés entre eux comme
la figure l'indique, par des triangles que traverse
la direction de l'arc AB. Parmi les côtés de ces
triangles on choisit celui qui peut être mesuré le
plus aisément; supposons que ce soit EG; c'est ce
qu'on appelle une base. Connaissant EG et les angles
E et G du triangle EGF, on peut résoudre
ce triangle. Connaissant EF et les angles E et F du triangle EDF, on peut
résoudre ce triangle. Connaissant ED et les angles D et E du triangle EDC, on
peut résoudre ce triangle. Enfin, pour la résolution du triangle ACD, on
connaît AC et AD. Connaissant, à partir de A, la direction de la méridienne,
dont tous les segments AL, LM, MO,..... à cause de leur peu d'étendue,
sont considérés comme des lignes droites, on peut mesurer les angles
CAL, DAL; on peut donc résoudre le triangle ALD; ce qui donne le segment
AL et la longueur DL. Connaissant DL, l'angle D et l'angle DLM du triangle
DLM, on résout le triangle, et on calcule le segment LM et la longueur DM.
Dans le triangle EMO, on connaît EM, l'angle E et l'angle M; ainsi de suite
jusqu'à ce qu'on arrive à la fin du réseau. Ayant la longueur de AB en toises,
on la divise par le nombre de degrés de cet arc pour avoir la longueur d'un
degré.




[image: ]De ce que la longueur du degré va en augmentant avec la latitude, on conclut
(fig. 37) que chaque méridien s'aplatit, c'est-à-dire que sa courbure diminue
quand on va de l'équateur au pôle. Voici une manière, entre plusieurs,
d'expliquer ce fait: Soit AB (fig. 37) un arc de 1°, voisin de l'équateur; A'B' un
autre arc de 1°, voisin du pôle; on sait que A'B' > AB. On peut, à cause du
faible aplatissement de l'ellipse méridienne, regarder chacun des arcs AB,
A'B' comme confondu avec l'arc de cercle qui passerait par son milieu et ses
extrémités. À ce point de vue, AB et A'B' sont des arcs de 1° appartenant à des
circonférences de rayons différents r, r'. Puisque l'on a A'B' > AB, on doit
avoir r' > r; (360 A'B' = circ. r' > 360 AB = circ. r). Cela posé, pour comparer
les courbures de ces deux arcs, rapprochons-les
comme il suit: sur une ligne indéfinie X'X
(fig. 39) élevons une perpendiculaire GH, et
prenons à partir de G, GO = r. GO' = r'; puis
des points O et O' comme centres avec les rayons
OG, O'G', décrivons deux arcs de cercle passant
en G; ces deux arcs sont tangents à X'X
en G. Si on prend QGP = 1°, Q'GP' = 1°, le
milieu étant en G, ces arcs ne seront évidemment que la reproduction des
arcs AB, A'B' rapprochés l'un de l'autre. L'arc Q'GP' ou A'B' se rapprochant
plus de la ligne droite X'GX que QGP ou AB, est moins convexe ou plus aplati
que AB.


Nous avons pris AB = 1°; on peut, pour éviter toute objection, supposer AB
aussi petit que l'on veut.





[image: ]


Si la courbe méridienne est une circonférence de cercle, la longueur
du degré doit être la même à toutes les latitudes (fig. 36);
si c'est une ellipse aplatie vers les pôles, la longueur du degré
doit être plus grande aux environs du pôle qu'à l'équateur, et en
général augmenter avec la latitude (fig. 37). En outre, comme on
savait à priori que la forme de la terre approche de celle d'une
sphère, il fallait exécuter des mesures à des latitudes assez diverses
pour que les différences entre les valeurs numériques du
degré, si elles existaient, fussent assez notables pour ne pouvoir
pas être attribuées aux erreurs des observations. On ne s'est donc
pas contenté des mesures exécutées en France; la Condainine et Bouguer se transportèrent au Pérou, Maupertuis et Clairaut se
rendirent en Laponie, afin d'y mesurer des arcs de méridien. Les
résultats obtenus confirmèrent les prévisions de Newton et Huyghens.



82. Voici ces résultats, auxquels nous en joignons de plus
récemment obtenus pour qu'on voie mieux la variation du
degré:


LIEUX.               LATITUDE                LONGUEUR

                     moyenne.              de l'arc de 1°.



Pérou                1° 31                   56737 toises

Inde                12° 32' 21?              58762

France              46°  8'  6?              57025

Angleterre          52°  2' 20?              57066

Laponie             66° 20' 10?              57196





83. Toutes les mesures analogues exécutées jusqu'à nos jours
en France, en Angleterre, en Espagne, en Russie, dans l'Inde,
sur des arcs d'une assez grande étendue, ont constaté que la longueur
du degré augmente constamment de l'équateur aux pôles.
En résumé, sauf quelques irrégularités locales de peu d'importance,
tous ces travaux concourent à établir la vérité de la proposition
énoncée par Newton et Huyghens. Ainsi donc:


Forme de la terre. La terre n'est pas absolument sphérique; c'est
un ellipsoïde de révolution un peu aplati vers les pôles et renflé à
l'équateur; c'est-à-dire que sa surface est semblable à celle que décrit
une ellipse tournant autour de son petit axe (V. fig. 37).



84. Dimensions de la terre; longueur du mètre. Quand la convention
nationale décida en 1790 que l'unité de longueur, base
du système uniforme de mesures qu'elle voulait établir en France,
serait prise dans la nature, c'est-à-dire aurait un rapport simple
avec les dimensions de la terre, elle ordonna qu'il serait procédé
à la détermination aussi exacte que possible de ces dimensions.
En exécution de cet ordre, Delambre et Méchain mesurèrent l'arc
de méridien compris entre Dunkerque et Barcelone. La commission
des poids et mesures, combinant leurs résultats avec ceux
qu'on avait déjà obtenus en Laponie et au Pérou, en conclut que
le méridien terrestre est une ellipse dont l'aplatissement a pour
mesure 1/334, et dont le quart a pour longueur 5130740 toises. La
dix-millionième partie de cette longueur fut choisie sous le nom de
mètre pour unité de longueur; ainsi 10000000 mètres = 5130740 toises;
d'où on déduit la longueur du mètre.


Le mètre légal vaut 0 toises, 5130740 = 3 pieds 0 pouce 11 lignes, 296.


(On sait que la toise vaut 6 pieds, le pied 12 pouces, le pouce
12 lignes.)


De nouveaux arcs terrestres ont été mesurés depuis 1795; les
travaux de Delambre et Méchain ont été continués et vérifiés par
divers savants
30. En discutant toutes les mesures, tant anciennes
que nouvelles, M. Bessel a trouvé que les nombres 1/334 et
5130740 toises étaient trop petits et devaient être remplacés par
ceux-ci: 1/299 et 5131180 toises. Voici ce qui résulte de ce travail
de révision de M. Bessel en ce qui concerne les dimensions de la
terre:



Demi-diamètre à l'équateur a = 3272077 toises = 6377398 mètres.
Demi-diamètre polaire      b = 3261139 toises = 6356080 mètres.




Note 30:
(retour)  Leur méridienne a été prolongée au nord jusqu'au parallèle de Greenwich;
elle l'a été aussi au sud jusqu'à l'île de Formentera, par MM. Biot et Arago.



L'aplatissement d'un ellipsoïde a pour mesure le rapport (a-b)/a
de la différence de ses deux axes au plus grand des deux.


Aplatissement de la terre 1/299 
31.


Note 31:
(retour)  Un globe terrestre de même forme que la terre ayant 2m,99 de rayon à
l'équateur, aurait, d'après cela, à peu près 2m,98 de rayon vers le pôle.



La différence a — b des axes = 21318 mètres, en nombre rond,
21 kilomètres. On définit quelquefois l'aplatissement en indiquant
cette différence.


Le quart du méridien vaut 10000856 mètres.


Le quart de l'équateur vaut 10017594 mètres.


Remarque. On commet maintenant une erreur, très-faible, il est
vrai, en disant que le mètre est la dix-millionième partie du quart
du méridien; il s'en faut de 0ligne,038. On n'a pas cru devoir faire
cette correction; le mètre légal est toujours égal à 0toise,5130740 =
3pieds, 11lignes,296. Dans les calculs qui n'exigent pas une très-grande
précision, on considère toujours la circonférence du méridien
comme valant 10000000 mètres, et le rayon de la terre comme
égal à 6366 kilomètres. L'unité pour les dimensions ci-dessus est
le mètre légal.



NOTIONS SUR LES CARTES GÉOGRAPHIQUES.



85. Les positions relatives des différents lieux de la terre étant
connues par leurs longitudes et leurs latitudes;, afin d'embrasser
d'un coup d'œil ces positions relatives, ou de les graver plus aisément
dans la mémoire, on fait de la terre entière, ou de ses
parties considérées séparément, diverses représentations dont nous
allons nous occuper. Ce sont les globes et les cartes géographiques.



86. Globes terrestres. Un globe géographique terrestre se
construit de la même manière qu'un globe céleste (nº 41). On
marque de même sur le globe de carton les deux pôles p, p', et
l'équateur; sur celui-ci le point de départ des longitudes. Puis, en
employant, pour plus de facilité, le demi-cercle mobile dont nous
avons parlé, on marque sur le globe la position de chaque lieu
remarquable de la terre d'après sa latitude et sa longitude, connue
par l'observation ou autrement. Nous renvoyons à ce qui a été
dit (nº 41) pour la construction d'un globe céleste; il n'y a qu'à dire
longitude au lieu d'AR, et latitude au lieu de D.


Quand on représente ainsi la terre par un globe, on la représente
par une sphère parfaitement unie; on n'entreprend pas
de rendre sensible l'aplatissement de la terre vers les pôles; cet
aplatissement étant à peu près de 1/300, sur un globe de 3 mètres
de rayon équatorial, déjà bien grand, le rayon polaire aurait
2m,99. On n'entreprend pas non plus de rendre sensible sur
la surface d'un globe géographique la, hauteur des montagnes,
ni la profondeur des mers; car la hauteur de la plus grande montagne
de la terre, le pic de l'Himalaya, au Thibet, est de 1/740 du
rayon de la terre; les autres grandes montagnes ne vont pas à la
moitié de cette hauteur. Si donc le globe avait 0m,740 de rayon,
la plus grande protubérance de la surface terrestre serait d'un
millimètre. La plus grande dépression (le creux), destinée à représenter
la profondeur maxima des mers, ne serait pas plus
grande; et encore pour la généralité des montagnes et des mers
ce serait beaucoup moins. Ces inégalités seraient moins nombreuses
et moins sensibles que les rugosités sur la peau d'une
orange.


Un globe terrestre géographique est sans contredit la représentation
la plus exacte possible de la surface terrestre. Mais
l'usage d'un pareil globe n'est pas commode, surtout pour ceux qui
ont le plus besoin de renseignements géographiques, c'est-à-dire,
pour les voyageurs. Car, pour y rendre distinctes les positions des
lieux d'une même contrée, il faut donner au globe de grandes dimensions.
Aussi remplace-t-on généralement les globes par quelque
chose de plus portatif, par des cartes géographiques.



87. Cartes géographiques. On appelle ainsi la représentation sur
une surface plane de portions plus ou moins étendues de la surface
de la terre.


Si la surface d'un globe terrestre géographique, préalablement
construit, pouvait être développée et étendue sur un plan sans
déchirure ni duplicature, on aurait ainsi la meilleure carte géographique.
Mais la surface d'une sphère ne peut pas être ainsi développée;
il en résulte que la représentation de la terre sur une surface
plane ne peut se faire sans qu'il y ait des déformations dans
certaines parties; on cherche naturellement à construire les cartes
de manière à atténuer le plus possible ces déformations. Nous allons
faire connaître les dispositions les plus usitées en indiquant les
avantages et les inconvénients de chacune.



88. Canevas. Les points de la terre se distinguant par les méridiens
et les parallèles sur lesquels ils se trouvent, on est conduit
à représenter ces cercles sur la carte; on ne peut en représenter
qu'un nombre limité. On appelle canevas un ensemble de lignes
droites ou courbes qui, se croisant dans toute l'étendue de la carte,
représentent, les unes des méridiens équidistants (en degrés),
les autres des parallèles équidistants aussi. La première chose
que l'on dessine sur une carte c'est le canevas; on a alors devant
soi un grand nombre de quadrilatères dans lesquels on place les
lieux ou objets qui doivent figurer sur la carte, soit d'après un
globe terrestre que l'on a sous les yeux, soit d'après leurs longitudes
et leurs latitudes connues.



89. Mappemondes. Quand on veut représenter la terre tout entière,
pour en embrasser l'ensemble d'un coup d'œil, on la divise
en deux hémisphères par un de ses cercles principaux; on exécute,
à côté l'une de l'autre, les représentations des deux hémisphères;
l'ensemble est ce qu'on appelle une mappemonde.


On emploie pour la construction dés cartes la méthode des projections
ou les développements de surface.



90. Projection orthographique. La projection orthographique
d'un point est le pied de la perpendiculaire abaissée de ce point
sur un plan qu'on appelle plan de projection. Pour la construction
des cartes géographiques, le plan de projection est ordinairement
l'équateur ou un méridien choisi.


Projection de l'équateur. On trace un cercle d'un rayon plus
ou moins grand, suivant les dimensions qu'on veut donner à la
carte. On considère ce cercle comme l'équateur d'un demi-globe
terrestre géographique que l'on imagine superposé à ce cercle
même et sur lequel sont supposés marqués à l'avance les lieux
qui doivent figurer sur la carte. Le pôle de ce globe se projette au
centre; chaque parallèle se projette en véritable grandeur; chaque
demi-méridien a pour projection le rayon qui est la trace même de
son plan sur la carte. Les distances des lieux en longitude, qui
sont des arcs de parallèles, sont donc très-exactement conservés,
tandis que les arcs de chaque méridien sont représentés en raccourci,
et sous une forme qui ne rappelle nullement leur forme
réelle (un arc de 90° est représenté par une ligne droite, un rayon).
Aux environs du pôle, les petits arcs de méridiens, approchant
d'être parallèles au plan de projection, sont représentés par des
lignes presque égales en longueur à ces arcs; la représentation
des parties de la terre voisines du pôle est donc la moins défectueuse;
mais c'est précisément là qu'il n'y a pour ainsi dire rien à
représenter. A mesure qu'on se rapproche du bord de la carte, l'altération
des longueurs devient de plus en plus grande; tout près du
bord la projection d'un arc de 1°, par exemple, se réduit presque
à un point. Ces déformations, très-grandes dans les latitudes les
plus importantes à considérer, ont fait abandonner ce mode de
construction pour les cartes terrestres.


La projection sur un méridien offre les mêmes inconvénients;
chaque demi-parallèle a pour projection un de ses diamètres;
d'où il résulte précisément la même déformation que tout à l'heure
pour les méridiens, mais cette fois du milieu de la projection de
chaque parallèle vers les bords de la carte.


Si nous avons parlé des projections orthographiques, c'est
qu'elles sont employées pour les cartes ou planisphères célestes,
notamment pour représenter les constellations circumpolaires; ici
les environs du pôle sont plus importants à représenter.



91. Planisphère. Projection sur l'équateur.


Pour construire le canevas, on commence par tracer un cercle
de rayon aussi grand que l'on veut, et sur ce cercle un diamètre
horizontal. On divise chaque demi-circonférence en un certain
nombre de parties égales, en degrés par exemple, puis on joint le
centre à tous les points de division. On ne marque généralement
que les divisions qui correspondent aux 24 cercles horaires,
c'est-à-dire de 15° en 15°, ou d'heure en heure, à partir de 0° sur
le diamètre horizontal. Ces divisions de la circonférence indiquent
les ascensions droites; les rayons tracés sont les projections des
cercles horaires. Pour obtenir les projections des parallèles, on
abaisse, des points de division du 1er quadrant du contour, des perpendiculaires
sur le diamètre horizontal; puis, enfin, on trace des
circonférences, concentriques au contour, et passant respectivement
par les pieds de toutes ces perpendiculaires: on marque au
pied de chaque perpendiculaire le nombre de degrés marqué à
son origine; chacun de ces numéros indique la déclinaison dé
tous les points du cercle adjacent
32. Le canevas est alors terminé;
il ne reste plus qu'à y placer les étoiles d'après leurs coordonnées.


Note 32:
(retour)  La construction des parallèles est fondée sur cette remarque que le
rayon de chaque parallèle céleste est égal au cosinus de la déclinaison correspondante.



Si on veut déterminer avec précision la position d'une étoile
particulière, on compte son ascension droite à partir de 0°, et on
trace le rayon qui va à l'extrémité de l'arc mesuré. On compte la
déclinaison sur la circonférence, à partir du même point 0° et on
abaisse une perpendiculaire de l'extrémité de l'arc obtenu sur le
diamètre horizontal; on décrit la circonférence qui passe par le
pied de cette perpendiculaire. L'intersection de cette circonférence
et du rayon que l'on vient de tracer est la position cherchée de l'étoile.


[image: ]92. Projection stéréographique. Si de l'œil placé en O on mène
un rayon visuel OA à un point quelconque de l'espace, la trace a
de ce rayon sur un plan fixe, MM', s'appelle la perspective du
point A sur le plan MM'. Le point fixe O est dit le point de vue, et
le plan MM' le tableau.




Ce mode de projection, connu sous le nom de projection
stéréographique, est employé pour construire
des cartes géographiques. On
choisit alors pour tableau un méridien
G'MGM' (fig. 40), et pour point de vue
le pôle O de ce méridien opposé à l'hémisphère
MABCM' que l'on veut projeter
en tout ou en partie. Exécutée dans
ces conditions, la projection stéréographique
jouit des propriétés fondamentales
suivantes:


1º Tout cercle de la sphère, quel qu'il soit, a pour perspective un
cercle.


2º L'angle de deux lignes quelconques, tracées sur la surface de
la sphère est égal à celui que forment les lignes qui les représentent
sur la carte. (On appelle angle de deux courbes l'angle compris entre
les tangentes menées à ces courbes à leur point d'intersection.)
33


Note 33:
(retour)  V. à la fin du chapitre, la démonstration de ces deux principes.



Il résulte de ces deux principes que les méridiens et les parallèles
sont représentés sur le canevas par des arcs de cercle perpendiculaires
entre eux, comme sur le globe terrestre. Ce canevas est
donc facile à construire.


93. On choisit ordinairement pour tableau le méridien de l'île
de Fer, la plus occidentale des îles Canaries, ou pour parler d'une
manière plus précise, le méridien situé à 20° de longitude occidentale
de Paris. On a choisi ce méridien parce qu'il partage la
terre en deux hémisphères, sur l'un desquels se trouvent ensemble
l'Europe, l'Asie, l'Afrique (tout l'ancien monde) et une
partie de l'Océanie. Le cercle PE'P'E (fig. 42), qui représente ce
méridien, forme le contour de la carte.


Voici les deux problèmes qu'il faut savoir résoudre pour construire
une carte dans ce système de projections.




[image: ]94. Projection d'un méridien. Soit proposé de construire la perspective
du méridien M, qui fait avec celui
de l'île de Fer un angle de 10°. On prend
sur le contour PE'P'E, à partir de P', sur
la droite, un arc P'G de 20° (fig. 42), (le
double de 10°); on tire la droite PG qui rencontre
E'E en I; du point I comme centre
avec le rayon IP, on décrit un arc de cercle
PKP' limité aux deux points P et P'; cet arc
est la perspective du demi-méridien indiqué.




Démonstration. Le méridien M, comme tous les autres, passe par les points
P et P' qui sont à eux-mêmes leurs perspectives; l'arc de cercle, perspective
de méridien, passe donc en P et en P', et a son centre sur E'E. Soit I ce centre
supposé trouvé, et PKP' l'arc cherché; menons PIG et la tangente PS à l'arc
PKP'. La tangente RP au méridien PE'P'E est sa projection à elle-même; il
résulte du 2e principe, nº 92, que l'angle RPS est égal à 10°; mais les rayons
OP, IP des cercles PE'P', PKP' étant perpendiculaires à PR et PS, l'angle
P'PG = RPS = 10°; cet angle P'PG est donc connu à priori: comme il est
inscrit, l'arc P'G qui le mesure est égal à 20°. On connaît donc le point G, et
par suite la direction du rayon PIG; de là la construction indiquée.




95. Projection d'un parallèle. Soit proposé de construire la
perspective du demi-parallèle dont la latitude est 60°. On prend
E'C' = 60° (fig. 42); on mène en C' la tangente C'D au cercle
PE'P'E; puis du point D comme centre avec le rayon DC', on décrit
un arc de cercle C'HC limité au point C, où il rencontre une
seconde fois le contour PE'P'E; cet arc C'HC est la perspective
du demi-parallèle en question.




Démonstration. Le parallèle en question rencontre le méridien PE'P'E en
deux points C' et C du tableau, situés à 60° des points E', E; l'arc de cercle,
perspective du demi-parallèle en question, passe donc aux points C', C et a
son centre sur P'P: il faut trouver ce centre. Or, le parallèle proposé étant
perpendiculaire au méridien PEP'E', la tangente CD, qui est sa propre perspective,
est perpendiculaire à la tangente qui serait menée au même point à
la perspective du parallèle. La perpendiculaire menée à la tangente d'un arc
de cercle, au point de contact, passant par le centre de cet arc, la ligne C'D
passe au centre de l'arc à construire. Ce centre est d'ailleurs sur P'P; il est
donc en D. C. Q. F. D.






[image: ]96. Construction du canevas (fig. 43). Nous supposerons qu'on
veuille représenter les méridiens
et les parallèles de
10° en 10°. On divise la
circonférence en 36 parties
égales (arcs de 10°) à partir
de l'un des pôles. On joint
par des lignes au crayon le
pôle P à tous les points de
division de rangs pairs à partir de P'; ex. le point G (fig. 42). De
chaque point de rencontre, I, de ces lignes avec E'E comme
centre, avec IP pour rayon, on décrit un arc de cercle limité aux
points P et P'. On obtient ainsi une série d'arcs de cercle tels que
PKP' (fig. 42), qui représentent les méridiens considérés de 10°
en 10° à partir du méridien de l'île de Fer (fig. 43).


Pour tracer les parallèles, à chacun des points de division, ex.:
C' (fig. 42), de la demi-circonférence PE'P', on mène au crayon une
tangente C'D à cette demi-circonférence, à la rencontre de PP'. Du
point de rencontre D, comme centre, avec DC' pour rayon, on trace
un arc de cercle limité en C' et en C sur le contour PE'P'E. On obtient
ainsi (fig. 43) une série d'arcs de cercle qui représentent les parallèles,
de 10° en 10° à partir de l'équateur. On marque les latitudes
de 0 à 90°, de E' vers P, puis de E' vers P', sur la demi-circonférence
PE'P', et même, si on veut, sur PEP'. On marque les longitudes
de 10° en 10° sur l'équateur, aux points où il est rencontré
par les perspectives des méridiens; seulement, il faut marquer 10°
à la 1re division après le point E', 0° à la seconde (méridien de
Paris), puis 10°, 20°, etc., de gauche à droite. Le canevas ainsi
construit (fig. 43), on y marque les divers lieux, soit d'après un globe
terrestre, soit d'après leurs longitudes et leurs latitudes connues.


Remarque. Le méridien du point de vue et l'équateur sont représentés
par des lignes droites PP', EE'. Les perspectives s'aplatissent
de plus en plus quand on s'approche de l'une ou l'autre de
de ces lignes.



97. Avantage et inconvénient de la projection stéréographique
ordinairement employée pour construire les atlas de géographie.


L'avantage qu'elle présente, c'est qu'une figure de petites dimensions,
située n'importe où sur l'hémisphère, est représentée sur la
carte par une figure semblable. En effet, cette figure peut être considérée
comme plane à cause de sa petitesse; cela posé, il résulte
de la seconde propriété des projections stéréographiques, nº 92,
que les triangles, dans lesquels la figure et sa représentation peuvent
être décomposés, sont semblables comme équiangles, et
semblablement disposés. Cette figure n'est donc pas déformée;
seulement ses dimensions sont réduites dans le même rapport
(V. BC et bc, fig. 40).


L'inconvénient de ce mode de projection consiste précisément
en ce que le rapport dans lequel se fait la réduction d'une petite
figure varie avec la position de celle-ci sur l'hémisphère. Au bord
de la carte il n'y a pas de réduction, puisque les parties du méridien
qui forme le contour sont représentées en véritable grandeur;
mais les dimensions se réduisent de plus en plus à mesure qu'on
s'éloigne du bord; vers le centre les dimensions sont réduites de
moitié. Ex.: de = 1/2 DE (fig. 40).



98. Système de développement employé pour la carte de France.
Dans la construction de la grande carte de France du dépôt de
la guerre, on s'est surtout attaché à ne pas altérer les rapports
d'étendue superficielle qui existent entre les diverses parties de la
contrée, tout en conservant autant que possible les formes telles
qu'elles existent sur la terre. Pour cela, on a employé un système
de développement, dit développement conique modifié, que nous
allons faire connaître.


[image: ]


Construction du canevas. Supposons qu'il s'agisse de représenter
une contrée dont les longitudes extrêmes sont 5° Ouest et 7° Est,
et les latitudes extrêmes 42° et 52° Nord (ce sont à peu près
celles de France). On détermine la longitude moyenne, qui est
((7° + 5°)/2) = 1° Est, et la latitude moyenne, qui est ((42° + 52°)/2) = 47°
Nord. Cela fait, on imagine devant soi un globe terrestre géographique
sur lequel est figurée la contrée à représenter, décomposée
par un canevas de méridiens et de parallèles comme le doit être la
carte elle-même. On représente le méridien moyen SCE (fig. 44)
par une ligne droite sce. Pour représenter le parallèle moyen, on
imagine menée en C une tangente CS au méridien du globe, jusqu'à
la rencontre de l'axe PP' en S; on déterminera l'aide de la
latitude moyenne (47°), la longueur de cette tangente du points au
point C
34; puis du point s sur la carte, comme centre, avec
un rayon sc = SC, on trace un arc de cercle fch qui représente
le parallèle moyen. Pour avoir la représentation des autres parallèles,
on imagine le méridien moyen ACE divisé en parties
AB, BC, CD, DE,..... dont les extrémités correspondent à des latitudes
connues, de degré en degré par exemple. On porte sur
sce, de part et d'autre de c, et dans le même ordre que sur le
globe, des longueurs cb, ba,..... cd, de...... respectivement égales
aux longueurs CB, BA,... CD, DE...
35. Puis de s comme centre,
on décrit des arcs de cercle passant aux points b, d, c...; chacun
de ces arcs bb'b?,... représente un des parallèles de la contrée
correspondant à une latitude connue. Pour achever le canevas, il n'y
a plus qu'à représenter un certain nombre de méridiens de part et
d'autre du méridien moyen. Pour cela, on imagine sur le globe un
certain nombre de ces méridiens correspondant à des longitudes
connues, de degré en degré par exemple, lesquels divisent les parallèles
en arcs tels que AA', A'A?,... BB', B'B?,... etc. Sur chacun
des parallèles de la carte, aa'a?, bb'b?, on prend des arcs respectivement
égaux en longueur à leurs correspondants sur le globe,
aa' = AA', a'a? = A'A?,... bb' = BB',..., etc.
36. Cela tait, on fait passer
par chaque série de points ainsi obtenus, occupant le même
rang sur leurs courbes respectives à partir de sce, ex.: (a', b', c',...),
une ligne continue (a'b'c'...); chacune des lignes ainsi obtenues
représente un des méridiens de la contrée correspondant à une longitude
connue que l'on indique sur la carte. On marque les latitudes
sur les bords de la carte, à gauche et à droite, aux extrémités des
arcs aa'a?, bb?..., et les longitudes en haut et en bas aux extrémités
des arcs abc, a'b'c'... Le canevas achevé, il ne reste plus qu'à
y marquer les lieux et les objets que l'on veut indiquer, d'après
un globe terrestre ou d'après leurs longitudes et leurs latitudes
connues.


Note 34:
(retour)  À l'inspection seule de la première des figures 44, on voit que la tangente
SC peut se construire comme il suit:

Le rayon R du globe terrestre est représenté par une longueur qui dépend
des dimensions que l'on veut donner à la carte, 0m,2, par exemple. On décrit
un cercle avec ce rayon et on y trace deux diamètres, l'un horizontal, l'autre
vertical. À partir du premier, on prend sur la circonférence un arc égal à la
latitude moyenne donnée; à l'extrémité de cet arc, on mène une tangente que
l'on prolonge seulement jusqu'à sa rencontre avec le diamètre vertical prolongé
lui-même. Cette tangente est la longueur cherchée SC.




Note 35:
(retour)  Supposons que les arcs AB, BC, CD,..... du méridien moyen soient 1°.
Chacun d'eux est la 360e partie de la circonférence; AB = 2pR/300. Connaissant p
et R, on peut calculer la longueur de AB = BC = CD. Cette longueur est celle
que l'on porte sur la droite sce de la carte, de c en b, de b en a, etc. Dans la
construction de la carte de France, on a eu égard à l'aplatissement de la terre;
la longueur d'un degré du méridien dépend, dans ce cas, de sa latitude.



Note 36:
(retour)  Pour construire les arcs aa', a'a?,..... qui appartiennent à un parallèle
dont la latitude est donnée, on construit à part ce parallèle, avec un rayon
r = R × cos. latitude de ce parallèle, ou bien de la manière indiquée à propos
de la projection orthographique. Si les arcs aa', a'a?,.... sont de 1°, on prend
un arc de 1° sur ce parallèle; puis on porte cet arc par parties très-petites,
de a en a', sur l'arc de cercle aa'a?; puis une 2e fois de a' en a?; une 3e fois de
a? en a?, etc.....



Remarques. Dans cette construction, on attribue au globe terrestre,
dont on est censé développer une partie de la surface, un rayon arbitraire
R dont la grandeur dépend du rapport que l'on veut établir
entre les distances sur la carte et les distances réelles. Si les arcs AB,
BC,... sont des arcs de 1°, on déduit leur longueur de celle du
rayon assigné au globe terrestre (1° = 2pR/360). Pour la carte de
France, on a eu égard à l'aplatissement de la terre; la longueur
d'un degré du méridien est estimée suivant la latitude.


Enfin, pour construire les arcs aa', a'a?,... bb',... on peut déterminer
la longueur des arcs AA', A'A?,... BB',... que nous supposons
de 1°, d'après les rayons des parallèles auxquels ils appartiennent.
On porte chaque longueur ainsi déterminée, AA', par parties
très-petites, sur la ligne aa'a? de la carte. (V. la 2e note ci-contre).



99. Avantages le ce mode de développement. Ce sont ceux que
nous avons indiqués à l'avance. Les rapports d'étendue superficielle
sont partout conservés; ainsi, des contrées de même surface
sur la terre occupent des surfaces égales sur la carte. De plus, les
surfaces représentées sont fort peu déformées.


En effet, le canevas de la contrée sur le globe terrestre géographique
et sa représentation sur la carte, sont composées de petites
figures telles que A'A?B?B'?, a'a?b?b', équivalentes chacune à chacune,
à peu près de la même forme et semblablement disposées.
Nous supposons les parallèles et les méridiens très-rapprochés, ce
qu'il est toujours possible d'effectuer dans la construction.


Cela posé, 1º les petites figures A'A?B?B', a'a?b?b' sont équivalentes;
car elles peuvent être considérées comme des parallélogrammes
ayant des bases égales; B'B? = b'b? par construction, et
même hauteur B'A' = BA = ba.


2º Ces figures A'A?B?B', a'a?b?b'] ont sensiblement la même forme;
l'une et l'autre peuvent être considérées comme de petits rectangles.
En effet, les méridiens et les parallèles perpendiculaires sur
le globe le sont à fort peu près sur la carte; le long du méridien
moyen, sce, les angles sont même exactement droits.


Ce dernier mode de représentation consiste, comme on le voit,
à décomposer la contrée sur le globe terrestre, en très-petites parties
(les petites figures A'A?B?B') que l'on transporte une à une aussi
fidèlement que possible sur le papier. Cette représentation approche
d'autant plus de l'exactitude que ces figures sont plus petites.





APPENDICE  AU CHAPITRE II


(NON EXIGÉ).






100. Cartes marines, dites de Mercator. Les cartes dont on se
sert pour la navigation diffèrent des précédentes: voici leur mode
de construction.


[image: ]


On imagine un globe terrestre géographique sur lequel sont
tracés une série de méridiens et de parallèles équidistants, aussi
rapprochés que l'on veut. On trace sur le papier une droite E'E
dont on suppose la longueur égale à celle de l'équateur du globe.
On divise E'E en autant de parties égales que ce même équateur,
en 18 parties par exemple; par tous les points de division, on mène
des perpendiculaires à E'E (fig. 45); il y a alors autant de bandes
parallèles sur le papier que de fuseaux sphériques sur le globe.
Chacun de ces derniers est divisé en un certain nombre de quadrilatères
ABCD, MNPQ... Si les méridiens et les parallèles, qui se coupent
à angle droit, sont suffisamment rapprochés, on peut regarder
approximativement chacun de ces quadrilatères, par ex. MNPQ,
comme un rectangle ayant pour base MN et pour hauteur MP. Le
mode de construction de la carte consiste à représenter, en procédant
par ordre, de l'équateur au pôle, les divers rectangles de
chaque fuseau sphérique par des rectangles respectivement semblables,
disposés à la suite les uns des autres dans la bande parallèle
correspondante à ce fuseau. Tous les rectangles de la carte
auront des bases égales; mn = AB (fig. 45), tandis que ceux du,
fuseau ont des bases constamment décroissantes de l'équateur au
pôle (V. la fig. 44). Pour obtenir la similitude de chaque rectangle
MNPQ et du rectangle mnpq qui le représente sur la carte, on prend
la hauteur mp du rectangle de la carte quatrième proportionnelle
aux lignes connues MN, MP, mn (MN = MP cos. latit.); il faut donc
faire un calcul ou une construction pour la hauteur de chaque rectangle
d'un fuseau. Ces hauteurs trouvées, on les porte dans leur
ordre sur une des lignes du cadre, à droite ou à gauche; puis,
par l'extrémité de chacune d'elles, on mène une parallèle à E'E.
Le canevas est tracé; les méridiens y sont représentés par les droites
parallèles à y'Ey', et les parallèles par les droites parallèles à E'E;
les longitudes se marquent sur une parallèle à E'E, et les latitudes
sur les deux perpendiculaires extrêmes y'Ey', yE'y.



101. Remarque. Les rectangles de la carte considérés dans un
sens ou dans l'autre, à partir de l'équateur, vont, en s'allongeant
indéfiniment; vers les pôles leurs hauteurs deviennent excessivement
grandes. Ce fait s'explique aisément; en effet, toutes les
hauteurs des rectangles du globe terrestre sont égales; exemple:
AC = MP; chacune d'elles est, par exemple, un degré du méridien:
les bases AB...MN, de ces rectangles vont en décroissant indéfiniment
de l'équateur au pôle (car MN = AB × cos. latit., et par suite
MP = AB = MN ÷ cos. latit.). La hauteur constante, un degré du
méridien, devient donc dans les rectangles successifs de plus en
plus grande par rapport à la base (V. le globe). Le rapport de la
hauteur de chaque rectangle à sa base étant le même sur la carte
que sur le globe, et la base restant constante sur la carte, ab = mn,
il en résulte que sur celle-ci, les hauteurs ac, mp... (mp = mn ÷
cos. latitude) doivent aller en augmentant indéfiniment; ce qui fait
que les rectangles s'allongent de plus en plus, à mesure qu'on
s'éloigne de l'équateur. Dans les régions polaires les rectangles
tendent à devenir infiniment longs. On ne doit donc pas chercher
à se faire une idée de l'étendue superficielle d'une contrée par sa
représentation sur une pareille carte; on se tromperait gravement.
Les marins, qui ne cherchent sur la carte que la direction à donner
à leur navire, trouvent à ces cartes un avantage précieux que
nous allons indiquer.



102. Pour aller d'un lieu à un autre les navigateurs ne suivent
pas un arc de grand cercle de la sphère terrestre; cette ligne,
la plus courte de toutes, a le désavantage de couper les divers méridiens
qu'elle rencontre sous des angles différents; ce qui compliquerait
la direction du navire. Les marins préfèrent suivre une
ligne nommée loxodromie qui a la propriété de couper tous les
méridiens sous le même angle. Cette ligne se transforme sur la
carte marine en une ligne droite qui joint le point de départ au
point d'arrivée
37; il suffit donc aux marins de tracer cette ligne
sur leur carte, pour savoir sous quel angle constant la marche du
navire doit couper tous les méridiens sur la surface de la mer.
Habituellement, et pour diverses causes, le navire ne suit pas la
ligne mathématique qu'on veut lui faire suivre; c'est pourquoi,
après avoir navigué quelque temps, on cherche à déterminer, au
moyen d'observations astronomiques, le lieu qu'on occupe sur la
mer. Quand on a trouvé la longitude et la latitude de ce lieu, on
le marque sur la carte marine; en le joignant par une ligne droite
au lieu de destination, on a une nouvelle valeur de l'angle sous,
lequel la marche du navire doit rencontrer chaque méridien.


Note 37:
(retour)  Toutes les petites figures du canevas de la carte sont semblables à celles
du globe terrestre; les éléments successifs de la loxodromie, qui font sur le
globe des angles égaux avec les éléments des méridiens qu'ils rencontrent,
doivent faire les mêmes angles avec ces éléments de méridien rapportés sur la
carte; ceux-ci étant des droites parallèles, tous les éléments de la loxodromie
doivent se continuer suivant une même ligne droite.



Le système de Mercator est employé pour construire des cartes
célestes; mais seulement pour les parties du ciel voisines de l'équateur.



De l'atmosphère terrestre.



103. Atmosphère. La terre est entourée d'une atmosphère gazeuse
composée de l'air que nous respirons. L'air est compressible,
élastique et pesant; les couches supérieures de l'atmosphère comprimant
les couches inférieures, la densité de l'air est la plus
grande aux environs de la terre. À mesure qu'on s'élève, cette densité
diminue; l'air devient de plus en plus rare, et à une distance
de la terre relativement peu considérable, il n'en reste pas de traces
sensibles.



104. Hauteur de l'atmosphère. On ne connaît pas cette hauteur
d'une manière tout à fait précise; d'après M. Biot qui a discuté
toutes les observations faites à ce sujet, elle ne doit pas dépasser
48000 mètres ou 12 lieues de 4 kilomètres. Cette hauteur ne serait
pas la cent-trentième partie du rayon moyen de la terre
38; le
duvet qui recouvre une pêche serait plus épais relativement que la
couche d'air qui enveloppe la terre.


Note 38:
(retour)  Si on représentait la terre par un globe de 1 mètre de diamètre, l'atmosphère
figurée n'aurait pas une épaisseur de 4 millimètres.




105. Utilité de l'atmosphère. L'air est indispensable à la vie des
hommes et des animaux terrestres tels qu'ils sont organisés. L'atmosphère
par sa pression retient les eaux à l'état liquide; elle
empêche la dispersion de la chaleur; sans elle le froid serait excessif
à la surface de la terre
39. Les molécules d'air réfléchissent la
lumière en tous sens; cette lumière réfléchie éclaire les objets et
les lieux auxquels n'arrivent pas directement les rayons lumineux;
sans cette réflexion ces lieux resteraient dans l'obscurité.



Note 39:
(retour)  Au sommet des montagnes, l'atmosphère devenant plus rare, s'oppose
moins à la dispersion de la chaleur; à l'hospice du Grand-Saint-Bernard, à
2075 mètres au-dessus du niveau de la mer, la température moyenne est d'un
degré au-dessous de zéro.



La réflexion des rayons lumineux qui frappent une partie de
l'atmosphère au-dessus d'un lieu m de la terre, quand le soleil est
un peu au-dessous de l'horizon de ce lieu, produit cette lumière
indirecte connue sous le nom d'aurore ou de crépuscule, qui prolonge
d'une manière si sensible et si utile la durée du jour solaire.
Si l'atmosphère n'existait pas, la nuit la plus absolue succéderait
subitement au jour le plus brillant, et réciproquement.


[image: ]106. Extinction des rayons lumineux. L'atmosphère incomplètement
transparente éteint une partie des rayons qui la traversent.
Cette extinction, faible pour les rayons verticaux, augmente avec
la distance zénithale de l'astre, parce que l'épaisseur de la couche
atmosphérique traversée par la lumière augmente avec cette distance;
AG (fig. 46) vaut environ 16 AB. L'extinction de la lumière
et de la chaleur solaire sont donc
beaucoup plus grandes quand le
soleil est près de l'horizon; cette
extinction est encore augmentée par
les vapeurs opaques qui existent
dans les basses régions de l'atmosphère.
C'est pourquoi le soleil nous
paraît moins éblouissant à l'horizon
qu'au zénith.



Les astres nous paraissent plus éloignés à l'horizon qu'au zénith;
cela tient encore à ce que les molécules d'air, qui réfléchissent à
l'œil la lumière émanée de ces astres, s'étendent beaucoup plus
loin à l'horizon qu'au zénith; l'œil auquel arrivent ces rayons réfléchis
doit juger les distances plus grandes dans le premier cas
que dans le second. D'ailleurs l'extinction plus grande des rayons
lumineux donne aux objets une teinte bleuâtre plus prononcée qui
contribue à nous les faire paraître plus éloignés.



107. Réfraction. L'atmosphère possède, comme tous les milieux
transparents, la propriété de réfracter les rayons lumineux,
c'est-à-dire de les détourner de leur direction rectiligne. Cette déviation
a lieu suivant cette loi démontrée en physique:




[image: ]Quand un rayon lumineux SA (fig. 47) passe d'un milieu dans
un autre plus dense, par exemple du
vide dans l'air, il se brise suivant AB,
en se rapprochant de la perpendiculaire,
NN', à la surface de séparation
des milieux, sans quitter le plan normal
SAN. Si le nouveau milieu est moins
dense, le rayon s'écarte de la normale.


De cette propriété il résulte que les
objets célestes, qui sont vus dans une
direction oblique à l'atmosphère, nous
paraissent situés autrement que nous les verrions si l'atmosphère
n'existait pas. Il nous faut donc connaître le sens et la valeur de
ce déplacement, si nous voulons savoir, à un instant donné,
quelles sont les véritables positions des astres que nous observons.


[image: ]Un spectateur est placé en A sur la surface CAc de la terre
(fig. 48). Soient Ll, Mm, Nn les couches successives de densités
décroissantes dans lesquelles
nous supposons l'atmosphère
décomposée, et qui sont concentriques
à la terre.




Soit une étoile S, que nous
considérons comme un point lumineux.
Si l'atmosphère n'existait
pas, le rayon lumineux SA
nous montrerait l'astre S dans sa
véritable position; mais le rayon
lumineux qui aurait la direction AS, arrivant en d sur la première
couche atmosphérique, Nn, d'une ténuité extrême, est légèrement
dévié, et se rapprochant de la normale à la couche en d,
prend la direction de; mais arrivé en e, ce rayon entrant dans une
nouvelle couche plus dense, éprouve une nouvelle déviation,
prend la direction ef et ainsi de suite; les directions successives
que prend le rayon continuellement dévié, forment une ligne polygonale,
ou plutôt une courbe, defa, qui vient apporter au lieu
a, et non pas au lieu A, la vue de l'étoile. Celle-ci est vue en A
à l'aide d'un autre rayon lumineux SD qui, arrivé en D sur l'atmosphère,
a été dévié successivement de telle sorte que son extrémité
mobile arrive au lieu A, après avoir parcouru la courbe DEFA.
L'observateur qui place l'étoile à l'extrémité du rayon lumineux
qu'il perçoit, prolongé en ligne droite jusqu'à la sphère céleste,
voit cet astre dans la direction du dernier élément de la courbe
DEFA, c'est-à-dire à l'extrémité s de la tangente AFs menée à cette
courbe par le point A.




108. Il résulte de ce principe de physique: le rayon incident et le rayon
réfracté sont dans un même plan normal à la surface de séparation des milieux,
et de ce fait que toutes les couches atmosphériques ont pour centre commun
le centre de la terre, que toutes les directions successives des rayons réfractés,
sont dans un même plan vertical comprenant la verticale AZ, la position vraie,
S, et la position apparente s de l'étoile. Toutes ces réfractions s'ajoutent donc
et donnent une somme, SAs, qui est la réfraction totale relative à la position
actuelle S de l'étoile.


Les effets de la réfraction astronomique se résument donc, pour l'observateur,
dans un accroissement, SAs, de la hauteur de l'astre observé. On peut la
définir par cet accroissement. La réfraction astronomique est un accroissement
apparent de la hauteur vraie d'un astre au-dessus de l'horizon.


Quand un astre est au zénith Z, la réfraction est nulle; elle augmente d'abord
lentement à partir de 0°, quand la position vraie de l'astre descend du zénith
à l'horizon, puis augmente plus rapidement quand cet astre est très-près de
l'horizon; ainsi la réfraction, qui n'est encore que 1'9? quand l'astre se trouve
à 40° de l'horizon, est de 33'47?,9 au bord de l'horizon. Voici d'ailleurs le
tableau des réfractions pour des hauteurs décroissantes, de 10° en 10° d'abord,
puis pour des hauteurs plus rapprochées dans l'intervalle de 10° à 0°.


HAUTEUR       RÉFRACTION.

apparente.



90°              0?,0

80              10 ,3

70              21 ,2

60              33 ,7

50              48 ,9

40            1' 9 ,4

30            1 40 ,7

20            2 38 ,9

15            3 34 ,5

10            5 20 ,0

9             5 53 ,7

8             6 34 ,7

7             7 25 ,6

6             8 30 ,3

5             9 54 ,8

4            11 48 ,8

3            14 28 ,7

2  0'        18 23 ,1

1  0         24 22 ,3

0 40         27  3 ,1

0 30         28 33 ,2

0 20         30 10 ,5

0 10         31 55 ,2

0            33 47 ,9  [40]




Note 40: Près de l'horizon les réfractions sont très-irrégulières parce que les rayons
lumineux y traversent les couches d'air les plus chargées d'humidité, les plus
inégalement échauffées ou refroidies par leur contact avec le sol. C'est pourquoi
les astronomes évitent d'observer les astres trop près de l'horizon. Ce n'est qu'à
partir de 5° ou 6° de hauteur que les réfractions deviennent régulières et conformes
à la table précédente.



Usage du tableau. Si la hauteur apparente d'un, astre est de 15° par exemple,
on prend dans la table la réfraction correspondante 3'34?,5 et on la retranche
de la hauteur observée pour avoir la hauteur vraie.


Remarque. Quand la hauteur apparente d'un astre est de 0°0'0?, cet astre,
vu au bord de l'horizon, se lève ou se couche en apparence, tandis qu'il est
déjà, en réalité à 33'47? au-dessous de l'horizon.




109. Remarque. Le diamètre apparent du soleil étant en moyenne
de 32'3?, il résulte de la remarque précédente que le bord supérieur
de son disque étant déjà à 1' au-dessous de l'horizon, à l'Orient
ou au Couchant, l'astre tout entier, soulevé par la réfraction, est
visible pour nous. Le soleil nous paraît donc levé plus tôt et
couché plus tard qu'il ne l'est réellement.


Une autre conséquence de la réfraction, c'est que le disque solaire,
à son lever et à son coucher, nous apparaît sous la forme d'un
ovale écrasé dans le sens vertical; la réfraction, relevant l'extrémité
inférieure du diamètre vertical plus que l'extrémité supérieure,
rapproche en apparence ces deux extrémités; le disque nous paraît
donc écrasé dans ce sens. La réfraction élevant également les deux
extrémités du diamètre horizontal n'altère pas ses dimensions.


Le même effet de réfraction a lieu pour la lune.



Note I.



Sphéricité de la terre. Voici comment on montre la sphéricité de la terre en
se fondant sur les observations 1°, 2°, 3°, mentionnées dans la note de la page 56.


[image: ]On démontre d'abord que la courbe qui limite l'horizon sensible d'un observateur
placé à une hauteur quelconque est une circonférence dont l'axe est la
verticale du lieu.



Soit A (fig. 30) le point d'où on observe; AB, AG deux rayons visuels quelconques
allant à la courbe limite BC;
AI la verticale du lieu A. On sait que
les angles BAI, CA1 sont égaux (1°).
Nous allons prouver que les lignes AB,
AC sont égales. En effet, supposons
qu'elles soient inégales, que l'on ait
AC > AB; nous pouvons prendre sur
AB une longueur AD = AC. Maintenant
concevons que l'observateur s'élève en
A' sur la verticale AI, à une hauteur
telle que le rayon visuel dirigé de ce
point A' dans le plan IAB, vers la nouvelle
courbe limite, aille rencontrer la
ligne AD entre B et D, en E, par
exemple; ce qui est toujours possible.
Le rayon visuel, dirigé de même de A'
dans le plan IAC, ira rencontrer la
ligne AC en un point F situé au delà
de C (2°). Les deux triangles AA'E;
A'AF sont égaux: car AA' = AA'; angle
EA'I = angle FA' (1°); les angles en A sont égaux comme suppléments des
angles égaux EAI, FAI; les triangles AA'E, AA'F étant égaux, on en conclut
AE = AF. Mais AF est > AC et AE < AD; avec AD = AC, on aurait donc une ligne
AE plus petite que AD égale à une ligne AF > AC; ce qui est absurde Cette absurdite
résulte de ce qu'on a supposé AC > AB; donc AC n'est pas plus grand que
AB; ces deux lignes ne pouvant être plus grandes l'une que l'autre, sont égales.
Les lignes allant du point A à la courbe limite étant égales, et faisant avec la
verticale AI des angles égaux; la courbe limite, lieu de ces points B, C,..... est
une circonférence qui a tous ses points également distants de chaque point de
la verticale AI.



[image: ]Soient maintenant deux points d'observation A et A', situés sur deux verticales
différentes AI, A'Z (fig. 31);
soit HD la corde commune aux
deux circonférences qui limitent
les horizons sensibles de A et A';
menons les diamètres BCK, MCN,
par le milieu C de HD. Cette
corde HD est perpendiculaire à
ces deux diamètres BCK, MCN,
et par suite a leur plan BCN.
Réciproquement le plan BCN est
perpendiculaire à HD, et par suite
aux plans des circonférences qui
ont HD pour corde commune. Le
plan BCN étant perpendiculaire
au plan BHK, la perpendiculaire
IA à ce plan BHK est tout entière
dans le plan BCN; de même A'Z
est dans le plan BCN. Les deux verticales IA, ZA' perpendiculaires à deux droites
BC, CN, dans un même plan avec ces droites, se rencontrent en un certain
point O. Tirons OH; le point O est à la même distance OH de tous les points de
la circonférence BHK; il est à la même distance OH de tous les points de
circ. NHM; il est donc à égale distance de tous les points de l'une et l'autre
circonférence.


Soit L un point quelconque de la surface de la terre; on peut concevoir
par L une circonférence LP, dont le plan soit perpendiculaire à la verticale
AIO ou à son prolongement OA?, et qui rencontre la circonférence NHM; dès
lors OL égale la distance de O à circ. NHM, c'est-à-dire OL = OH. Si circ. LP
ne rencontrait pas circ. NHM, elle rencontrerait une circonférence perpendiculaire
à OZA' rencontrant déjà circ. BKH; de sorte qu'on aurait toujours OL = OH.
Le point O est donc à égale distance de tous les points de la surface terrestre;
celle-ci ayant tous ses points à égale distance d'un point intérieur, est une
surface sphérique.





NOTE II.


Démonstration des deux principes relatifs à la projection stéréographique.
des cercles d'une sphère, énoncés n° 92, page 74.


Théorème I. Tout cercle ED de la sphère a pour perspective, ou projection
stéréographique, un cercle.


[image: ]


Observons d'abord que les droites qui projettent les points d'une circonférence,
circ.ED (V. la fig. 41 ci-après) sont les génératrices d'un cône circulaire
qui a le point de vue O pour sommet et cette circonférence pour base. L'intersection
d'une pareille surface par un plan KBL parallèle à la base est une
autre circonférence. En effet, menons les génératrices quelconques OA, OE, OD
qui rencontrent la section en K, B, L (fig. 40 bis); les triangles semblables OIB,
OIA donnent Oi/OI = iB/IA; les triangles OIK, OIE donnent Oi/OI = iK/IE; donc iB/IA = iK/IE;
mais IA=IE, donc iB = iK; on prouverait de même que iB = iL; donc la courbe
KBL est une circonférence dont le centre est i. Cela posé, soit O (fig. 41) le point
de vue sur la sphère; on sait que le tableau ou plan de projection est un grand
cercle ASB perpendiculaire au rayon OC. Soit HMF la perspective d'une circonférence
quelconque de la sphère, circ.ED; il faut prouver que HMF est une circonférence.
Pour cela, observons que la ligne CI, qui joint le centre C de la
sphère et le centre I de circ. ED, est perpendiculaire au plan de cette circonférence;
de sorte que le plan OCI est à la fois perpendiculaire à cercle ASB et à
cercle ED. Ce plan OCI coupe la surface conique suivant le triangle OED, et le
tableau ASB suivant un diamètre ACB. Soit M un point quelconque de la projection
HMF de cercle ED; abaissons de M la perpendiculaire MP sur l'intersection
CB ou HF du plan OED et du plan ASB. Comme ces plans sont perpendiculaires,
MP, qui est dans le plan ASB, est perpendiculaire au plan OED;
MP est donc parallèle à cercle ED. Conduisons par MP un plan parallèle à
cercle ED; ce plan coupe le cône suivant une circonférence KML, dont KL,
parallèle à ED, est un diamètre. D'après un théorème connu (3° livre de géométrie),
(MP)² = KP × PL (1). Cela posé, observons que l'angle HFO = OED;
en effet HFO a pour mesure 1/2 AO + 1/2 BD; OED a pour mesure 1/2 DB + 1/2 OB;
or AO = OB (ce sont deux quadrants). De ce que HFO = 0ED, et OED=OKL,
on conclut OKL = HFO; de OKL = HFO, on conclut que l'arc du segment circulaire
capable de l'angle HFO, qui aurait HL pour corde, passerait par le point K.
Les quatre points H, K, F, L sont donc sur une même circonférence; les lignes
HF, KL étant deux cordes d'une même circonférence, HP × PF = KP × PL; donc
en vertu de l'égalité (1), (MP)² = HP × PF. Si donc on tirait les lignes HM, MF,
le triangle HMF serait rectangle; le point M appartient donc à la circonférence
qui, dans le plan ASB, a pour diamètre HF. Le point M étant un point quelconque
de la projection de circ. ED, on conclut que tous les points de la projection
sont sur la circonférence HMF dont nous venons de parler, autrement
dit, que cette circonférence est précisément la projection de circ. ED sur le plan
ASB.


Théorème II. L'angle que forment deux lignes MP, MN qui se coupent sur
la sphère est égal à celui que forment
les lignes mn, mp qui les représentent
sur la carte (fig. 41 bis). (On sait qu'on
appelle angle de deux lignes courbes MP,
MN, l'angle que forment les tangentes MG,
MF, menées à ces courbes à leurs points
de rencontre.)




[image: ]Soient g et f les points où MG, MF
percent le tableau; les projections mg,
mf de ces tangentes sont elles-mêmes
tangentes aux courbes mn, mp; il faut
démontrer que l'angle gmf=GMF. Pour
cela, menons, par le point de vue 0, un plan GOF parallèle au plan du tableau;
ce plan GOF perpendiculaire à l'extrémité du rayon OC est tangent à la sphère.
Soient G et F les points d'intersection de ce plan par les tangentes MG, MF;
menons OG, OF, FG. Les lignes OG, mg, intersection des deux plans parallèles
par le plan OMG, sont parallèles; OF, mf sont aussi parallèles; donc l'angle
gmf=GOF; nous allons prouver que GOF=GMF. En effet, les lignes GM, GO,
tangentes à la sphère, issues du même point G, sont égales (on peut concevoir
deux grands cercles déterminés par les plans CMG, COG, lesquels auraient pour
tangentes MG, OG); pour une raison semblable, FM=FO. Les deux triangles
MGF, OGF sont donc égaux; par suite, l'angle GOF=GMF; donc gmf=GOF=GMF.
C. Q. F. D.


Remarque. Nous avons dit que mf, projection de la tangente MF, était elle-même
une tangente à la projection mn de MN. On se rend compte de ce fait
en imaginant une sécante MM' à la courbe MN, et la projection mm' de cette
sécante; puis faisant tourner le plan projetant OMM' autour de OM, jusqu'à
ce que M' soit venu se confondre avec M, MM' devenant la tangente MF;
pendant ce temps, m' se rapproche de m, et se confond avec m quand M'
arrive en M; de sorte que la sécante et sa projection deviennent tangentes
en même temps.











CHAPITRE  III.


LE SOLEIL.












110. Mouvement propre apparent du soleil. En outre du mouvement
diurne commun à tous les corps célestes, le soleil paraît
animé d'un mouvement propre dirigé en sens contraire du mouvement
diurne.


On dit qu'un astre a un mouvement propre quand sa position
apparente, c'est-à-dire sa projection sur la sphère céleste, change
continuellement; autrement dit, quand sa position relativement
aux étoiles fixes change continuellement; or c'est ce qui arrive pour
le soleil.


111. Premiers indices. Si un soir, à la nuit tombante, on remarque
un groupe d'étoiles voisines de l'endroit où le soleil s'est
couché, puis, qu'on observe ces étoiles durant un certain nombre
de jours, on les voit de plus en plus rapprochées de l'horizon; au
bout d'un certain temps, elles cessent d'être visibles le soir; elles
se couchent avant le soleil. Si alors on observe le matin, un peu
avant le lever du soleil, on retrouve ces mêmes étoiles dans le voisinage
de l'endroit où le soleil doit bientôt apparaître. Celui-ci,
qui d'abord précédait les étoiles dans le mouvement diurne, les
suit donc en dernier lieu; d'abord à l'ouest de ces astres, sur la
sphère céleste, il se trouve finalement à l'est. Mais les étoiles
sont fixes; le soleil s'est donc déplacé de l'ouest à l'est, en sens
contraire du mouvement diurne. Il se déplace de plus en plus
dans le même sens; car si on continue l'observation, le lever de
chacune des étoiles en question précède de plus en plus le lever du
soleil. C'est là un mouvement en ascension droite.


On voit aussi aisément sans instruments que la déclinaison du
soleil varie continuellement. En effet, d'une saison à l'autre, sa
hauteur à midi, au-dessus de l'horizon, change notablement:
elle augmente progressivement de l'hiver à l'été, et vice versa diminue
de l'été à l'hiver. Le soleil se déplaçant sur le méridien, sa
déclinaison varie (V. la définition).


112. Étude précise du mouvement propre. Le mouvement propre
du soleil une fois découvert, il faut l'étudier avec précision. Le
moyen qui se présente naturellement consiste à déterminer, à divers
intervalles, tous les jours par exemple, la position apparente
précise du soleil sur la sphère céleste. Si on trouve que cette position
change continuellement, on aura constaté de nouveau le mouvement;
de plus, en marquant sur un globe céleste les positions
successivement observées, on se rendra compte de la nature de ce
mouvement.


La position apparente du soleil se détermine comme celle d'une
étoile quelconque par son ascension droite et sa déclinaison (n° 33);
mais le soleil a des dimensions sensibles que n'ont pas les étoiles.


Quand un astre se présente à nous sous la forme d'un disque
circulaire, ayant des dimensions apparentes sensibles, comme le
soleil, la lune, les planètes, on le suppose réduit à son centre.
C'est la position de ce centre qu'on détermine; c'est de cette
position qu'il s'agit toujours quand on parle de la position de
l'astre
41.


Note 41:
(retour)  Disons de plus que le soleil a un éclat que n'ont pas les autres astres.
Pour empêcher que l'œil ne soit ébloui et blessé par l'éclatante lumière du
soleil, dont l'image au foyer de la lunette est excessivement intense, on a soin,
quand on observe cet astre, de placer en avant de l'objectif, ou entre l'œil et
l'oculaire, des verres de couleur très-foncée qui absorbent la plus grande partie
des rayons lumineux.



113. Ascension droite du soleil. Pour déterminer chaque jour
l'ascension droite du centre du soleil, on regarde passer au méridien
le premier point du disque qui s'y présente (le bord occidental);
on note l'heure précise à laquelle ce premier bord vient toucher
le fil vertical du réticule de la lunette méridienne (n° 17); on
marque également l'heure à laquelle le soleil achevant de passer,
ce même fil est tangent au bord oriental du disque; la demi-somme
des heures ainsi notées est l'heure à laquelle a passé le centre; de
cette heure on déduit l'AR de ce centre, exactement comme il a
été dit n° 34 pour les étoiles.


114. Déclinaison du soleil. D'après le principe indiqué n° 38,
on déduit la déclinaison du soleil de sa distance zénithale méridienne,
qui est la demi-somme des distances zénithales du bord
supérieur et du bord inférieur du disque observées au mural. Cette
distance zénithale doit être corrigée des erreurs de réfraction et de
parallaxe, le lieu d'observation devant être ramené au centre de la
terre (V. la réfraction et la parallaxe).


115. On peut ainsi, toutes les fois que le soleil n'est pas caché
au moment de son passage au méridien, déterminer l'heure sidérale
du passage, l'ascension droite et la déclinaison de l'astre, puis
consigner les résultats de ces observations dans un tableau qui peut
comprendre plusieurs années. On trouve ainsi des valeurs constamment
différentes, au contraire de ce qui arrive pour les étoiles;
ce fait général constate d'abord le mouvement propre du soleil.
Voici d'ailleurs, en résumé, ce que nous apprend le tableau en
question
42.


Note 42:
(retour)  Dans cette étude du mouvement propre du soleil, on peut prendre l'origine
des AR sur le cercle horaire d'une étoile remarquable quelconque, c'est-à-dire
faire marquer 0h 0m 0s à l'horloge sidérale à l'instant où cette étoile passe
au méridien du lieu. On verra plus loin (n° 131) comment on règle définitivement
cette horloge.



116. Circonstances principales du mouvement propre apparent
du soleil.


Chaque passage du soleil au méridien retarde à l'horloge sidérale
sur le passage précédent, d'environ 4 minutes (en moyenne
3m 56s,5). Si, par exemple, le passage a lieu un jour à 7 heures de
l'horloge sidérale, le lendemain il a lieu à 7h 4m environ, le surlendemain
à 7h 8m; et ainsi de suite. Le jour solaire, qui est l'intervalle
de deux passages consécutifs du soleil au méridien, surpasse
donc le jour sidéral d'environ 4 minutes. 365j 1/4 solaires valent
approximativement 366j 1/4 sidéraux; autrement dit, si le soleil
accompagne un jour une étoile au méridien, il y revient ensuite
365 fois seulement, pendant que l'étoile y revient 366 fois.


Supposons que le soleil et une étoile passent ensemble au méridien à
d'une horloge sidérale. L'étoile y revient tous les jours suivants à 0h 0m 0s, tandis
que, à chaque nouveau passage du soleil, l'horloge marque 3m 56s,5 de plus que
la veille; 365 de ces retards du soleil font 23h 59m (sidérales). Le 365e retour du
soleil a donc lieu à 23h 59m; une minute après, à 0h 0m 0s, l'étoile revient pour la
366e fois; mais deux retours consécutifs du soleil étant séparés par 24h.sid. 4m
environ, il doit s'écouler encore 24h 3m avant que le soleil ne soit revenu pour la
366e fois; donc l'étoile, 24 heures après, reviendra pour la 367e fois avant que le
soleil ne soit revenu pour la 366e. Ces deux derniers passages recommencent
une nouvelle période.


L'ascension droite du soleil augmente chaque jour d'environ 1°
(en moyenne 59'8"), et passe par tous les états de grandeur de 0°
à 360°. C'est ce mouvement du soleil en AR qui cause le retard de
son passage au méridien (V. n° 140).




[image: ]La déclinaison est tantôt australe, tantôt boréale. Le 20 mars,
d'australe qu'elle était, elle devient
boréale, et croît progressivement
de 0° à 23°28' environ,
maximum qu'elle atteint vers le
22 juin. À partir de là, elle décroît
jusqu'à devenir nulle; redevient
australe vers le 23 septembre,
augmente dans ce sens de 0° à la
même limite 23°28', jusqu'au 22
décembre; puis décroît de 23°38'
à 0°; redevient boréale le 20
mars. Ainsi de suite indéfiniment.


Si on marque chaque jour sur un globe céleste, pendant un
an au moins, la position apparente du soleil, d'après son AR et sa
D observées, exactement comme il a été dit pour une étoile n° 45,
on voit les positions successivement marquées s', s'', s''',... faire le
tour du globe (fig. 49). Si on fait passer une circonférence de
grand cercle par deux quelconques des points ainsi marqués, il
arrive qui tous les autres points sont sur ce grand cercle. Le globe
céleste figurant exactement la sphère céleste, et les points marqués
figurant les positions apparentes successives du soleil sur
cette sphère, on est conduit, par ce qui précède, à cette conclusion
remarquable:


Le soleil nous semble parcourir indéfiniment, d'occident en orient,
c'est-à-dire en sens contraire du mouvement diurne, le même grand
cercle de la sphère céleste, incliné à l'équateur. Il parcourt ce cercle
en 366j 1/4 sidéraux environ (V. la note)
43.


Note 43:
(retour)  Ce mouvement se combine avec le mouvement diurne; le soleil nous
parait tourner autour de la terre, d'orient en occident, et en même temps se
mouvoir sur l'écliptique, mais beaucoup plus lentement, et d'occident en orient.

Voici l'ingénieuse comparaison employée par M. Arago pour faire comprendre
comment le soleil peut être animé à la fois de ces deux mouvements en apparence
contraires. Un globe céleste (fig. 49) tourne uniformément, d'orient en
occident, autour d'un axe PP', achevant une révolution en 24 heures sidérales;
de sorte que chacun de ses cercles horaires vient coïncider toutes les
24 heures avec un demi-cercle fixe de même diamètre, représentant le méridien
du lieu. Une mouche s chemine en sens contraire (d'occident en orient),
sur une circonférence de grand cercle du globe, S'?S, avec une vitesse d'environ
1° par jour sidéral. La mouche, tout en cheminant ainsi, est emportée par le
mouvement de rotation du globe; elle est donc animée de deux mouvements
à la fois, dont l'un lui est commun avec tous les points du globe, et dont
l'autre lui est propre. Si elle se trouve un jour sur le cercle horaire Ps'P',
en s', quand ce cercle passe au méridien, elle le quitte aussitôt pour se
diriger vers le cercle Ps''P' qu'elle atteint au bout de 24 heures sidérales,
au moment où le cercle Ps'P' passe de nouveau au méridien. Comme le
globe tourne de l'est à l'ouest, la mouche viendra bientôt passer au méridien,
mais n'y passera qu'avec le cercle Ps''P' à peu près, c'est-à-dire environ
4 minutes plus tard que Ps'P', si l'intervalle des deux cercles Ps''P', Ps'P'
est 1°. Elle a déjà quitté le cercle Ps''P', en continuant son chemin vers
l'est, quand celui-ci passe au méridien, et le lendemain elle y passe avec
un autre cercle horaire; etc.




117. Remarque. Il est bon d'observer dès à présent qu'il s'agit
ici, non des positions réelles successives du soleil par rapport à la
terre, mais de leurs projections sur la sphère céleste, que déterminent
seules l'AR et la D du centre (n° 33). Ces coordonnées ne nous
font pas connaître la distance réelle du soleil à la terre; nous verrons
plus tard (n° 123) que cette distance variant d'un jour à l'autre,
le lieu des positions réelles du soleil par rapport à la terre, supposée
fixe, n'est pas une circonférence. Pour le moment, nous pouvons
dire que la projection sur la sphère céleste du centre du soleil (vu
de la terre) parcourt indéfiniment le même grand cercle incliné à
l'équateur. Tel est le sens précis de l'énoncé ci-dessus.



118. Écliptique. On donne le nom d'Écliptique au grand cercle
que le soleil nous semble ainsi parcourir indéfiniment sur la sphère
céleste. Ce nom vient de ce que les éclipses de soleil et de lune
ont lieu quand la lune est dans le plan de ce grand cercle, ou tout
près de ce plan.


Obliquité de l'Écliptique. L'écliptique est incliné sur l'équateur
d'environ 23°27'1/2(cette inclinaison varie dans certaines
limites; au 1er janvier 1854 elle était 23°27'34"; au 1er juillet,
23°27'35",2).


On peut déterminer cette inclinaison par une construction faite
sur le globe céleste; c'est l'angle S?E (fig. 49) que l'on sait mesurer.
Elle peut d'ailleurs se trouver par l'observation; sa mesure,
SE, est la plus grande des inclinaisons trouvées pour le soleil durant
sa révolution sur l'écliptique.


119. Points équinoxiaux. On appelle équinoxes ou points équinoxiaux
les deux points, ? et ?, de rencontre de l'équateur et de
l'écliptique. Le soleil est à l'un de ces points quand sa déclinaison
est nulle; la durée du jour est alors égale à celle de la nuit par
toute la terre; de là le nom d'équinoxes.


On distingue le point équinoxial du printemps ?, qui est le point
de l'équateur où passe constamment le soleil quand il quitte l'hémisphère
austral pour l'hémisphère boréal. L'équinoxe du printemps
a lieu du 20 au 21 mars.


L'autre point équinoxial, ?, par où passe le soleil, quittant
l'hémisphère boréal pour l'hémisphère austral, s'appelle équinoxe
d'automne. Le soleil y passe le 21 septembre.


(V. plus loin, page 107, comment on détermine le moment précis
de l'un ou l'autre équinoxe.)


120. Solstices. On nomme solstices ou points solstitiaux deux
points S, S', de l'écliptique,  situés à 90° de chacun des équinoxes.


L'un d'eux, S, celui qui est situé sur l'hémisphère boréal, s'appelle
solstice d'été; l'autre, situé sur l'hémisphère austral, s'appelle
solstice d'hiver.


Ce nom de solstice vient de ce que le soleil, arrivé à l'un ou à
l'autre de ces points, semble stationner pendant quelque temps
à la même hauteur, au-dessus ou au-dessous de l'équateur, sur
le parallèle céleste qui passe par ce solstice. Pendant quelques
jours sa D, alors parvenue à son maximum, est à peu près constante
44.


Note 44:
(retour)  V. les tables de l'Annuaire du bureau des longitudes, ou bien simplement
les Tables des heures du lever et du coucher du soleil aux environs du
21 juin ou du 21 décembre.



Les parallèles célestes ST, S'T' (fig. 49) qui passent par les
solstices S et S' prennent le nom de tropiques.


Celui qui passe par le solstice d'été s'appelle tropique du Cancer.
Celui qui passe par le solstice d'hiver se nomme tropique du Capricorne.


121. On appelle colures deux cercles horaires perpendiculaires
entre eux, dont l'un passe par les équinoxes, et l'autre par les
solstices (le colure des équinoxes et le colure des solstices).



122. On appelle axe de l'écliptique le diamètre, P1P'1, de la
sphère céleste qui lui est perpendiculaire; ses extrémités P1, P'1,
sont les pôles de l'écliptique. L'axe du monde et l'axe de l'écliptique
forment un angle égal à l'inclinaison de l'écliptique sur l'équateur
(nº 118); cet angle est mesuré par l'arc P1P qui sépare les pôles
voisins de l'écliptique et de l'équateur.



123. La position apparente du soleil, dans sa révolution sur
l'écliptique, passe au travers ou auprès d'un certain nombre de
constellations plus ou moins remarquables que l'on a appelées zodiacales.
Ces constellations se trouvent sur une zone de la sphère
céleste nommée zodiaque.


Le zodiaque est une zone de la sphère céleste comprise entre deux
plans parallèles à l'écliptique, situés de part et d'autre de celui-ci,
à une même distance de 9° environ de ce plan; ce qui fait 18° environ
pour la largeur totale de la zone.


On a divisé le zodiaque en douze parties égales qu'on a nommées
signes.


Pour cela on a partagé l'écliptique en douze arcs égaux à partir
de l'équinoxe du printemps ?. Par chaque point de division, on
conçoit un arc de grand cercle perpendiculaire à l'écliptique, et
limité aux deux petits cercles qui terminent le zodiaque; de là
douze quadrilatères dont chacun est un signe.


Le soleil parcourt à peu près un signe par mois. A l'équinoxe
du printemps il entre dans le premier signe.


haque signe porte le nom d'une constellation qui s'y trouvait
lors de l'invention du zodiaque, il y a 2160 ans environ.


Voici les douze noms dans l'ordre des signes dont le premier,
comme nous l'avons dit, commence au point équinoxial du printemps
?, les autres venant après dans le sens du mouvement du
soleil:


Le Bélier, le Taureau, les Gémeaux, le Cancer, le Lion, la Vierge,

    ?          ?           ?          ?          ?        ?



Balance,   Scorpion,    Sagittaire, Capricorne, Verseau,  Poissons.

  ?         ?            ?              ?       ?]        ?




Les noms latins de ces constellations, mentionnées dans le même
ordre que ci-dessus, sont tous compris dans les deux vers latins
suivants attribués au poëte Ausone:



Sunt Aries, Taurus, Gemini, Cancer, Leo, Virgo,

Libraque, Scorpius, Arcitenens, Caper, Amphora, Pisces.





Ces deux vers sont très-propres à graver dans la mémoire, et
dans leur ordre naturel, les noms des signes ou constellations du
zodiaque.


Par suite d'un mouvement apparent de la sphère céleste considérée
dans son ensemble, et dont nous parlerons à propos de
la précession des équinoxes, chacune des constellations portant
les noms ci-dessus ne se trouve plus dans le signe de même nom
qu'elle. Chacune d'elles a avancé à peu près d'un signe dans le
sens direct. Ainsi la constellation nommée le Bélier, qui occupait
primitivement le premier signe, se trouve aujourd'hui dans le signe
du Taureau; la constellation nommée le Taureau se trouve dans
le signe des Gémeaux; et ainsi de suite, en faisant le tour, jusqu'à
la constellation des Poissons, qui, au lieu du dernier signe,
occupe aujourd'hui le premier, celui qu'on nomme toujours le
Bélier.
45


Note 45:
(retour)  Pour éviter la confusion produite par ce défaut de correspondance, qui
s'aggrave de plus en plus, entre la position de chaque constellation zodiacale
et le signe qui porte son nom, les astronomes ont pris tout simplement le
parti d'abandonner cette division de l'écliptique en douze parties égales, et de
le diviser comme tout autre cercle en 360 degrés, à partir de l'équinoxe du
printemps.



[image: ]124. Diamètre apparent du soleil. On nomme diamètre apparent
d'un astre quelconque l'angle
atb sous lequel le diamètre,
ab, de cet astre, est vu du centre
de la terre (fig. 51).


La figure montre que si la distance to d'un astre au centre de
la terre varie, son diamètre apparent varie en sens contraire de
cette distance; il diminue ou augmente suivant que cette distance
augmente ou diminue.


On reconnaît facilement que le diamètre apparent d'un astre,
qui n'est jamais qu'un petit angle, varie en raison inverse de la
distance de cet astre à la terre
46.


Note 46:
(retour) 
ao = ot · tg½atb = ot' · tg½ at'b; (fig. 51); d'où tg ½.atb: tg½.at'b = ot' / ot;
ou enfin parce que atb, at'b sont de petits angles, atb / at'b = ot' / ot. Car on
peut prendre le rapport des angles au lieu du rapport des tangentes quand les
angles sont petits et très-peu différents l'un de l'autre.



125. Nous allons indiquer, pour trouver le diamètre apparent
du soleil, deux méthodes qui conviennent pour la lune et pour un
astre quelconque.


1re méthode. On obtient le diamètre apparent du soleil en mesurant
avec le mural la distance zénithale de son bord supérieur et
celle de son bord inférieur; la différence de ces deux distances est
évidemment le diamètre apparent.


2e méthode. On remarque l'heure exacte à laquelle le premier,
bord de l'astre, le bord occidental vient passer au méridien; puis
l'heure à laquelle passe plus tard le dernier point du disque, le
bord oriental; on calcule la différence de ces deux nombres
d'heures, puis on la convertit en degrés, minutes, secondes, suivant
la règle connue. Dans le cas particulier où le soleil décrit
l'équateur au moment de l'observation, l'angle ainsi obtenu est le
diamètre apparent. Pour toute autre position du soleil, on multiplie
le nombre de degrés ainsi trouvé par le cosinus de la D du
soleil
47.


Note 47:
(retour) 
[image: ]Si, au moment de l'observation, le soleil est sur l'équateur, comme cela
arrive au moment de l'équinoxe, il est évident que la différence des heures
susdites est le temps que met à passer au méridien l'arc d'équateur qui sépare
les deux extrémités du diamètre du soleil situé dans ce plan, et perpendiculaire
à la ligne qui joint le centre de l'astre au centre de la terre; cet
arc mesure évidemment l'angle sous lequel
ce diamètre est vu du centre de la
terre.


Si le soleil n'est pas sur l'équateur,
le nombre de degrés trouvé mesure le
diamètre apparent acb du soleil, vu du
centre c du parallèle céleste sur lequel
se trouve cet astre au moment de l'observation
(fig. 52). Pour déduire l'angle atb
de l'angle acb, on observe que le diamètre apparent relatif au point t, ou
l'angle atb, est au diamètre apparent relatif au point c, angle acb, comme la
distance oc est à ot. D'où atb = acb · oc/ot, > mais oc/ot = sin cto = cos ote; or ote
est la D du centre o du soleil; donc atb = acb · cos D.




Il résulte de là que chaque observation faite pour trouver l'AR
et la D du soleil sert à déterminer le diamètre apparent de cet
astre au moment de cette observation.


Jusqu'à présent on n'a pu trouver de diamètre apparent aux
étoiles; l'angle sous lequel on les aperçoit est constamment nul
aux yeux de l'observateur muni des meilleurs instruments d'optique.


126. La détermination journalière du diamètre apparent du
soleil donne les résultats suivants:


Ce diamètre apparent atteint maintenant son maximum vers le
1er janvier; ce maximum est de 32' 36'',2 = 1956'',2. A partir de
ce jour, le diamètre diminue constamment jusqu'à ce que, le
3 juillet à peu près, il devienne égal à 31' 30'',3 = 1890'',3, qui
est son minimum. Il recommence ensuite à augmenter jusqu'à ce
qu'il ait de nouveau atteint son maximum; puis il diminue de
nouveau, et ainsi de suite d'année en année. Le diamètre apparent
a donc une valeur moyenne d'environ 32'.


127. Variations de la distance du soleil à la terre. Il résulte
de ce qui précède que là distance du soleil à la terre varie continuellement.
Vers le 1er janvier cet astre occupe sa position la plus
rapprochée P (fig. 53 ci-après), qu'on appelle le périgée. À partir
du 1er janvier, la distance augmente continuellement jusqu'à ce
que, le 3 juillet, elle atteigne son maximum; la position A, occupée
alors par le soleil s'appelle l'apogée. De l'apogée au périgée,
les distances passent par les mêmes états de grandeur que du périgée
à l'apogée; mais ces distances se reproduisent en ordre inverse
(V. plus loin la symétrie de l'orbite solaire).


La distance réelle du soleil à la terre variant continuellement,
c'est donc avec raison que nous avons dit (nº 113)
que la courbe des positions réelles du soleil par rapport à la
terre ne pouvait être une circonférence dont celle-ci serait le
centre.


128. Soient l et l' deux distances du centre du soleil au centre
de la terre, d et d' les diamètres apparents correspondants, évalués,
comme les trois précédemment cités, au moyen de la même
unité, en secondes par exemple,
on a                 l / l' = d' / d; d'où
l / l' = (1/d) / (1/d')       (1)


En désignant par L et L' la plus grande et la plus petite des distances
du soleil à la terre, on aura d'après ce qui précède


L/L' = (1/1890,3) / (1/1956,2) = 1956,2/1890,3 = 1,0348/1


Si donc L' est pris pour unité, on aura L = 1,0348.


La série des diamètres apparents, obtenus jour par jour donne
ainsi une série de nombres proportionnels aux distances réelles du
soleil à la terre.


Si donc, on veut représenter proportionnellement, à l'aide d'une
construction graphique, les distances réelles par des lignes l, l',
l", etc., on pourra prendre le premier jour une ligne arbitraire  l
pour désigner la distance réelle de ce jour-là, correspondant au
diamètre apparent connu d; puis, en procédant par ordre, on
construira toutes les autres lignes l', l",..., d'après celle-là, comme
l'indique l'égalité (1) ci-dessus.


Nous pouvons maintenant nous occuper du lieu des positions
réelles du soleil par rapport à la terre supposée fixe.


129. Orbite solaire. On appelle orbite et quelquefois trajectoire
du soleil, la courbe que paraît décrire le centre du soleil autour
de la terre supposée fixe. Cette orbite ou trajectoire est une courbe
plane, tous ses points étant sur des rayons de l'écliptique (nº 113).


Voici comment on parvient, sans connaître aucune des distances
réelles de la terré au soleil, à déterminer néanmoins la nature de
l'orbite solaire.


On a devant soi un globe céleste (fig. 49) sur lequel on a marqué
les positions apparentes successives s', s", s'''... du soleil
(nº 116, fig. 49), à la suite d'observations journalières d'AR et de
D. Admettons qu'en faisant ces observations d'AR et de D, on ait
chaque fois déterminé le diamètre apparent du soleil au moment
de l'observation. À l'aide des diamètres apparents, on peut construire
des lignes l', l",l'''..., proportionnelles aux distances réelles
qui séparent le soleil de la terre, quand le premier nous paraît
sur l'écliptique en s', s", s'''... (nº 124).




[image: ]Cela posé, on reproduit l'écliptique sur un plan en y traçant
un cercle de rayon égal à celui du globe
céleste; prenant sur ce cercle (fig. 53)
un point quelconque s' pour représenter
une première position apparente s' du
soleil, on rapporte sur la circonférence
en question les arcs s' s", s" s'''... que
l'on peut mesurer avec le compas sur le
globe céleste. On tire alors les rayons
Ts', Ts", Ts'''..., et sur ces rayons, on
prend les longueurs TS', TS", TS''', respectivement égales aux
lignes l', l", l'''... ci-dessus indiquées; ayant fait cela pour toutes
les positions du soleil marquées sur l'écliptique, on joint par une
ligne continue SS'S"..., les points ainsi marqués sur les rayons
de l'écliptique. La courbe ainsi obtenue est évidemment semblable
à celle que la position réelle du soleil semble décrire dans l'espace
autour de la terre.


En faisant cette construction, on trouve que cette courbe est une
ellipse dont la terre occupe un des foyers. Cette ellipse est très-peu
excentrique, c'est-à-dire que la distance du centre au foyer
est très-petite relativement au grand axe de la courbe; elle en est
à peine la soixantième partie. Par conséquent, cette ellipse diffère
très-peu d'un cercle
48. Aussi nous dirons:


L'orbite du soleil, c'est-à-dire la courbe parcourue par la position
réelle du soleil dans son mouvement apparent de translation autour
de la terre supposée fixe est une ellipse très-peu allongée dont la terre
occupe un des foyers
49.


Note 48:
(retour)  Si a désigne le grand axe, c l'excentricité de l'ellipse, la distance périgée
a-c = 1; puis a + c = 1,0348; d'où 2a = 2,0348 et 2c = 0,0348; on déduit de
là la valeur de 2b = racine carrée de(a² - c²); on a ainsi des éléments suffisants pour construire
l'ellipse. Le rapport c/a = 0,0348/2,0348 ou à peu près 1/60.



Note 49:
(retour)  Nous verrons plas tard que ce n'est pas le soleil qui tourne autour de
la terre, mais la terre qui tourne autour du soleil. Nous nous conformons aux
apparences pour plus de commodité; d'ailleurs les conséquences pratiques que
l'on déduit du mouvement apparent du soleil, ex.: les durées des jours et
des nuits, les variations de la température générale, etc., sont les mêmes que
celles qu'on déduirait de l'étude du mouvement réel de la terre. Car ces faits
résultent des positions relatives successives du soleil et de la terre, indépendamment
de la manière dont ces corps arrivent à ces positions relatives. Or
l'étude du mouvement propre apparent du soleil, considéré par rapport à la
terre supposée fixe, nous fait connaître exactement ces positions relatives, une
à une, et par ordre.

Plus précisément, les AR, les D, et les diamètres apparents observés jour par
jour, composent un tableau qui indique par des nombres les positions relatives
successives du soleil par rapport à la terre; la construction de l'écliptique
et de l'orbite solaire a pour objet la représentation graphique de chacune de
ces positions relatives, considérées les unes après les autres, indépendamment
du mouvement des deux corps; c'est la traduction du tableau en figure.




Le grand axe AP de cette ellipse s'appelle ligne des apsides;
P est le périgée; A, l'apogée; les points correspondants p et a de
l'écliptique prennent quelquefois les mêmes noms. Chaque ligne
TS' qui va du centre de la terre à un point de l'orbite du soleil
s'appelle un rayon vecteur du soleil.



130. Principe des aires. Définition. L'aire décrite par le rayon
vecteur du soleil dans un temps déterminé quelconque est le secteur
elliptique, S'TS", compris entre l'arc d'ellipse S'S", décrit dans cet
intervalle par le centre du soleil, et les deux rayons vecteurs Ts', Ts",
menés aux extrémités de cet arc.


Si on évalue jour par jour, ou à des intervalles de temps égaux
quelconques, les aires correspondantes décrites par le rayon vecteur
du soleil, on trouve que ces aires sont égales.


Admettant que cet intervalle constant soit l'unité de temps, on
conclut de là très-facilement le principe suivant:


Les aires décrites par le rayon vecteur du soleil dans son mouvement
de translation autour de la terre supposée fixe sont proportionnelles
aux temps employés à les parcourir
50.


C'est là ce qu'on entend par la proportionnalité des aires au
temps; c'est le principe des aires.



131. Vitesse angulaire du soleil. On nomme vitesse angulaire
du soleil, l'angle S'TS", des rayons vecteurs TS', TS", qui correspondent
au commencement et à la fin d'une unité de temps. Ou,
ce qui revient au même, la vitesse angulaire du soleil est l'arc d'écliptique,
s's", décrit par la position apparente du soleil dans
l'unité de temps. L'arc s's" mesure l'angle S'TS".


Par conséquent la comparaison des vitesses angulaires, aux différentes
époques du mouvement du soleil, revient à la comparaison
des vitesses de sa position apparente, s, sur l'écliptique. En comparant
d'une part les vitesses angulaires, et de l'autre les distances
réelles, Képler est arrivé, par l'observation, à ce résultat général:


La vitesse angulaire du soleil varie en raison inverse du carré
de sa distance réelle à la terre.


Ce principe est une conséquence de celui des aires ou vice
versa
51.


Note 50:
(retour)  En effet soient a l'aire décrite dans l'unité de temps, A l'aire décrite dans
t unités de temps, A' l'aire décrite dans t' unités; on a A = a · t; A' = a · t';
donc A / A' = t / t'.



Note 51:
(retour)  Pour déduire ce second principe du premier, il suffit de regarder chaque
aire STS', décrite dans l'unité de temps, qui est aussi petite que l'on veut,
comme un secteur circulaire ayant pour rayon la distance réelle TS au commencement
de ce temps. Égalant deux aires ainsi décrites à deux époques différentes,
et traduisant l'égalité en celle de deux rapports, on a le principe relatif
aux vitesses angulaires, qui sont représentées par les petits arcs, a, des secteurs
circulaires en question.

1/2a x (TS)² = 1/2 a(k) x (TS(k)); d'où a:a(k) = (TS(k))²/(TS)².




132. La vitesse angulaire du soleil est donc à son maximum
quand cet astre est au périgée P (fig. 53) vers le 1er janvier; à
partir de là, elle décroît continuellement jusqu'à un minimum
qu'elle atteint quand l'astre arrive à l'apogée A, vers le 3 juillet.
Puis cette vitesse repassant exactement par les mêmes états de
grandeur, mais dans l'ordre inverse, augmente progressivement
pour revenir à son maximum vers le 1er janvier. Et ainsi de suite
indéfiniment.


133. Résumé. On peut résumer ainsi ce que nous avons dit
jusqu'à présent sur le mouvement annuel apparent du soleil.


Ce mouvement s'accomplit dans une orbite plane dont le plan,
qui passe par le centre de la terre, se nomme le plan de l'écliptique;
cette orbite se projette sur la sphère céleste suivant le grand cercle
de ce nom; néanmoins cette orbite elle-même n'est pas circulaire,
mais elliptique; la terre en occupe le foyer et non le centre. L'excentricité
de cette ellipse est à peu près 1/60, en prenant pour unité
la moitié du grand axe de l'ellipse. Le mouvement du soleil sur
cette ellipse est réglé de telle sorte que son rayon vecteur décrit des
aires égales en temps égaux.


134. Origine des ascensions droites. Ainsi que nous l'avons
dit nº 33; le point choisi pour origine des ascensions droites de
tous les astres est le point équinoxial du printemps, le point ?
(fig.49)
52.


Note 52:
(retour)  Voici le motif de ce choix. Il y a deux systèmes de coordonnées célestes
principalement usités en astronomie: 1º l'ascension droite et la déclinaison qui
se rapportent à l'équateur céleste et à son axe (n° 36); 2º la longitude et la
latitude célestes qui se rapportent exactement de même à l'écliptique et à son
axe. Les premières obtenues par l'observation servent à calculer les secondes;
or ce calcul fréquent est beaucoup simplifié par le choix d'une origine commune
aux ascensions droites et aux longitudes célestes; c'est pourquoi on a pris pour
origine l'un des points communs à l'équateur et à l'écliptique.



Origine du jour sidéral. C'est le moment où le point équinoxial
passe au méridien du lieu (V. le nº 78). Si l'horloge sidérale d'un
lieu est réglée de manière à marquer 0h 0m 0s à l'instant où le point
équinoxial passe au méridien d'un lieu, on peut y déterminer les AR
des astres de la manière indiquée nº 34. Mais le point équinoxial
n'est pas visible sur la sphère céleste; aucune étoile remarquable
ne se trouve sur le cercle horaire de ce point; cependant il est facile
de régler une horloge exacte de manière qu'elle remplisse la
condition précédente.




[image: ]135. Déterminer le moment précis d'un équinoxe. Régler une horloge
sidérale sur le passage au méridien du point équinoxial. On observe
les passages successifs du soleil au méridien du lieu quand la déclinaison
décroissante est très-faible et voisine de 0°. On s'aperçoit
que le soleil a traversé l'équateur quand, d'un jour à l'autre, la
déclinaison, d'australe qu'elle était, est devenue boréale, et vice
versa. Par exemple, le 20 mars d'une certaine année, à 0h 53m 24s
de l'horloge sidérale, cette déclinaison sd
(fig. 50), observée au mural, est 9' 28"
australe. Le lendemain, à 0h 57m 22s, cette
déclinaison s'd' est 14' 18" boréale. Le soleil
a donc, dans l'intervalle, traversé l'équateur
au point équinoxial A.


Il s'agit de savoir 1º à quelle heure de l'horloge le soleil a passé
en A; 2º à quelle heure le point équinoxial A passe journellement
au méridien du lieu.


1re Question. L'heure cherchée est celle à laquelle la déclinaison
décroissante s'est trouvée réduite de 9' 28" à 0°. En un jour solaire
égal, d'après les heures ci-dessus indiquées, à 24h 3m 58s, temps
sidéral, la déclinaison du soleil a varié de 9' 28" + 14' 28", c'est-à-dire
de 23' 46"; dans quel temps a-t-elle varié de 9' 28"? On peut
supposer, sans erreur sensible, que pendant un jour la déclinaison
varie proportionnellement au temps.


Cela posé, on a évidemment:


x/24h 3m 58s = 9' 28"/23' 46" = 568"/1426" = 568/1426


Tout calcul fait, on trouve x = 9h 35m 9s. Le soleil a passé au
point A, 9h 35m 9s après l'observation faite le 20 mars, c'est-à-dire
à 10h 28m 33s de l'horloge sidérale.


2e Question. Le soleil, avec le point d de l'équateur, a traversé
le méridien le 20 mars à 0h 53m 24s de l'horloge; le lendemain,
avec d', il a passé à 0h 57m 22s. La différence, 3m 58s, de ces deux
heures est due à la différence dd' des ascensions droites des points
d et d': pour le point A, il faut avoir égard à la différence dA.
Soit y la différence entre les heures de passage de d et de A, on a
évidemment


        y           dA         dA                  sd

     -------    =  -----  = ------------   = ---------------,

      3m 58s        dd'      dA + Ad'          sd + s'd'



        y          9' 28?    568?    568

ou    -------   = ------- = ----- = ----.

      3m 58s      23' 46?   1426? = 1426




Tout calcul fait, y = 1m 34s. On conclut de là que le point A passe
au méridien à 0h 53m 24s + 1m 34s, c'est-à-dire à 0h 54m 58s de
l'horloge sidérale. Celle-ci réglée sur ce passage devrait marquer
0h 0m 0s à cet instant; elle est donc en avance de 0h 54m 58s. Pour
la régler, on doit la retarder de ces 54m 58s.


Dans l'hypothèse où nous nous sommes placé, les ascensions
droites déterminées à l'aide de l'horloge sont donc trop fortes de
ce qu'on obtient en convertissant 54m 28s en degrés, à raison de
15° par heure. En effet, ces ascensions droites sont comptées à
partir d'un point de l'équateur distant, vers l'ouest, du point équinoxial
A, de ce nombre de degrés.



136. L'horloge étant réglée sur le passage du point équinoxial ?,
on peut déterminer l'heure du passage d'une étoile remarquable,
voisine du cercle horaire de ce point ?, a d'Andromède par
exemple, et en déduire l'AR de cette étoile. Cette heure ou
cette AR sert à vérifier plus tard l'exactitude de l'horloge, ou bien
à déterminer les AR en général, a d'Andromède servant d'origine
auxiliaire.



137. Variations de l'ascension droite du soleil. L'origine des AR
est la même pour le soleil que pour les étoiles. Ainsi l'ascension
droite du soleil, à un moment donné quelconque, est l'arc d'équateur
céleste compris entre le point équinoxial ? et le cercle horaire
qui passe par le centre de l'astre, cet arc étant compté d'Occident
en Orient, à partir de ?. Nous avons dit (nº 113) comment on détermine
cette coordonnée.



138. Par suite du mouvement propre du soleil, son ascension
droite varie continuellement, mais elle ne varie pas proportionnellement
au temps, autrement dit, elle n'augmente pas de quantités
égales en temps égaux.


C'est un fait constaté par les observations indiquées nº 115.
Connaissant les heures sidérales d'une série de passages consécutifs
du soleil au méridien, et les AR correspondantes, il est facile
de comparer, d'une part, les accroissements d'AR survenus jour
par jour, et de l'autre, les temps durant lesquels ces accroissements
se sont produits; on trouve des rapports inégaux.


Ce fait peut s'expliquer comme il suit:


L'accroissement a'a? d'AR du soleil (fig. 49), durant un temps
quelconque, correspond au chemin
s's? que la position apparente
du soleil fait sur l'écliptique
pendant le même temps;
a'a? est la projection de s's? sur
l'équateur. La grandeur de a'a?
dépend à la fois de la grandeur
de s's? et de sa position sur l'écliptique.



[image: ]Or, 1º nous avons vu que les
chemins parcourus sur l'écliptique
par le soleil en temps
égaux ne sont pas égaux, mais
varient en raison inverse des
carrés des distances du soleil à la terre (V. le nº 127).


2º A cause de l'inclinaison de l'écliptique sur l'équateur, quand
même les arcs s's? seraient égaux, leurs projections
a'a? ne le seraient
pas nécessairement. Il suffit, en effet, de jeter les yeux sur
la figure 49 pour voir que la projection d'un arc situé tout près de
l'équateur est moindre que l'arc projeté, tandis que le contraire a
lieu près des solstices; la grandeur de la projection dépend de
l'inclinaison sur l'équateur des arcs projetés, s's?, s?s?, s?s"", etc.,
et surtout de ce que les arcs Pa', Pa?,... qui les projettent, s'écartent
de plus en plus à mesure qu'on descend des pôles vers l'équateur.


Les deux causes d'inégalité que nous venons d'indiquer, tantôt
s'accordent pour augmenter ou pour diminuer l'accroissement d'AR
durant l'unité de temps, tantôt se contrarient; mais nous n'étudierons
pas leurs effets en détail
53.


Note 53:
(retour)  La série d'observations indiquée nº 115 fait connaître, jour par jour, l'arc
s's?, sa projection et la durée du jour solaire; cela suffit grandement pour qu'on
puisse apprécier les effets des causes susdites durant le mouvement annuel du
soleil.




MESURE DU TEMPS.



139. Le double mouvement relatif du soleil a la plus grande
influence sur les travaux de l'homme. En effet, le mouvement
diurne produit les alternatives des journées et des nuits; le mouvement
annuel de translation sur l'écliptique influe périodiquement,
ainsi que nous l'expliquerons plus tard, sur la durée des
journées et des nuits, et sur la température générale de chaque
lieu de la terre; par suite, sur les productions du sol et les travaux
des champs. L'homme a donc été conduit naturellement à
régler ses occupations sur la durée et les circonstances de ces deux
mouvements. De là deux unités principales pour la mesure du
temps, le jour et l'année, dont nous allons nous occuper successivement.



140. Jour solaire. On appelle jour solaire la durée d'une révolution
diurne du soleil, autrement dit, le temps qui s'écoule entre
deux passages consécutifs du soleil au même méridien.


L'année tropique est le temps qui s'écoule entre deux retours
consécutifs du soleil au même point équinoxial.


Une année tropique = 365,2422 jours solaires = 366,2422 jours
sidéraux (V. nº 155).



141. Le jour solaire est plus grand que le jour sidéral. Cela
résulte du mouvement propre du soleil. Admettons en effet que
cet astre passe un jour au méridien en même temps qu'une certaine
étoile de Ps'P' (fig. 49). Après un jour sidéral écoulé, quand
l'étoile e passe de nouveau au méridien avec son cercle horaire
Ps'P', le soleil, par l'effet de son mouvement propre, se trouve sur
un cercle horaire plus oriental Ps?P'; il ne passe donc au méridien
qu'un certain temps après l'étoile (4 minutes environ); ce temps
est précisément l'excès du jour solaire sur le jour sidéral.



142. Les jours solaires consécutifs sont inégaux. C'est ce que nous
apprennent les observations de passages indiquées nº 115. On connaît
les heures sidérales d'un grand nombre de passages consécutifs
du soleil au méridien; en retranchant chaque heure de la suivante,
on obtient l'excès de chaque jour solaire sur le jour sidéral; or les
restes ainsi obtenus ne sont pas égaux.



143. Les jours solaires sont inégaux parce que l'AR ne varie pas
de quantités égales en temps égaux.


L'accroissement d'AR est a'a? (fig. 49). Si cet accroissement
était proportionnel au temps, l'arc a'a? aurait toujours la même
grandeur après un jour sidéral écoulé quelconque; le retard du
soleil sur l'étoile e étant toujours le même, le jour solaire égal à
un jour sidéral plus une quantité constante serait toujours le
même.


Les 365,2422 jours solaires de l'année tropique forment une période
complète qui recommence indéfiniment à chaque nouvel
équinoxe du printemps
54. En prenant la moyenne valeur d'un de
ces 365,2422 jours solaires, on a donc la moyenne valeur du jour
solaire considéré en général.


Note 54:
(retour)  L'année tropique n'est pas rigoureusement constante; mais ses variations
sont si petites que nous nous abstenons d'en tenir compte; n'ayant aucun intérêt,
même éloigné, à nous en occuper.



Puisque 365,2422 jours solaires valent 366,2422 jours sidéraux,
le jour solaire moyen vaut 366,2422j. sid. /365,2422 = 1j. sid.,002729 = 1j. sid. 3m 56s,5.



144. Temps moyen. L'inégalité des jours solaires a été longtemps
un grand inconvénient pour la mesure du temps civil par la durée
de certains mouvements mécaniques uniformes, comme ceux des
horloges et des montres, qui ne peuvent mesurer que des jours
consécutifs égaux.


Il y a bien le jour sidéral; mais comme c'est sur la marche du
soleil, sur la durée du jour et des nuits, que l'homme règle ses
occupations les plus ordinaires, il faut évidemment que la durée,
l'origine, et par suite les diverses périodes du jour, indiquées par
les horloges et les montres, s'écartent le moins possible, en tout
temps, de la durée, de l'origine et des périodes correspondantes du
jour solaire vrai.


Or le jour sidéral, trop différent du jour solaire, a l'inconvénient
grave de commencer successivement, quoi qu'on fasse, à tous les
moments, soit de la journée, soit de la nuit
55a.


Voici comment on est parvenu à remplir d'une manière satisfaisante
les conditions qui précèdent.


On a imaginé un premier soleil fictif (un point mobile), S', se
trouvant au périgée en même temps que le soleil vrai S, et décrivant
l'écliptique dans le même sens et dans le même temps que
celui-ci, mais d'un mouvement uniforme avec une vitesse constante
précisément égale à la vitesse angulaire moyenne de S, qui
est très-approximativement (360°/365,2422)=59'8?,3 par jour solaire
moyen
55b. Le mouvement en AR de ce soleil fictif S' est affranchi
de la première des causes d'irrégularité qui affectent celui du soleil
vrai (nº 138, 1º); cependant ce mouvement n'est pas encore uniforme
à cause de l'obliquité de l'écliptique (nº 138, 2º).


Note 55ab:
(retour)  Voici quelques considérations élémentaires à propos du choix de l'unité
de temps et de la manière de régler les horloges.

En considérant les durées de tous les jours solaires de l'année tropique, on
trouve que la différence entre le jour le plus long et le jour le plus court est
d'environ 50 secondes; l'unité du temps civil doit évidemment être prise entre
ces deux limites. Cette condition exclut immédiatement le jour sidéral.


Il est naturel de choisir la moyenne de ces durées extrêmes qui est la durée
dont s'écartent le moins les jours solaires considérés en général. De plus, les
jours solaires forment une période complète qui se répète indéfiniment.


C'est en effet cette moyenne valeur qui, sous le nom de jour solaire moyen,
a été adoptée comme unité de temps. Les horloges et les montres sont aujourd'hui
construites et réglées d'après la durée du jour solaire moyen; le temps
qu'elles mesurent s'appelle le temps moyen.


Ces horloges construites, il faut les mettre à l'heure de manière à remplir
les autres conditions ci-dessus indiquées. Pour cela, il est naturel d'établir
une première coïncidence entre le temps moyen (l'heure de l'horloge) et le
temps solaire vrai; de plus, on doit choisir l'époque de cette coïncidence de
manière que l'écart qu'on ne peut empêcher de se produire entre ces deux
temps soit restreint dans ses moindres limites. Pour peu qu'on réfléchisse aux
propriétés de la moyenne valeur, on voit que ce qui convient le mieux est
d'établir cette coïncidence à l'époque où le jour solaire vrai est à son maximum.
Cette condition est, en effet, réalisée dans la combinaison adoptée pour rattacher
le temps moyen au temps solaire vrai, que nous exposons dans le texte.




On a donc imaginé un second soleil fictif S?, se trouvant au
point équinoxial ? en même temps que le premier S', et parcourant
l'équateur, aussi d'occident en orient, d'un mouvement propre
uniforme, avec la même vitesse constante ci-dessus indiquée de
360°/365,2422 par jour solaire moyen; c'est là un mouvement régulier
en AR
56. L'accroissement de l'AR de ce soleil fictif S? étant constant,
et précisément égal à la moyenne des accroissements journaliers
de l'AR du soleil vrai, le jour solaire de ce soleil fictif S?,
que l'on suppose participer au mouvement diurne comme S et S',
est constant (143), et précisément égal à la moyenne valeur des
jours solaires, c'est-à-dire, au jour solaire moyen.


Note 56:
(retour)  Il s'en faut de 50?,1 que la position apparente du soleil vrai parcoure
les 360° de l'écliptique en une année tropique (V. la précession des équinoxes).
Nous faisons ici et ailleurs abstraction de ces 50? qui influent très-peu sur la
valeur moyenne susdite. En la considérant, nous compliquerions peu utilement
ce que nous avons à dire sur le jour et le temps moyens.




C'est sur la marche de ce soleil fictif S?, qu'on appelle soleil
moyen, que se règlent aujourd'hui les horloges et les montres.


145. L'unité de temps civil est le jour solaire moyen. Le jour
se compose de 24 heures, l'heure de 60 minutes, et la minute de
60 secondes.


Il est midi moyen, ou simplement midi en un lieu, quand le
soleil moyen passe au méridien de ce lieu; il est minuit moyen
quand il passe au méridien opposé.


Le jour civil commence à minuit moyen; on compte de 0 à 12 h.,
de minuit à midi; puis on recommence de midi à minuit.


Les astronomes font commencer le jour moyen à midi moyen,
et comptent de 0 à 24 heures d'un midi à l'autre
57.


Note 57:
(retour)  La convention relative à l'origine de chaque jour civil d'une date donnée,
aux lieux de diverses longitudes, est la même que celle qui a été indiquée
nº 78, à propos du jour sidéral (le soleil moyen remplaçant l'étoile).



Le temps ainsi mesuré (sur la marche du soleil moyen) s'appelle
temps moyen.


On appelle temps solaire vrai, le temps mesuré sur la marche
du soleil vrai (S).


Il est midi vrai quand le soleil vrai passe au méridien du lieu;
il est minuit vrai quand il passe au méridien opposé. Les astronomes
font commencer chaque jour vrai à midi vrai; nous avons
dit que les jours vrais sont inégaux.


146. Les horloges et les montres marquent aujourd'hui le temps
moyen; l'aiguille des heures fait le tour du cadran en un demi-jour
moyen; celle des minutes en une heure moyenne; celle des secondes
en une minute moyenne
58.


Note 58:
(retour)  Ce n'est qu'en 1816 qu'on a commencé à les régler ainsi; auparavant on
les réglait sur le midi vrai. Il y a maintenant une foule de circonstances dans
la vie ordinaire qui nécessitent absolument une régularité parfaite dans la
marche des horloges; nous ne citerons que le service des chemins de fer.



Chacun de ces instruments est mis à l'heure de manière à marquer
0h 0m 0s à midi moyen. Cette condition une fois remplie,
l'horloge bien construite et bien réglée marche indéfiniment d'accord
avec le soleil moyen, et doit marquer 0h 0m 0s à chacun des
midis moyens suivants.


Les astronomes connaissent les lois du mouvement du soleil vrai; ils peuvent calculer à l'avance en temps moyen, et à partir d'une époque donnée
quelconque, l'instant précis du midi vrai pour un nombre illimité de jours
solaires; ils connaissent l'AR du soleil S à chacun de ces midis. D'un autre
côté, en partant du moment connu d'un passage de S et de S' au périgée, ils
peuvent, par de simples multiplications (à cause de l'uniformité du mouvement
de S'), connaître les positions successives de S' sur l'écliptique, à une
époque donnée quelconque, par ex.: à chaque midi vrai. Mais la distance de S'
au point équinoxial ?, comptée sur l'écliptique d'occident en orient (sa longitude
céleste), est précisément l'AR du soleil moyen S". On peut donc comparer l'AR de S" à celle de S aux mêmes époques, à chaque midi vrai par
exemple
59: La différence de ces AR est la distance angulaire qui sépare, à
midi vrai, le cercle horaire de S" du méridien du lieu, que S rencontre en ce
moment; cette différence convertie en temps moyen, à raison d'une heure
moyenne pour 15°, est précisément le temps dont le midi moyen suit ou précède
le midi vrai (uniformité du mouvement en AR du soleil moyen). Si le
midi moyen précède un certain jour le midi vrai de 7m 15s, il est déjà 7m 15s,
temps moyen, quand le midi vrai arrive; les horloges réglées sur le soleil
moyen doivent marquer 7m 15s à midi vrai de ce jour. Si le midi moyen suit
le midi vrai de 5m 40s, il n'est encore que 11h 54m 20s, temps moyen, à midi
vrai, et les horloges doivent marquer cette heure-là à midi vrai de ce jour.


Le calcul du temps moyen au midi vrai est fait à l'avance pour tous les
jours de chaque année civile; les résultats en sont publiés à l'avance pour
l'usage que nous allons indiquer.


Note 59:
(retour)  Quand les AR du soleil vrai et du soleil moyen S" coïncident, le temps
moyen (des horloges) et le temps solaire vrai coïncident. Une de ces coïncidences a lieu vers le 25 décembre, à l'époque des plus longs jours solaires.
On peut suivre sur un globe les mouvements des trois soleils, et les comparer
comme il suit:



[image: ]Mouvements comparés de S et S'. Les deux astres sont ensemble au périgée
P (fig. 54); la vitesse de S, alors à son maximum,
étant plus grande que celle de S', S prend
l'avance, et l'écart des deux astres augmente de
plus en plus jusqu'à ce que la vitesse décroissante
de S soit arrivée à la valeur moyenne, 59' 8",3;
à partir de ce moment, S' allant plus vite que S
s'en rapproche de plus en plus, et le rejoint à l'apogée
A. La vitesse de S' surpassant toujours celle
de S, qui est alors à son minimum, S' prend
l'avance; l'écart des deux soleils augmente jusqu'à
ce que S ait atteint de nouveau la vitesse moyenne
59' 8",3; alors, il se rapproche de S' qu'il rejoint au périgée P. Puis les mêmes
circonstances se reproduisent indéfiniment.


Mouvements de S' et S". Ces deux astres sont ensemble au point équinoxial ?;
les vitesses de leurs mouvements uniformes étant les mêmes, ils parcourent
un quadrant dans le même temps, l'un sur l'écliptique, l'autre sur l'équateur;
de sorte qu'ils se trouvent quatre fois dans l'année sur le même cercle horaire;
sur P?P', PSP', P?P', et PS'P'; autrement dit, quand S' passe aux deux
équinoxes et aux solstices, S" rencontre S' ou sa projection sur l'équateur.


Mouvements de S et S". Ce que nous devons comparer ici, c'est le mouvement
de la projection s de S sur l'équateur, et le mouvement de S"; quand s
et S" se rencontrent, les deux soleils passent ensemble au méridien; quand s
est en avance, S se trouvant sur un cercle horaire plus oriental que S", passe
au méridien plus tard que S"; quand s est en arrière, c'est le contraire. Cela
posé, rappelons-nous que S' et S" étant ensemble au solstice d'hiver, S, qui ne
doit rejoindre S' qu'au périgée, est en arrière de ce solstice. Mais la projection
s' de S', allant du solstice au périgée P, prend l'avance sur S"; car près
des solstices la vitesse de cette projection s' est à son maximum. Il résulte de
là que la projection s, qui rejoint s' en même temps que S rejoint S' au périgée,
rencontre auparavant S"; S et S" se rencontrent donc ainsi sur le même cercle
horaire entre le solstice d'hiver (31 décembre) et l'arrivée du soleil vrai au périgée
(1er janvier); c'est ce que nous voulions montrer. On peut continuer de
la même manière l'étude de ces mouvements.





147. Mettre une horloge ou une montre a l'heure ou vérifier
son exactitude. Il y a chaque année dans le calendrier de la connaissance
des temps ou de l'Annuaire du bureau des longitudes de
France une colonne intitulée: Temps moyen au midi vrai, indiquant
vis-à-vis de chaque jour de l'année le temps que doit marquer
ce jour-là, à midi vrai, une horloge réglée sur le soleil moyen.




On se sert de ce tableau pour mettre à l'heure et vérifier les horloges
et les montres qui doivent marquer le temps moyen. Pour
cela on détermine, par l'observation d'un passage du soleil vrai
au méridien, l'instant précis du midi vrai; à ce moment l'horloge
doit marquer exactement le temps moyen au midi vrai indiqué sur
le tableau pour le jour où l'on est
60.


Note 60:
(retour)  On peut encore régler une horloge ou une montre suivant le temps moyen par
l'observation des étoiles en se fondant sur ceci: 1j. sidéral = 1j. moyen - 3m 55s,9.
Lors du passage d'une étoile, l'horloge doit marquer 3m 55s,9 de moins qu'au
passage précédent.



En parcourant ce tableau dans l'Annuaire on verra que chaque
année le soleil vrai et le soleil moyen se trouvent quatre fois sur le
même cercle horaire; à ces moments leurs AR sont les mêmes, le
midi moyen et le midi vrai des 4 jours où cela arrive coïncident ou
à peu près. (V. sur l'Annuaire, le 15 avril, le 15 juin, le 31 août et
le 25 décembre; vérifiez de même la note ci-dessous)
61.


148. Équation du temps. On appelle équation du temps à un moment quelconque
ce qu'il faut ajouter au temps vrai, ou ce qu'il en faut retrancher pour
avoir le temps moyen. Cette différence s'écrit avec le signe + ou avec le
signe-, suivant celui des deux cas qui se présente.


L'équation du temps au midi vrai de chaque jour est donnée par le tableau
dont nous avons parlé tout à l'heure.


C'est l'heure indiquée dans ce tableau quand le midi moyen précède le midi
vrai (signe +); c'est 12 heures moins l'heure indiquée dans le cas contraire
signe-)
62.


Note 61:
(retour)  Le temps moyen au midi vrai a été 14m 33s le 23 février 1854; c'est la
plus grande avance possible dans le cours de cette année des horloges sur le
soleil vrai. Le 3 novembre 1854, le temps moyen au midi vrai est 11h 43m 42s;
les horloges retardent ce jour-là de 16m 18s  sur le soleil vrai; c'est le plus grand
retard possible des horloges sur le soleil vrai dans le cours de cette année. Le
plus grand excès du jour solaire sur le jour moyen est 30 à 31 secondes vers le
25 décembre; son plus grand écart en moins est de 17 à 18 secondes en mars.



Note 62:
(retour)  On appelle aussi équation du temps, et c'est même la définition astronomique,
ce qu'il faut ajouter à l'AR du soleil moyen pour avoir l'AR du soleil
vrai. Soient n la valeur moyenne de l'accroissement d'AR dans l'unité de temps,
t le nombre de ces unités écoulées depuis que le soleil moyen a passé au point
équinoxial; l'AR du soleil moyen est nt et celle du soleil vrai:

A = nt + e.


Cette quantité e, qui varie irrégulièrement, est l'équation du temps; elle peut
avoir le signe + ou le signe -.





Application. Un phénomène est arrivé le 9 mars 1854 à 8h 43m 17s du soir,
temps vrai; on demande l'heure en temps moyen.


On trouve que le 9 mars 1854 le temps moyen au midi vrai est 0h 10m 48s,
et le lendemain 0h 10m 32s; la différence en moins est donc 16s. L'équation du
temps, variant de 16s en 24h, varie proportionnellement en 8h 54m 8s. On réduit
24h et 8h 54m 8s en secondes, ce qui donne 86400s et 32048s; on écrit l'égalité
86400 / 32048 = 16 / x; d'où x = 5s,9. On retranche 5s,9 de 0h 10m 48s; le
reste, 10m 42s,1, ajouté à l'heure vraie, 8h 43m 17s, donne 8h 53m 59s,1 pour
l'heure cherchée en temps moyen.


On conçoit l'utilité de l'équation du temps; d'abord elle sert à régler les
horloges et les montres. Ensuite le temps vrai est celui qu'on détermine en
mer par exemple par les observations astronomiques, et le temps moyen est
celui que marquent les instruments dont on est muni.


149. Remarque. On considère donc en astronomie trois espèces
de temps: le temps sidéral, le temps solaire vrai et le temps solaire
moyen.


Quelle que soit la manière d'évaluer le temps, l'heure exprimée
est particulière à chaque lieu de la terre; elle change évidemment
avec le méridien. On dit par exemple: il est telle heure en temps
sidéral, en temps vrai, ou en temps moyen de Paris.


DES CADRANS  SOLAIRES.




[image: ]150. Un cadran solaire est un instrument qui, exposé au soleil,
doit indiquer le temps vrai. Il se
compose essentiellement d'une table
plane MN (fig. 56), qui peut avoir diverses
positions, et d'une tige ou arête
rectiligne rigide, AB, nommée style,
toujours parallèle à l'axe du monde,
autrement dit, à l'axe de rotation de la
terre.


Quand le soleil donne sur un cadran, la direction BC de l'ombre
portée par le style AB sur la table MN est évidemment la trace, sur
cette table, du plan SAB qui passe par le style et par la position,
S, que le soleil occupe en ce moment.


[image: ]151. Cela posé, pour bien comprendre l'usage et la construction
d'un cadran quelconque, imaginons l'espace où nous sommes
circonscrit par une sphère immense, ayant son centre sur le style,
qui, prolongé, la rencontre aux deux pôles P et P' (nous n'avons
figuré à dessein que la partie de la sphère qui est au-dessus du
cadran). Cette sphère est la sphère céleste dont le soleil fait le tour
dans les vingt-quatre heures du jour solaire. Imaginons maintenant
tracés sur cette sphère (fig. 57) vingt-quatre cercles horaires
équidistants PCB, PC1B, PC2B,... dont
l'un PCB et son opposé P(XII)B coïncident
avec le plan méridien du lieu. Ces
divers cercles horaires, qui passent tous
par la direction BP du style et coupent
le plan de la table suivant les lignes
CB(XII), C1(I), C2B(II),... gravées sur
cette table, correspondent aux 24 heures du jour solaire. Un
certain jour, le soleil arrive au méridien en S, sur le cercle
horaire PCB, du côté sud; l'ombre portée par le style AB a en
ce moment la direction B(XII) (le nº XII indique XII heures). A
une heure vraie après midi, le soleil arrive en S sur le cercle
horaire PC1B et l'ombre portée à la direction B(I) (I heure); à deux
heures, le soleil arrive en S sur le cercle PC2B, et l'ombre portée
à la direction B(II) (II heures); et ainsi de suite, le soleil faisant le
tour de la sphère céleste, rencontre d'heure en heure les autres
cercles horaires dont les traces B(III), B(IV), etc.,... reçoivent successivement
l'ombre du style pendant tout le temps que le soleil
donne sur le cadran. Le lendemain, à midi vrai, le soleil est revenu
au cercle horaire méridien PCB, plus haut ou plus bas que S,
mais l'ombre portée a toujours la direction B(XII); à une heure, il
se trouve encore sur le cercle PC1B, et l'ombre portée a encore la
direction B(I), et ainsi de suite indéfiniment.


Si donc les traces B(XII), B(I), B(II), des cercles horaires indiqués
sont gravées sur la table du cadran, on saura qu'il est
midi quand l'ombre du style a la direction marquée (XII) à
l'extrémité, qu'il est une heure quand elle a la direction marquée
(I), etc.


152. Construire un cadran revient donc à graver sur une table
la trace bien connue de chacun des vingt-quatre plans horaires,
du côté où doit porter l'ombre, c'est-à-dire du côté opposé à la
position correspondante du soleil, puis à fixer le style de manière
qu'il soit parallèle à l'axe du monde.


153. On distingue plusieurs espèces de cadrans solaires, suivant
la disposition de la table:


1° Le cadran équinoxial, dont la table est parallèle à l'équateur
céleste; c'est-à-dire perpendiculaire à l'axe de rotation de la
terre;


2° Le cadran horizontal, dont la table est horizontale;


3° Le cadran vertical méridional, dont la table est verticale et
perpendiculaire à la méridienne du lieu;


4° Le cadran vertical déclinant, dont la table est verticale, mais
dans une situation d'ailleurs quelconque, non perpendiculaire à la
méridienne.


154. Cadran équinoxial. On peut regarder le plan de la table
comme celui de l'équateur céleste dont le pied du style serait le
centre. Si donc on trace une circonférence ayant ce pied O pour
centre et un rayon quelconque O(XII), cette circonférence sera
concentrique avec celle de l'équateur céleste, et les traces des
24 plans horaires qui, à partir de l'extrémité nord de la méridienne,
divisent l'équateur céleste en 24 arcs égaux, diviseront
également la circonférence que l'on vient de tracer en 24 arcs
égaux. De là cette construction:




[image: ]Construction du cadran équinoxial (fig. 59). On trace une circonférence
du centre O avec un rayon quelconque; on tire un premier
rayon O(XII), qui doit, le cadran
une fois posé et orienté, coïncider
avec la trace du méridien du lieu sur
la table. À partir du point (XII), on
divise la circonférence en 24 parties
égales; on mène des rayons aux
points de la demi-circonférence dont
le point (XII) est le milieu, comme
il est indiqué sur la figure, et de
plus aux deux points qui suivent
ceux-là, à droite et à gauche, 16 rayons en tout. Puis à partir de
ce point (XII), de gauche à droite en montant, on écrit successivement
aux divers points de division de la circonférence, I, II,
III, IV, V, VI, VII, VIII; puis, à partir de (XII), dans l'autre sens,
XI, X, IX, VIII, VII, VI, V, IV.



[image: ]Pour poser et orienter un pareil cadran, on construit une
équerre en bois ou en fer, OMI (fig. 58), dont l'angle aigu OIM
soit celui que l'axe du monde fait avec
l'horizon du lieu, c'est-à-dire égal à la
latitude (Ex.: à l'Observatoire de Paris,
48°50'11?). À l'aide d'un fil à plomb,
on fixe cette équerre dans une situation
verticale telle que son hypoténuse coïncide
avec la méridienne du lieu, sa
direction IM allant du sud au nord;
l'équerre est ainsi dans le plan méridien. On cloue ensuite la table
du cadran sur le côté OM de l'équerre, de manière que O(XII)
coïncide avec OM, et que le style soit le prolongement de IO. Le
style est ainsi parallèle à l'axe du monde; la table qui lui est perpendiculaire
est parallèle à l'équateur céleste, et O(XII) est la trace
du plan méridien sur la table du cadran.


À l'équinoxe, le soleil est dans le plan de la table, et quand il
change d'hémisphère, il en éclaire la seconde face; il est donc
nécessaire que les deux faces de la table soient semblablement
graduées ou divisées, et que le style soit prolongé des deux côtés.
On entoure d'ailleurs la table d'un rebord saillant, afin de recevoir
les ombres portées au moment de chaque équinoxe.


155. Cadran horizontal. Cadran vertical méridional.


Tous les deux se construisent de la même manière à l'aide d'un
cadran équinoxial dessiné auxiliairement
63.


Note 63:
(retour)  On peut se borner à apprendre sur ce sujet les paragraphes intitulés:
Construction d'un cadran horizontal, Construction d'un cadran vertical déclinant,
le programme ne demandant pas de démonstration; cependant, il est
bon de se rendre compte de ces constructions.




Imaginons les trois cadrans, que nous venons de nommer, existant
simultanément, convenablement posés et orientés, ayant
leurs styles dans la même direction AOC (fig. 60), leurs tables
se rencontrant suivant une même horizontale LT, perpendiculaire
au plan AO(XII), et que nous appellerons ligne de terre.


[image: ]


Nous ne considérerons, pour le moment, que le cadran équinoxial,
O, et le cadran horizontal, A. Ainsi qu'on le voit, les
lignes horaires de la même heure quelconque, par exemple O(XI),
A(XI) (intersections des deux tables par le même plan horaire),
rencontrent naturellement LT au même point. Imaginons que la
table équinoxiale tourne autour de LT pour se rabattre sur le plan
horizontal, à gauche de l'autre table; les deux lignes de XII heures
viendront en prolongement l'une de l'autre (fig. 61); les points de
rencontre des lignes horaires avec LT n'auront pas bougé, puisqu'ils
sont sur la charnière
64.


Note 64:
(retour)  Eu égard à la figure 60, la circonférence ne devrait pas être tangente à LT
sur la figure 61; mais cela ne fait rien pour l'exactitude du cadran, car le
rayon de cette circonférence du cadran équinoxial est arbitraire; la position
du centre est seulement déterminée quand on se donne à l'avance le pied du
style du cadran horizontal.



Si donc on trouve ces points de rencontre pour une position de
la table équinoxiale rabattue, on les connaîtra en véritable position,
et il n'y aura plus qu'à les joindre au pied A du style, sur le
plan horizontal, pour avoir les
lignes horaires du cadran horizontal.




[image: ]Ce qui précède suffit pour l'intelligence
de l'épure (fig. 61),
dans laquelle la partie à gauche
de LT représente la table équinoxiale
rabattue, construite d'après
la méthode que nous avons
indiquée tout à l'heure (nº 154).
A droite de LT est la table du
cadran horizontal, la seule que
l'on construise en traits définitivement
marqués.


Construction d'un cadran horizontal. Du point A, choisi comme
pied du style sur le plan horizontal, on mène A(XII) perpendiculaire
à LT. On prolonge cette ligne au delà de LT. D'un point O
quelconque pris sur ce prolongement, on décrit une circonférence
avec un rayon quelconque O(XII). Puis on dessine
à gauche de LT le cadran équinoxial, tel qu'il est indiqué sur
la figure 61, et d'après les principes que nous avons exposés
(154). On joint le point A à tous les points d'arrivée sur LT des
lignes de ce cadran; on marque la rencontre de chaque ligne de
jonction avec le cadre MNPQ, du même chiffre romain que celui
qui désigne la ligne correspondante du cadran équinoxial auxiliaire.
Cela fait, le cadran horizontal est dessiné tel qu'il doit être
sur le cadre MNPQ. Tout le reste, en dehors de ce cadre, doit être
supprimé.


Pour mettre ce cadran en place, on fera coïncider A(XII) avec
la direction de la méridienne du lieu, le point (XII) étant au nord
de A. Quant au style, il doit partir de A, se trouver dans le plan
méridien (le plan vertical qui passe par la méridienne), faisant avec
la méridienne A(XII) un angle égal à la latitude.


Le cadran vertical méridional se construit exactement de même;
seulement il faut, pour la pose du cadran, avoir égard à ce fait
que la direction AO du style fait avec la table verticale un angle
égal à 90° moins la latitude du lieu; la distance du pied du style
à LT, ligne de midi, est C(XII) (fig. 60).


156. Cadran vertical déclinant.--Il arrive souvent qu'on doit
construire un cadran sur un plan vertical (un mur), dont on n'a
pas pu choisir l'exposition, et qui fait un angle aigu avec la méridienne.
Un tel cadran s'appelle cadran vertical déclinant. Pour
en construire un, on emploie un cadran horizontal dessiné auxiliairement.


Pour comprendre la construction, il faut se figurer le cadran
vertical déclinant et le cadran horizontal existant simultanément
(fig. 62, cadran O' et cadran O), perpendiculaires l'un à l'autre,
ayant leurs styles dirigés suivant la même droite O'O, et leurs
tables se rencontrant suivant une même horizontale L'T'. Les lignes
horaires de la même heure quelconque doivent couper L'T' au
même point. Ex.: O'(XII), O(XII). (Ce sont les intersections des
deux tables par le même plan horaire.) Si donc on conçoit la
table horizontale toute construite, se rabattant telle qu'elle est, au-dessous
du cadran vertical sur le plan de celui-ci, en tournant
autour de L'T' (fig. 62), les points d'arrivée susdits des lignes horaires
correspondantes, étant sur la charnière L'T', n'auront pas
bougé. (La table horizontale sera alors sur le plan de l'épure.) Si
donc on construit la table horizontale, ainsi rabattue, sur le plan
vertical, les points de rencontre de ses lignes horaires avec L'T' ne
seront autres que les points de rencontre des lignes horaires du
cadran vertical déclinant avec la même ligne, de sorte qu'en joignant
ces points à O, pied du style du cadran vertical, on aura,
en véritable position, les lignes horaires de ce cadran qui n'a pas
bougé (fig. 62).


Remarquons que la ligne, O'(XII), de midi du cadran horizontal,
c'est-à-dire la méridienne du lieu, n'est pas perpendiculaire à la
trace L'T' du cadran vertical sur l'horizon, mais fait avec cette
trace l'angle aigu du plan vertical donné avec le plan méridien du
lieu; cet angle O'(XII)T' est connu; les lignes O'(XII) et L'T' doivent
faire sur l'épure cet angle donné.


Cela posé, voici comment on peut construire un cadran vertical
déclinant.


[image: ]


Construction du cadran vertical déclinant (fig. 62). On trace une
verticale O(XII) qui doit représenter la distance du pied du style
au bord horizontal de la table; ce bord est représenté par la ligne
L'T' qu'on mène perpendiculaire à O(XII); on fait avec L'T', au
point (XII), un angle T'(XII)O' égal à l'angle de la méridienne et du
plan vertical sur lequel doit être placé le cadran; on prend (XII)O'
égal au second côté (XII)o de l'angle droit d'un triangle rectangle
O(XII)o, dont l'angle (XII)Oo = 90°-latitude du lieu,
triangle que l'on construit auxiliairement. On mène ensuite LT
perpendiculaire à O'(XII); cela fait, sans se préoccuper du cadran
vertical déclinant, on construit, comme il a été indiqué nº 155, la
table d'un cadran horizontal dont le pied du style serait en O' et le bord de la table LT.
65
On prolonge, au besoin, les lignes horaires
de ce cadran jusqu'à L'T', marquant les points de rencontre
des mêmes chiffres romains qui distinguent ces lignes sur le cadran
horizontal. On joint le point O à tous ces points de rencontre
avec L'T'; enfin l'on trace un cadre MNPQ sur lequel on indique
les rencontres des lignes O(XII), O(I), par les mêmes chiffres romains
(XII), I, etc... Le dessin enfermé dans ce cadre est la table du cadran
vertical déclinant. La table ainsi construite se pose ou se dessine
sur le mur vertical choisi, de manière que la ligne O(XII) soit
verticale. On fixe ensuite le style en O de manière à ce qu'il soit
dans un plan passant par la méridienne et O(XII), et fasse avec cette
dernière un angle égal à 90°-la latitude du lieu.


Note 65:
(retour)  Pour construire ce cadran horizontal O', il faut, d'après ce qui a été
expliqué nº 155, construire un cadran équinoxial O", puis joindre le point O'
à tous les points de rencontre des lignes horaires de ce cadran O" avec LT.
On fera bien de faire cette construction au crayon.




L'année.


157. Année tropique. L'année tropique est le temps qui s'écoule
entre deux retours consécutifs du soleil au même équinoxe (140).


Une année tropique = 366j. sid.,2422 = 365j. sol. moyens,2422 =


365j. sol. moyens 5h 48m 46s
66.


Note 66:
(retour)  Pour connaître la longueur d'une année tropique, il suffirait de déterminer
l'instant précis de l'équinoxe du printemps pour deux années consécutives;
le temps sidéral écoulé entre ces deux observations serait la longueur
cherchée. Pour plus de précision, on s'est servi des observations d'équinoxes
faites par Lacaille et Bradley il y a un siècle; en les combinant avec des observations
récentes, on a connu le temps compris entre deux équinoxes séparés
par cent années tropiques; en divisant cette durée par 100, on a eu la longueur
cherchée, à moins d'une seconde d'approximation. L'erreur, ne provenant
que des observations extrêmes, est ainsi pour cent ans la même qu'elle
serait pour un an, si on se servait de deux observations consécutives; l'erreur
rendue ainsi cent fois plus petite est devenue négligeable.



158. L'année est une période de temps usuelle, fort importante
à considérer. Il est un fait sur lequel nous reviendrons plus tard:
la température, en un lieu donné, varie d'un bout de l'année à
l'autre; les températures annuelles s'y partagent en deux périodes,
l'une croissante, l'autre décroissante, qui se reproduisent les
mêmes d'année en année; la même chose arrive pour les durées
des journées et des nuits. Ainsi, à chaque jour occupant dans
l'année un rang déterminé, correspond tous les ans, abstraction
faite des circonstances atmosphériques accidentelles, la même température,
la même durée du jour et de la nuit. Cela tient à ce
qu'en moyenne le soleil revient ce jour-là à la même position par
rapport à l'horizon du lieu en question; car, c'est cette position du
soleil qui règle les températures terrestres et les durées des journées
et des nuits. Chacun sait quelle influence la température et la
durée du jour et de la nuit ont sur la plupart de nos travaux et de
nos actions. De là, l'utilité des calendriers.


159. Calendrier. On appelle Calendrier un tableau détaillé des
jours de l'année, relatant les circonstances astronomiques ou
autres remarquables, qui se rapportent à chacun d'eux.


160. La fraction de jour qui complète l'année tropique est fort
difficile à retenir; il serait fort incommode d'avoir à préciser l'instant
d'un jour intermédiaire où une année finirait et une autre
commencerait. C'est pourquoi on a senti, de tout temps, la nécessité
d'adopter pour l'usage ordinaire une année civile composée
d'un nombre entier de jours.


Mais eu égard aux considérations précédentes (158), il était
indispensable que la durée et les subdivisions de l'année civile
concordassent le plus possible avec celles de l'année tropique, période
naturelle et régulatrice. Ce but n'a pas été atteint tout de
suite; mais il l'est à très-peu près et d'une manière suffisante par
la combinaison adoptée aujourd'hui.


161. Ères diverses. Les années successives ses distinguent par
un numéro d'ordre, qui dépend du nombre d'années écoulées depuis
un certain événement remarquable. L'événement à partir du quel
on commence à compter les années n'est pas le même pour
tous les peuples. Les anciens Romains les comptaient à partir de la
fondation de Rome, laquelle eut lieu 753 ans avant Jésus-Christ;
les Chrétiens les comptent à partir de la naissance de Jésus-Christ;
les Mahométans à partir du moment où Mahomet s'enfuit de la
Mecque. Chaque manière de compter les années se nomme une ère.
Il y avait l'ère romaine; il y a l'ère chrétienne et l'ère mahométane;
celle-ci commence à l'an 622 de l'ère chrétienne
67.


Note 67:
(retour)  Il y avait aussi l'ère grecque, datant par olympiades, périodes de quatre
années, dont la première commence à l'an 776 avant J.-C., et l'ère égyptienne
de Nabonassar, qui commençait à l'an 747 avant J.-C.



162. Cela posé, occupons-nous de la convention qui règle aujourd'hui
la durée de l'année civile.


Année civile. On a adopté deux espèces d'années civiles, les
unes de 365 jours solaires, les autres de 366 jours, tellement combinées
que la moyenne d'un nombre quelconque, même relativement
considérable, d'années civiles diffère extrêmement peu de la
valeur exacte de l'année tropique. Voici cette combinaison:


Sur quatre années civiles consécutives, il y en a généralement
trois de 365 jours et une de 366 jours dite année bissextile. Une
année est en général bissextile, quand le nombre qui la désigne
dans l'ère chrétienne est divisible par 4; ex: 1848, 1852. Toute
autre année n'a que 365 jours et garde le nom d'année commune;
ex.: 1850, 1853. Il n'y a que trois exceptions à la règle générale
précédente dans chaque période de 400 ans; quand une année est
séculaire, c'est-à-dire exprimée par un nombre terminé par deux
zéros, elle devrait être bissextile si on suivait la règle précédente;
par exception, une année ainsi dénommée n'est pas bissextile, si
le nombre qu'on obtient en supprimant les deux zéros n'est pas
divisible par 4. Ex.: sur les quatre années séculaires consécutives
2000, 2100, 2200, 2300, une seule sera bissextile, c'est la première;
les trois autres ne le seront pas; 1700, 1800 n'ont pas été
bissextiles, 1900 ne le sera pas non plus.


163. Une période de cent années civiles s'appelle un siècle.


On donne quelquefois le nom de lustre à une période de cinq
années.


164. Parlons maintenant des subdivisions de l'année. L'année
se subdivise en douze mois, généralement de 30 ou 31 jours, excepté
un seul de 28 ou de 29 jours. Les voici par ordre:



Janvier.   31 j.

Février.   28 ou 29 j.

Mars.      31 j.

Avril.     30 j.

Mai.       31 j.

Juin.      30 j.

Juillet.   31 j.

Août.      31 j.

Septembre. 30 j.

Octobre.   31 j.

Novembre.  30 j.

Décembre.  31 j.





Quand une année se compose de 365 jours, février n'en a que
28; quand l'année est bissextile, février a 29 jours.


L'année civile commence le 1er janvier; c'est en hiver, car l'équinoxe
du printemps a lieu vers le 21 mars.


Chaque période de sept jours consécutifs s'appelle une semaine.


Les sept jours de chaque semaine prennent des noms particuliers
dans l'ordre suivant: lundi, mardi, mercredi, jeudi, vendredi,
samedi, dimanche
68.


Note 68:
(retour)  Ces noms sont tirés de ceux des planètes connues des anciens, parmi
lesquels ils faisaient figurer le soleil et la lune. Ainsi lundi vient de Lune (di
leune, dies lunæ); mardi, de Mars (di mars, dies martis); mercredi, de Mercure;
jeudi, de Jupiter (dies jovis); vendredi, de Vénus; samedi, de Saturne
(Saturday en anglais); dimanche est le jour du Seigneur ou du Soleil (dies
dominica; en anglais Sunday).



Les semaines se suivent sans qu'on les distingue en général
par des numéros d'ordre, sans qu'on les classe même dans les
mois ou dans les années. C'est une période qui n'a aucun rapport
avec les circonstances du mouvement du soleil
69.


Note 69:
(retour)  L'année civile commune de 365 jours comprend 52 semaines et un jour.

Le dernier jour d'une année commune, commençant une 53e semaine, porte
le même nom de semaine que le premier jour de cette même année.


Le premier jour de l'année qui suit une année commune doit donc porter le
nom de semaine, qui vient immédiatement après le nom du premier jour de cette
année commune précédente. Ex.: le 1er janvier 1854 a été un dimanche; le
1er janvier 1855 sera un lundi. Après une année bissextile, il faut avancer
de deux jours dans la semaine. Par ex.: le 1er janvier 1860 ayant été un
dimanche, le 1er janvier 1861 sera un mardi.




Nous allons maintenant parler de l'invention et du perfectionnement
des combinaisons relatives au nombre des jours de l'année
civile, de la réforme julienne et de la réforme grégorienne.


165. De tout temps, comme nous l'avons dit, les hommes
sentirent la nécessité de composer l'année civile d'un nombre
entier de jours; mais ce n'est qu'après un temps très-long qu'on
est arrivé à rendre la longueur moyenne de l'année civile à très-peu
près égale à celle de l'année tropique.


On pense que les Égyptiens firent primitivement usage d'une
année de 360 jours, partagée en 12 mois de 30 jours chacun. De
là, suivant quelques érudits, la division du cercle en 360 degrés.


Cette année différait trop de l'année astronomique, et ses inconvénients,
immédiatement évidents, donnèrent lieu à une première
correction ou réforme; l'année commune fut portée à 365 jours.


Cette nouvelle année avait, quoique à un degré moindre, l'inconvénient
capital de l'année de 360 jours, celui de différer trop
du temps que le soleil met à faire sa révolution complète, c'est-à-dire
de l'année tropique.


Cette année de 365 jours a pris le nom d'année vague ou de
Nabonassar.


166. Inconvénients de l'année vague. Ayant égard aux considérations
développées, nº 158 et 160, voyons ce qui arriverait si
toutes les années civiles n'étaient que de 365 jours comme l'année
égyptienne, tandis que l'année astronomique est d'environ 365
jours-1/4.


Choisissons un jour d'une dénomination déterminée, le 21 mars,
par exemple, jour actuel de l'équinoxe. Dans ce jour on éprouve
une certaine température liée à cette circonstance que ce jour-là
le soleil décrit à peu près l'équateur.


L'année suivante, quand commencera le 21 mars, comme il y
aura seulement 365 jours écoulés depuis l'équinoxe précédent, le
soleil ne sera pas encore arrivé sur l'équateur; il lui faudra un
quart de jour pour l'atteindre. Quand arrivera le 21 mars d'une
troisième année, il sera encore plus éloigné de l'équateur; il lui
faudra une demi-journée pour l'atteindre.


Enfin, après quatre années, le 21 mars précédera d'un jour l'arrivée
du soleil à l'équateur; cette arrivée n'aura lieu que le 22
mars de la cinquième année. Cette année ce sera le 22 mars qui
jouira de la température qui avait lieu d'abord le 21 mars; le 21
mars jouira de la température primitive du 20, et ainsi de suite,
chaque jour rétrogradant quant à la température.


Après quatre nouvelles révolutions, le soleil n'atteindra l'équateur
que le 23 mars, qui aura alors la température qu'avait primitivement
le 21; et ainsi de suite, après chaque période de 4 années,
la date de l'arrivée du soleil à l'équinoxe étant reculée d'un
jour, tous les jours de l'année viendront successivement, quant à
la température, prendre la place du 21 mars, puis continuant à
rétrograder, se plongeront de plus en plus dans l'hiver.


Après 30 périodes de quatre ans, ou 120 ans, la date de l'équinoxe
se trouvera reculée d'un mois, et ainsi de suite; de sorte que
la température originelle du 21 mars aura lieu successivement en
avril, puis en mai, en juin, etc...


Au bout d'environ trois fois cent vingt ans, ou 360 ans, par
exemple, le jour de l'équinoxe, qui est le premier jour du printemps,
se trouvant transporté au 21 juin, il en résultera que le
printemps prendra, dans la nomenclature des mois et de leurs
jours, la place de l'été, qui prendra la place de l'automne; celui-ci
prend la place de l'hiver qui vient remplacer le printemps, et cette
perturbation aurait lieu sans cesse
70.


Note 70:
(retour)  Nous parlons des saisons, bien qu'elles ne soient définies et expliquées que
plus tard (nº 171). Leurs noms et les caractères qui les distinguent, quant à la
température, sont si vulgairement connus qu'il n'y a pas d'inconvénient dans
la transposition faite par le programme.



Dans l'état actuel des choses, on jouit dans nos climats d'une
température modérée en avril et mai; les mois de juillet et d'août
sont chauds, décembre et janvier sont froids.


Dans le système que nous examinons, le même mois serait successivement
tempéré, chaud et froid. Les travaux de l'agriculture
se rapportent aux divers mois, non à cause de leurs noms, mais à
cause de leurs températures.


Dans le système de l'année vague, on ne pourrait pas dire comme
aujourd'hui: la moisson se fait dans tel mois, la vendange dans
tel autre, puisque la température favorable à l'un ou à l'autre de
ces travaux n'arriverait plus d'une manière fixe à un mois plutôt
qu'à un autre. Chacun, pour diriger les travaux qui dépendent de
la température, serait à peu près livré à ses propres appréciations,
à moins que le calendrier ne fût continuellement remanié.


167. Réforme julienne. Voilà les inconvénients qui, avec bien
d'autres, résultaient, avant Jules César, de ce que la durée fixe de
l'année civile différait trop de l'année tropique.


Jules César, conseillé par Sosygène, astronome égyptien, résolut
de porter remède à ce désordre par une intercalation régulière,
exempte d'arbitraire, et uniquement fondée sur la différence
d'un quart de jour qu'il croyait exister exactement entre l'année
de 365 jours et l'année astronomique de 365 jours-¼.


Il décida que, sur quatre années consécutives, trois seraient
composées de 365 jours, et la quatrième de 366 jours.


C'est dans cette unique prescription que consiste la réforme dite
réforme julienne, du nom de son auteur officiel.


Il arriva ainsi que la moyenne des années civiles fut de 365
jours-¼ ou 365j,25, peu différente de l'année tropique, composée
de 365j,2422.


Le jour complémentaire ajouté à chaque quatrième année fut
placé à la fin du mois de février, qui, au lieu d'avoir 28 jours
comme dans l'année de 365 jours, en a 29 dans chaque année
bissextile.


De cette manière, en admettant que l'équinoxe du printemps
arrive le 21 mars de la première année d'une période composée de
trois années communes et d'une année bissextile, il arrivera pour
la cinquième fois le 21 mars de la cinquième année civile, à peu
près à la même heure que le 21 mars de la première.


En effet, entre ces deux 21 mars il se sera écoulé 365j × 3
+ 366j = 1461 jours = (365j + 1/4) × 4, ou quatre années tropiques,
à très-peu près.


De sorte que, dans la seconde période de quatre ans, tout se
passera à très-peu près comme dans la première, et ainsi de suite,
de période en période.


Ainsi furent corrigés en très-grande partie les inconvénients de
l'année vague.


Nous disons en très-grande partie, car, dans ce qui précède,
nous faisons abstraction de la différence entre 365j 1/4 ou 365j,25,
valeur supposée par Jules César à l'année tropique, et la valeur
exacte de cette année qui est 365,2422 (à moins de 0,0001).


365j,25-365j,2422 = 0j,0078.


Les inconvénients de cette différence ne pouvaient devenir sensibles
qu'après un assez grand nombre de siècles.


En effet, à raison de 0j,0078 de différence pour une année,
c'est 0j,78 pour 100 ans et 3j,12, ou environ 3 jours pour 400
ans; plus exactement encore, 1 jour pour 130 ans. Cette différence
se produit en sens contraire de l'ancienne; c'est l'année civile
moyenne qui est plus grande que l'année tropique, au lieu d'être
moindre; de sorte que la date de l'équinoxe, si nous la considérons
de nouveau, a dû reculer après la réforme julienne au lieu
d'avancer comme auparavant.



168. A l'époque du concile de Nicée, l'an 325 après J.-C.,
l'équinoxe du printemps arrivait le 21 mars. Les Pères de l'Église,
qui voulaient que la célébration de la fête de Pâques eût lieu au
commencement du printemps, réglèrent l'époque de sa célébration
au premier dimanche après la pleine lune qui vient immédiatement
après l'équinoxe du printemps, celle qui suit le 21 mars,
dans la persuasion qu'après la réforme julienne l'équinoxe du printemps
arriverait toujours le 21 mars. Mais ils avaient compté sans
la différence susdite de 0j,0078, entre l'année civile moyenne et
l'année tropique.


130 années civiles valant 130 années tropiques plus un jour, il
en résulta que, 130 ans après le concile de Nicée, le 21 mars dépassait
d'un jour l'arrivée du soleil à l'équinoxe, celle-ci ayant
lieu alors le 20 mars. Au bout de 130 nouvelles années, nouvelle
rétrogradation de la date de l'équinoxe qui arrivait le 19 mars, et
ainsi de suite; de sorte que, en 1582, sous le pontificat de Grégoire
XIII, la date de l'équinoxe avait rétrogradé de 10 jours; il
avait lieu réellement le 11 mars. Cette rétrogradation, non remarquée,
aurait, avec le temps, fait célébrer en été une fête que les
traditions rattachent au printemps, et aurait fini par reproduire en
sens contraire, beaucoup plus à la longue, il est vrai, les inconvénients
que nous avons reprochés à l'année vague.



169. Réforme grégorienne. Le pape Grégoire XIII eut la gloire
de compléter, en octobre 1582, la réforme julienne.


L'équinoxe du printemps avait eu lieu cette année le 11 mars.
Afin qu'il eût lieu à l'avenir le 21 mars, comme à l'époque du
conseil de Nicée, il commença par faire en sorte que le 11 mars
devint le 21 mars: il n'y avait pour cela qu'à augmenter toutes
les dates subséquentes de 10 jours. Il décida, en conséquence, que
le 5 octobre 1582, époque de la publication de la bulle pontificale,
s'appellerait le 15 octobre, et que l'on compterait ainsi jusqu'à la fin
de 1582, cette année devant avoir ainsi dix jours de moins que les
autres.


De plus, pour corriger l'erreur de l'intercalation julienne et
rapprocher, en la diminuant, la moyenne des années communes
de la valeur de l'année tropique, Grégoire XIII remplaça 3 années
bissextiles, sur 100, par 3 années communes. C'est lui qui créa cette
exception que nous avons indiquée, à savoir: qu'une année, dont
le nom en chiffre est terminé par deux zéros, n'est pas bissextile
quand le nombre obtenu par la suppression de ces deux zéros n'est
pas divisible par 4.


Ainsi, en résumé, la réforme grégorienne consista dans le changement
de date du 5 octobre 1582 en 15 octobre 1582, et dans la
prescription que nous venons de rappeler.


Moyennant cette réforme complémentaire, il faudra plus de
3000 ans, à partir de 1582, pour que l'équinoxe s'écarte d'un jour
du 21 mars. C'est ce qu'on vérifie aisément.



170. A Rome, la réforme grégorienne eut son effet le 5 octobre
1582 qui devint le 15 octobre 1582. En France, elle fut
adoptée le 10 décembre de la même année qui devint le 20 décembre.
En Allemagne, dans les pays catholiques, en 1584; dans
les pays protestants, le 19 février de l'an 1600.


Le 1er mars 1600, le Danemark, la Suède, la Suisse, suivirent
l'exemple de l'Allemagne.


En Pologne, la réforme eut lieu en 1586. Enfin l'Angleterre se
décida à l'adopter en 1752, le 3/14 septembre. Il lui fallut avancer
la date de 11 jours, l'année 1700, bissextile suivant la méthode
julienne, et non bissextile après la réforme grégorienne, s'étant
écoulée depuis cette dernière.


Les Russes et les autres peuples de l'Église grecque en sont
restés à la méthode julienne; ils ont, sans interruption, une année
bissextile sur 4. Or, depuis le concile de Nicée, en 325, point
commun de départ, il y a eu douze années séculaires qui, pour
les motifs de la réforme grégorienne, ne devaient pas être bissextiles;
il en résulte que les Russes, et autres peuples susdits, ont
compris dans les années antérieures à l'année présente douze jours
de plus que nous; cette année présente a donc commencé pour
eux douze jours plus tard que pour nous; pour chaque jour de
l'année leur date est donc en arrière de douze jours sur la nôtre;
quand nous sommes au 22 mars, ils ne sont encore qu'au 10. Une
date russe s'indique ainsi, (4 mai / 16 mai), ce qui signifie que le jour en
question est le 4 mai pour les Russes, et pour nous le 16 mai.


DES SAISONS.



171. Les deux équinoxes et les solstices partagent l'année en
quatre parties inégales nommées saisons, remarquables au point
de vue de la durée des jours et des nuits, et des variations de la
température.


Une saison est le temps employé par le soleil pour aller d'un
équinoxe à un solstice, et vice versa.


Le printemps est le temps qui s'écoule depuis l'équinoxe du
printemps jusqu'au solstice d'été. L'été dure du solstice d'été à
l'équinoxe d'automne; l'automne, de l'équinoxe d'automne au solstice
d'hiver; enfin l'hiver dure depuis le solstice d'hiver jusqu'à
l'équinoxe du printemps.


Les saisons ne sont pas égales. Voici leurs durées actuelles
71:


Le printemps dure    92j 20h 59m          }

                                          } 186j 11h 12m

L'été                93  14  13           }



L'automne            89j 17h 35m          }

                                          } 178j 18h 37m.

L'hiver              89   1   2           }




Comme on le voit, l'automne et l'hiver durent ensemble huit
jours de moins environ que le printemps et l'été.


Note 71:
(retour)  Nous disons actuelles, parce que ces durées varient lentement, comme
nous le verrons plus tard (précession des équinoxes).




[image: ]172. Causes de l'inégalité des saisons. Cette inégalité est due
à la forme elliptique de
l'orbite décrit par le soleil
autour de la terre (129),
et à la position que le
grand axe de cette ellipse
(fig. 65) occupe par rapport
à la ligne des équinoxes
et des solstices. On
connaît la loi des aires
(nº 130): les aires décrites
par le rayon vecteur du
soleil sont proportionnelles aux temps employés à les parcourir.




Cette loi connue, il suffit de jeter les yeux sur la fig. 65, la différence
des aires parcourues dans les diverses saisons rend parfaitement
compte des différences qui existent entre leurs durées.



INÉGALITÉS DES JOURS ET DES NUITS.


Du jour et de la nuit aux différentes époques de l'année,
et en différents lieux.



173. Le mot jour, quand on l'oppose au mot nuit, n'a pas la
signification que nous lui avons donnée jusqu'à présent. Le jour
est le temps que le soleil passe au-dessus de l'horizon entre un lever
et le coucher suivant; la nuit est le temps qu'il passe sous l'horizon,
entre un coucher et le lever suivant. Dans nos climats, chaque jour
solaire (nº 140) se compose d'un jour et d'une nuit.



174. On sait que le jour est tantôt plus long, tantôt plus court
que la nuit, et que la durée du jour et celle de la nuit varient continuellement
d'un bout de l'année à l'autre. Nous sommes maintenant
en mesure de nous rendre compte de ces variations; nous n'avons,
pour cela qu'à étudier, sur un globe céleste, à partir d'une
certaine époque et par rapport à un horizon déterminé, le mouvement
du soleil tournant chaque jour autour de l'axe du monde,
tout en cheminant sur la sphère céleste le long de l'écliptique
72.


Note 72:
(retour)  C'est ici le cas de se rappeler l'ingénieuse comparaison de M. Arago,
page 99, en note.



[image: ]175. Puisque la déclinaison du soleil varie continuellement d'un
jour à l'autre, cet astre ne décrit pas précisément, chaque jour
solaire, un parallèle céleste. Si un jour il rencontre le méridien
en un certain point, D (fig. 63), le lendemain, ayant fait une
révolution autour de l'axe PP', il revient au méridien, non plus
au point D, mais en un point situé un peu plus haut ou un peu
plus bas; il a décrit, dans l'intervalle, une espèce de spirale (que
l'on peut imaginer et même construire sur un globe céleste), faisant
le tour de ce globe, entre les deux parallèles célestes qui
correspondent aux deux points en question du méridien. Ces deux
parallèles célestes étant très-rapprochés, on peut, sans qu'il en
résulte évidemment aucun inconvénient dans l'étude que nous entreprenons,
supposer que le soleil
décrit, chaque jour solaire,
un parallèle céleste, celui, par
exemple, qui occupe la position
moyenne entre les parallèles que
l'astre rencontre ce jour-là; puis,
que ce jour écoulé, il passe brusquement
au parallèle moyen qui
correspond au jour solaire suivant,
et ainsi de suite. Par exemple,
nous admettrons qu'à l'équinoxe
du printemps, le soleil décrit
l'équateur céleste, le lendemain, un parallèle un peu plus élevé,
le surlendemain, un nouveau parallèle supérieur, et ainsi de
suite, jusqu'à ce que, arrivé au solstice d'été, il décrive le tropique
du Cancer, TGSF; puis redescendant vers l'équateur, il
décrit à peu près les mêmes cercles diurnes, mais en ordre inverse,
du solstice d'été à l'équinoxe d'automne. Ensuite, passant
sur l'hémisphère austral, il y décrit, dans la seconde partie de
l'année, une pareille série de cercles diurnes (nº 176).



Chacun de ces cercles diurnes est divisé, dans nos climats, par
l'horizon du lieu en deux arcs généralement inégaux; ex.: LDC,
CKL. L'un de ces arcs, LDC, situé du même côté de l'horizon que
le lieu M (au-dessus de l'horizon), est parcouru par le soleil durant
le jour, c'est l'arc de jour; l'autre, CKL (au-dessous de l'horizon),
est parcouru par cet astre durant la nuit, c'est l'arc de nuit. Le
mouvement diurne du soleil peut être considéré comme uniforme
durant les 24 heures d'un jour solaire; comparer les durées relatives
du jour et de la nuit, à une époque quelconque, revient donc
à comparer l'arc de jour et l'arc de nuit; c'est ce que nous allons
faire pour tous les jours de l'année
73.


Note 73:
(retour)  Si le soleil décrivait indéfiniment l'équateur, la durée du jour, égale
à celle de la nuit, serait la même pour tous les lieux de la terre et à toutes les
époques.

Cette proposition est évidente à l'inspection de la figure 63. En effet, l'horizon
rationnel, HGH'F, d'un lieu quelconque, et l'équateur (grands cercles de
la sphère), se divisent mutuellement en deux parties égales. Le soleil décrirait
chaque jour une demi-circonférence L'E'C' (du côté du lieu M), et chaque nuit
la demi-circonférence C'EL'.


Si le soleil, à défaut de l'équateur, décrivait indéfiniment le même cercle
parallèle à l'équateur (KLDC, par exemple), c'est-à-dire si sa déclinaison
ne variait pas, la durée d'un jour en un lieu donné, M, serait la même à
toutes les époques; la durée de la nuit, différente, en général, de celle du jour
(nº 176), serait également constante au même lieu.


Cette proposition est évidente à l'aspect de la figure 63. En effet, le soleil
décrirait chaque jour indéfiniment l'arc LDC (au-dessus de l'horizon de lieu),
et chaque nuit l'arc CKL. L'arc LDC et l'arc CKL sont inégaux.


La variation continuelle du jour et de la nuit, en chaque lieu de la terre,
tient donc à la variation de la déclinaison du soleil, ou, si l'on veut, à l'inclinaison
de l'écliptique sur l'équateur céleste (nº 118).





VARIATIONS DE LA DURÉE DU JOUR ET DE LA NUIT EN UN MÊME LIEU

DONNÉ AUX DIFFÉRENTES ÉPOQUES DE L'ANNÉE.



[image: ]176. Supposons, pour fixer les idées, que le lieu considéré M,
fig. 63, soit l'Observatoire de Paris, dont la latitude est 48° 50' 11?;
l'horizon rationnel de ce lieu est
HGH'F (nº 8). Afin de laisser voir
bien nettement la division de chaque
cercle diurne par l'horizon,
nous n'avons pas dessiné l'écliptique
sur la fig. 63 qui représente
un globe céleste; mais il faut l'y
rétablir par la pensée, faisant le
tour du globe dans la position indiquée
par la fig. 66 bis. Cette dernière
nous montre le mouvement
annuel du soleil sur l'écliptique
divisé en quatre périodes principales, correspondant aux quatre
saisons: 1º de l'équinoxe, ?, au solstice d'été S; 2º de ce solstice
à l'équinoxe d'automne ?; 3º de cet équinoxe au solstice d'hiver
S'; 4º enfin, de ce solstice à un nouvel équinoxe du printemps ?.



Suivons maintenant sur la fig. 63.


A l'équinoxe du printemps, 21 mars, le soleil décrit l'équateur,
le jour est égal à la nuit (l'arc de jour est L'E'C'; l'arc de nuit
C'EL'). De l'équinoxe du printemps, ?, au solstice d'été S, du 21
mars au 22 juin, le soleil s'élevant progressivement au-dessus de
l'équateur sur l'hémisphère austral (le long de ?S, fig. 66 bis), le
jour augmente continuellement et la nuit diminue, à partir de 12
heures. (Comparez (fig. 63) les arcs de jour L'E'C'..., LDC,...,
GTF entre eux, et aux arcs de nuit C'EL'..., CKL...., FSG.) Le
jour, constamment plus grand que la nuit, atteint son maximum
quand le soleil arrive en S au solstice d'été (22 juin); la nuit est
alors à son minimum. (A Paris ce plus long jour est de 15h 58m; la
nuit correspondante est de 8h 2m.)


Du solstice d'été, S, à l'équinoxe d'automne, ? (du 22 juin au
21 septembre), le soleil redescendant vers l'équateur (le long de
l'arc S?, fig. 66 bis), décrit sensiblement les mêmes cercles
diurnes que dans la période précédente, mais en ordre inverse.
(V. ces cercles en descendant, fig. 63.) Le jour diminue et la nuit
augmente; la nuit regagne tout ce que perd le jour. Le jour et la
nuit redeviennent ainsi égaux à l'équinoxe d'automne (21 septembre),
le soleil décrivant de nouveau l'équateur.


De l'équinoxe d'automne, ?, au solstice d'hiver, du 21 septembre
au 21 décembre, le soleil descendant dans l'hémisphère
austral (le long de ?S', fig. 66 bis), le jour diminue et la nuit augmente,
à partir de 12 heures. (Comparez les arcs de jours L'E'C',...,
L"D"C",..., F'S'G', et les arcs de nuit 'C'EL',..., C"K"L",..., G'T'F').
Le jour, constamment moindre que la nuit, atteint son minimum
quand le soleil arrive en S', au solstice d'hiver, 21 décembre; la
nuit est alors à son maximum. (Ce jour le plus court est à Paris de
8h 2m; la nuit la plus longue, de 15h 58m.)


Enfin du solstice d'hiver S à un nouvel équinoxe du printemps ?,
du 21 décembre au 21 mars, le soleil remonte vers l'équateur (le
long de l'arc S'?, fig. 66 bis); il décrit sensiblement les mêmes
cercles diurnes que dans la période précédente, mais dans l'ordre
inverse (suivez fig. 63, en remontant); le jour augmente, la nuit
diminue; le premier regagne tout ce qu'il avait perdu depuis le
21 septembre, la nuit perd ce qu'elle avait gagné; le jour redevient
ainsi égal à la nuit à un nouvel équinoxe du printemps, c'est-à-dire
le 21 mars. A partir de là, les mêmes périodes d'accroissement ou
de diminution du jour et de la nuit recommencent indéfiniment
d'année en année.


177.  Remarque. La déclinaison du soleil varie très-irrégulièrement.
A l'équinoxe du printemps, le soleil monte rapidement; les
jours croissent d'une manière très-sensible. Au solstice d'été,
quand le soleil cesse de monter, pour descendre ensuite, il reste
stationnaire pendant quelques jours. La durée du jour et celle de
la nuit n'éprouvent à cette époque que des variations très-petites.
(V. dans l'Almanach de l'Annuaire du bureau des longitudes de
France, du 10 au 25 juin, les colonnes intitulées lever du soleil,
coucher id., déclinaison id.) A l'équinoxe d'automne, la durée des
jours diminue rapidement. Au solstice d'hiver, quand le soleil
cesse de descendre, pour monter ensuite, le soleil paraît encore
quelque temps stationnaire; il en résulte les mêmes conséquences
qu'au solstice d'été (V. l'Annuaire aux environs du 31 décembre).


178.  Voilà ce qu'on peut dire de plus général sur les variations
périodiques du jour et de la nuit en chaque lieu de l'hémisphère
boréal, sauf une particularité générale dont nous allons
parler.


179. Les lieux de l'hémisphère austral peuvent se partager en deux catégories:
1º ceux dont l'horizon rencontre, comme HGH'F, tous les cercles
diurnes que le soleil décrit pendant l'année (fig. 63 bis); 2º tous ceux dont
l'horizon ayant la situation indiquée fig. 64 ci-après, ne rencontrent pas tous
ces cercles diurnes.


[image: ]


Dans chaque lieu de la première catégorie, tout se passe comme à Paris;
chaque jour solaire de l'année s'y compose d'un jour et d'une nuit dont les
durées subissent les variations périodiques que nous avons décrites.


Il n'en est pas tout à fait de même pour les lieux de la seconde catégorie;
considérons l'un de ces lieux, M, fig. 64. Depuis l'équinoxe de printemps jusqu'à
ce que le soleil arrive au parallèle céleste dont la trace est HK, tout s'y
passe comme à Paris; chaque jour solaire se compose d'un jour et d'une nuit.
Mais le jour augmente de 12 heures à 24 heures, et la nuit diminue de 12 heures
à 0. Puis il y a un jour persistant pendant tout le temps que le soleil met à aller
du parallèle HK au tropique du cancer ST, et à revenir de ce tropique au
cercle HK; en effet, le soleil reste tout ce temps au-dessus de l'horizon HH' du
lieu M. Ce jour peut durer un certain nombre de jours solaires et même des
mois (V. nº 184). Ensuite, pendant que le soleil descend du parallèle HK au
parallèle H'K', en passant par l'équinoxe d'automne, ?, il y a jour et nuit à
chaque jour solaire; le jour diminue de 24 à 12 heures, puis de 12 heures à 0;
la nuit augmente de 0 à 12 heures, puis de 12 heures à 24. Puis il y a nuit
persistante tout le temps que le soleil met à descendre du parallèle H'K' au
tropique du capricorne T'S', et à revenir de ce tropique au cercle H'K'; car le
soleil reste tout ce temps au-dessous de l'horizon HH' de M. Cette longue nuit
a la même durée que le long jour ci-dessus indiqué. Enfin le soleil remontant
du parallèle H'K' à l'équinoxe ?, il y a jour et nuit à chaque révolution diurne
du soleil; le jour croît de 0 à 12 heures et la nuit diminue de 24 à 12 heures.


Il est facile de distinguer les lieux des deux catégories que nous venons d'indiquer.
Pour un lieu de la première, l'arc EH (fig. 63 bis), est plus grand que
ES = 23° 28'
74; mais EH = 90°-PH = 90°-E'M = 90°-latitude du lieu;
90°-latitude > 23° 28' revient à latitude < 90°-23° 28' = 66° 32'.


Note 74:
(retour)  Nous prenons pour plus de simplicité la plus grande déclinaison du soleil
(inclinaison de l'écliptique, nº 128), égale à 23° 28'; on sait qu'elle est variable
et présentement égale à 23° 27' 34" (juin 1854).



Les lieux de la première catégorie sont ceux dont la latitude est inférieure
à 66° 32'.


Pour un lieu de la deuxième catégorie (fig. 64), on a EH > ES = 23° 28', ou
90°-latitude < 23° 28'; ce qui revient à latitude > 66° 32'.


De la cette distinction remarquable:


180. Chaque jour solaire de l'année se compose d'un jour et d'une
nuit en tout lieu dont la latitude est inférieure à 66° 32'. (Toute la
France est dans ce cas.)


Tout lieu dont la latitude atteint ou dépasse 66° 32' a, chaque année,
un jour de 24 heures ou de plus de 24 heures, et une nuit de
même durée, ce jour et cette nuit n'étant pas consécutifs, mais séparés
par tous les jours solaires de l'année durant chacun desquels il y
a en ce lieu alternative de jour et de nuit.


Les deux parallèles terrestres qui sur les deux hémisphères ont
la latitude de 66° 32' s'appellent cercles polaires: l'un est le cercle
polaire boréal ou arctique, l'autre est le cercle polaire austral ou
antarctique. Comme on le voit, ces deux cercles sont des lignes de
démarcation entre les lieux des deux catégories que nous venons
d'établir. Nous avons indiqué leurs traces pq, p'q' sur le méridien
du lieu, fig. 63 bis et 64.



181. Lieux de l'hémisphère austral. Si de l'hémisphère boréal
nous passons à l'hémisphère austral, nous voyons les mêmes variations
du jour et de la nuit se produire en ordre inverse. En
effet, chaque lieu M de l'hémisphère boréal a son antipode M' sur
l'hémisphère austral. (On appelle antipodes deux lieux diamétralement
opposés; ils ont des longitudes et des latitudes égales, mais
de noms différents). Pendant qu'il fait jour en M, il fait nuit en M',
et vice versa (fig. 63). Si donc on veut savoir ce qui se passe en un
lieu de l'hémisphère austral, aux antipodes de Paris par exemple,
il n'y a qu'à relire tout ce qui précède, en remplaçant partout le
mot jour par le mot nuit, et vice versa. Nous laissons le lecteur
faire ce changement.



182. Lieux situés sur l'équateur. Sur l'équateur la durée du
jour est constamment égale à celle de la nuit. En effet, l'horizon de
chaque lieu de l'équateur (par ex.: celui de E', à cause de sa verticale
IE'), est perpendiculaire à l'équateur; cet horizon contient donc
l'axe du monde PP'. Cette ligne PP', qui remplace HH', contenant
les centres de tous les cercles diurnes décrits par le soleil, chacun
de ceux-ci est rencontré par l'horizon de E' suivant un diamètre,
et divisé en deux arcs égaux, l'un de jour, l'autre de nuit.


183. Durée du jour et de la nuit a la même époque, c'est-à-dire à
chaque jour solaire de même date, en des lieux différents.


Voici d'abord à ce sujet deux propositions générales:


1º La durée du jour comme celle de la nuit est la même à la même
époque quelconque pour tous les lieux de même latitude.


2º Chaque jour du printemps ou de l'été est d'autant plus long, et
la nuit d'autant plus courte pour un lieu de l'hémisphère boréal que
sa latitude est plus élevée; le contraire a lieu pour les jours et les nuits
de l'automne et de l'hiver.


La première proposition est une conséquence de la symétrie de
la sphère (les lieux de même latitude étant sur le même parallèle
terrestre)
75.


Note 75:
(retour)  On peut rendre ce fait évident en imaginant qu'on construise sur deux
globes distincts la fig. 63 relativement à deux lieux M et N de même latitude.
Les deux figures ainsi construites seraient identiquement les mêmes, puisque
sur toutes les deux, les cercles diurnes une fois dessinés, on prendrait sur le
méridien le même arc PH=E'M=latitude; pour fixer la position de l'horizon;
de l'identité des deux figures on conclut que le cercle diurne, correspondant à
chaque jour solaire, est divisé de la même manière par les horizons des deux
lieux.





[image: ]La seconde est mise en évidence par la fig. 67 qui représente
la projection du globe de la figure
63 sur le méridien du lieu considéré.
On y voit les traces ou projections
de quelques cercles diurnes
et celles des horizons de lieux M
et M1 de latitudes différentes E'M,
E'M1. On n'a qu'à suivre le soleil
comme nous l'avons fait nº 176;
on voit que dans la première période
ci-dessus indiquée, de l'équinoxe
du printemps au solstice
d été, et de ce solstice à l'équinoxe
d'automne, chaque jour est plus long en effet pour M1 que pour M,
et chaque nuit plus courte, tandis que c'est le contraire dans la
seconde période quand le soleil se trouve au-dessous de l'équateur.


184. Ce qui rend plus remarquable en un lieu donné le phénomène
qui nous occupe, c'est évidemment la différence entre le jour
le plus long de l'année et le jour le plus court. Plus cette différence
est grande, plus grandes aussi et plus sensibles doivent être les
variations quotidiennes que nous avons indiquées. Un caractère
très-propre à distinguer les uns des autres les divers lieux d'un
même hémisphère, est donc la durée du plus long jour ou de la
plus longue nuit (qui est absolument la même).


185. Cette durée dépend exclusivement de la latitude
76; nous
allons l'indiquer pour diverses latitudes boréales, à partir de l'équateur,
sur lequel, ainsi que nous l'avons dit nº 182, il y a constamment
un jour de 12 heures et une nuit d'égale durée.


Note 76:
(retour)  Calcul de la durée du jour en un lieu donné, à une époque donnée.
Soient O le centre d'un cercle diurne LDCK, fig. 63, D la déclinaison correspondante
E'D du soleil, L la latitude E'M d'un certain lieu de la terre,
x la moitié LK de l'arc de nuit pour ce lieu. Le rayon de la sphère étant pris
pour unité, nous avons OI = sin D, OK = cos D; le triangle rectangle IOi
donne Oi = IO tan OIi = IO tang PH = IO tang E'M = sin D tang L. D'un autre
côté le triangle rectangle iOL donne Oi = OL cos iOL = OK cos x = cos D cos x;
en égalant les deux valeurs de Oi, on a cos D cos x = sin D tang L, d'où


cos x = tang D·tang L.            (1)


Ayant le tableau des déclinaisons moyennes du soleil pour les différents jours
de l'année, on pourra, à l'aide de cette formule, déterminer le nombre de degrés
de l'arc x; 2x est l'arc de nuit à l'époque considérée; 360°-2x est l'arc de
jour; en partageant 24 heures en parties proportionnelles à 2x et à 360°-2x,
on a les durées respectives de la nuit et du jour, à l'époque où le soleil a la
déclinaison D, au lieu M dont la latitude est L. Tant que tang D x tang L ne
surpasse pas 1, on trouve une valeur de x; quand tang D tang L = 1, cos x = 1,
x = 0; la nuit est nulle, le jour a 24 heures au moins. Alors D = 90°-L; si
cette valeur de D est le maximum 23° 28', le plus long jour dure précisément
24 heures au lieu considéré. Si la valeur D = 90°-L est inférieure à 23° 28',
le plus long jour du lieu dure depuis le moment où D a cette valeur 90°-L,
jusqu'à ce que le soleil, ayant passé par le solstice d'été, soit revenu à cette
déclinaison D = 90°-L. Cette formule discutée répond donc aux questions
que l'on peut se proposer sur la durée du jour; on peut faire varier L pour
comparer entre eux les divers lieux de la terre.





            DURÉE          DURÉE                  DURÉE         DURÉE

LATITUDE   du plus        du jour     LATITUDE   du plus       du jour

          long jour.    le plus court.           long jour.    le plus

                                                               court.



 0°        12h 0m         12h 0m         40°      14h 51m       9h 9m

 5         12 17          11 43          45       15  26        8 34

10         12 35          11 25          50       16   9        7 51

15         12 53          11  7          55       17   7        6 53

20         13 13          10 47          60       18  30        5 30

25         13 34          10 26          65       21   9        2 51

30         13 56          10  4          66° 32'  24   0        0  0

35         14 22           9 38




Dans chaque lieu dont la latitude est supérieure à 66° 32', la durée
du jour varie de 0 à 24 heures, comme nous l'avons dit nº 179,
dans la partie de l'année où le soleil rencontre l'horizon. Mais
le nombre des jours pendant lesquels cet astre reste au-dessus de
l'horizon sans se coucher (la durée du plus long jour), et le nombre
de jours pendant lesquels il reste au-dessous de ce plan sans se
lever (la durée de la plus longue nuit), varient avec la latitude; le
tableau suivant fait connaître ces durées pour diverses latitudes
boréales depuis 66° 32' jusqu'à 90°.


LATITUDES      LE SOLEIL         LE SOLEIL

boréales.   ne se couche pas    ne se lève pas

            pendant environ     pendant environ



 66°32'           1 j.              1 j.

 70              65                60

 75             103                97

 80             134               127

 85             161               153

 90             186               179




Pour les latitudes australes de même valeur les durées ne sont
pas absolument les mêmes. Ainsi, pour la latitude australe de 75°,
le soleil doit rester constamment au-dessus de l'horizon pendant
qu'il ne se lève pas à la latitude boréale de 75° et vice versa. Le
soleil reste donc environ 97 jours sans se coucher et 103 jours
sans se lever à la latitude australe de 75° (V. nº 181).


Les longs jours des contrées voisines des pôles sont notablement
augmentés par deux causes que nous allons indiquer. En définitive,
la nuit ne dure que 70 jours environ au pôle boréal.


Les mêmes causes, la réfraction et le crépuscule, affectent d'ailleurs,
mais à un degré moindre, la durée de chaque jour en un lieu
quelconque.


186. Influence de l'atmosphère sur la durée du jour; 1º réfraction.
Nous avons vu, nº 108 et 109, que l'atmosphère réfractant les rayons
lumineux qui nous viennent du soleil, nous fait voir cet astre plus
haut qu'il ne l'est en réalité, que, notamment tout près de l'horizon,
elle le relève d'un angle de plus de 33'. Il résulte de là que nous
voyons le soleil se lever avant qu'il ne soit réellement au-dessus
de l'horizon, et que nous le voyons encore quelque temps après
qu'il s'est abaissé au-dessous de ce plan. La durée du jour se
trouve donc augmentée par là, et celle de la nuit diminuée en conséquence.
C'est ainsi qu'à Paris le plus long jour de l'année est de
16h 7m, et le plus court de 8h 11m, au lieu de 15h 18m et 8h 2m, comme
nous l'avons indiqué en ne tenant pas compte de la réfraction. Au
pôle boréal le soleil paraît au-dessus de l'horizon (l'équateur) tant
qu'il n'est pas descendu à la latitude australe de 33'.


187. Crépuscule. L'atmosphère agit encore d'une autre manière
pour augmenter la durée du jour. On sait que les molécules d'air
réfléchissent en tous sens, non-seulement la lumière qui tombe directement
sur leur surface, mais encore celle qui a déjà été réfléchie
vers elles par d'autres molécules. Le résultat de ces réflexions
multipliées est la lumière diffuse qui nous éclaire alors même que
le soleil est à une certaine distance au-dessus de l'horizon.


On appelle crépuscule la lumière qui, de cette manière, nous
arrive indirectement du soleil, avant son lever et après son coucher.
Le crépuscule du matin est aussi connu sous le nom
d'aurore.
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Quand le soleil venant de se coucher pour un lieu m de la terre
(fig. 68) descend progressivement au-dessous de son horizon mD,
il continue pendant un certain temps à projeter directement de la
lumière sur une partie de la masse d'air atmosphérique DCD'
située au-dessus de cet horizon. Ainsi, de la position S, indiquée
sur notre figure, le soleil envoie directement de la lumière à toute
la partie CED de la masse atmosphérique D'CD; cette lumière est
réfléchie partiellement vers le lieu m par les molécules de cette
masse d'air; d'où la clarté crépusculaire. L'étendue de la masse
CED, ainsi frappée directement par les rayons du soleil, diminue
à mesure que cet astre s'abaisse davantage sous l'horizon; la clarté
crépusculaire diminue naturellement avec elle, et doit s'éteindre
alors que l'extrémité C du rayon solaire tangent SKC, mobile
avec le soleil, vient coïncider avec le point D. Cette dégradation
progressive de la clarté crépusculaire, à partir de la clarté du jour,
ménage la transition du jour à la nuit. Quand le soleil, continuant
son mouvement diurne, se rapproche de nouveau de l'horizon mD',
un rayon solaire commence par arriver en D'; puis l'extrémité du
rayon tangent à la terre remontant sur D'CD, la masse d'air D'C'E',
frappée directement par les rayons solaires avant le lever de l'astre,
augmente progressivement; de sorte que la clarté crépusculaire,
d'abord très-faible, augmente progressivement jusqu'à ce qu'arrive
la clarté du jour proprement dit; ainsi se trouve ménagée la transition
de la nuit au jour.


188. On estime par expérience, en calculant le temps qui s'écoule
depuis le coucher du soleil jusqu'à l'instant où l'on peut voir
à la vue simple les plus petites étoiles (celles de 5e et de 6e grandeur),
que le crépuscule cesse, pour un lieu donné, quand le soleil
arrive à 18° au-dessous de l'horizon de ce lieu, et qu'il recommence
quand le soleil, se rapprochant de cet horizon, n'en est plus qu'à
cette distance de 18°
77.


Note 77:
(retour)  L'état de l'atmosphère, la transparence plus ou moins grande de l'air,
doivent avoir une grande influence sur l'intensité de la lueur crépusculaire.
Aussi ne doit-il pas toujours arriver que la fin du crépuscule, ou le commencement
de l'aurore, corresponde au même abaissement du soleil au-dessous de
l'horizon. La limite que nous indiquons n'est donc qu'approximative.






[image: ]188 bis. Tous les points de la sphère céleste situés à 18° au-dessous
de l'horizon d'un lieu se
trouvent sur la circonférence d'un
certain cercle de cette sphère
parallèle à l'horizon, derrière celui-ci
par rapport au zénith M du
lieu, et à une distance sphérique
de 18°. C'est le cercle hL'h'C' de la
fig. 69. PEP'E' est le méridien
du lieu m dont le zénith est M;
HLH'C son horizon, rencontrant le
méridien suivant HH'; FLF'C représente
un des parallèles diurnes
décrits par le soleil dans le sens FLF'C.


Le soleil ayant décrit l'arc LF'C au-dessus de l'horizon, se couche
en C; le crépuscule du soir commence alors et dure pendant que
le soleil, continuant son mouvement diurne, parcourt l'arc CC';
il fait absolument nuit pendant que cet astre décrit l'arc C'FL'.
Quand il arrive en L', l'aurore ou crépuscule du matin commence,
et dure jusqu'à ce que le soleil se lève en L.


L'un et l'autre crépuscule allongeant le jour à ses deux bouts,
qu'on nous permette cette expression, diminuent la nuit proprement
dite de ce qu'ils ajoutent au jour. Il arrive même, à l'époque
des longs jours, pour les lieux dont la latitude dépasse 48° 32', que
l'adjonction des deux crépuscules au jour supprime absolument la
nuit. (V. la note ci-dessous.)


A Paris notamment, dont la latitude est de 48° 50' 11", il n'y
a pas de nuit absolue aux environs du solstice d'été du 15 au
25 juin. Le crépuscule du soir n'est pas fini que celui du matin
commence
78.


Note 78:
(retour)  Si l'on veut considérer ces jours allongés durant lesquels le soleil parcourt
des arcs tels que L'F'C', et ces nuits restreintes durant lesquelles il
parcourt des arcs tels que C'FL' pour les comparer les uns aux autres, comme
nous avons fait pour les jours et les nuits proprement dits, on n'a qu'à reprendre
la fig. 63 en y remplaçant l'horizon HGH'F par le cercle parallèle
hL'h'C', placé au-dessous de celui-ci, par rapport au lieu M, à la distance
sphérique hH = 18° (fig. 69). L'observation du mouvement annuel, ainsi faite,
conduit aux mêmes conséquences et dans le même ordre, sauf ce qui concerne
le plus long jour et la plus longue nuit, qui se trouve ainsi modifié. La zone
terrestre comprenant les lieux qui ont le plus long jour de 24 heures au moins
est augmentée d'une zone inférieure large de 18°, ce qui fait descendre sa base
inférieure à la latitude de 48° 32'; de sorte que Paris, dont la latitude est de
48° 50' 11", se trouve sur cette zone; de là ce que nous avons dit dans le texte.

La zone comprenant les lieux qui ont leur plus longue nuit de 24 heures
au moins, se trouve au contraire diminuée d'une zone de 18° de largeur; de
sorte qu'elle ne comprend plus que les lieux dont la latitude est au moins de
66° 32' + 18º = 84° 32'.


Tout cela se voit sur la fig. 69. En effet, pour que le plus long des jours que
nous considérons actuellement soit de 24 heures au moins pour un certain
lieu, il suffit que l'on ait pour ce lieu hE < 23° 28' ou HE-18° < 23° 28'; d'où
HE < 23° 28' + 18° = 41° 28'. Mais HE = 90°-latitude; donc 90°-latitude
< 41° 28'; d'où latitude > 48° 32'.




189. Durée du crépuscule. Le mouvement du soleil sur chaque
cercle diurne étant sensiblement uniforme, les durées des crépuscules
du soir et du matin ont pour mesure les nombres de degrés
des arcs crépusculaires CC', L'L; ces deux arcs étant égaux, nous
pouvons dire d'abord: l'aurore et le crépuscule du soir d'un même
jour solaire durent autant l'un que l'autre.


[image: ]Si on ne quitte pas un même lieu de la terre, on voit que pour
tous les parallèles diurnes rencontrés à la fois par les cercles HH',
hh', les projections des arcs crépusculaires sur le méridien sont
égales toute l'année. Ayant égard
aux positions respectives de ces
arcs crépusculaires sur leurs cercles,
par rapport au plan de projection,
puis à la grandeur de ces
cercles diurnes suivant leur rapprochement
de l'équateur, on suit
facilement les variations de la
durée du crépuscule en ce lieu
pour les diverses époques de
l'année (fig. 70). Nous contentant
d'indiquer la marche à suivre,
nous laissons au lecteur à préciser
le sens de ces variations.




Ce qui importe davantage, c'est de comparer les durées correspondantes
des crépuscules pour des lieux différents.


La durée du crépuscule à une même époque quelconque de
l'année est d'autant plus grande pour un lieu que sa latitude est
plus élevée.


On voit la raison de ce fait sur la fig. 70, où nous n'indiquons
que les projections des cercles diurnes et les traces des horizons
de deux lieux M et M1. Comparez les projections sur un même
parallèle; comme la différence est constante, voyez sur l'équateur
Ii', Ii'1.


Plus l'horizon d'un lieu est incliné sur l'équateur, et par suite sur les parallèles diurnes, plus est étendu l'arc du parallèle diurne compris entre l'horizon
HH' et le cercle hh', entre lesquels existe toujours l'écartement fixe de 18°;
cela se voit par les projections. Les arcs crépusculaires finissent par devenir
très-grands, et le crépuscule finit par augmenter le plus long jour de plusieurs
jours solaires, et même d'un ou deux mois pour les lieux voisins du pôle.
Quand on arrive au pôle, HH' devenant l'équateur, hh' étant au-dessous à 18°
de distance, il ne reste plus au-dessous de hh' qu'une zone de 5° 28' de large,
sur laquelle le soleil ne reste que 70 jours environ, de sorte que le crépuscule
diminue la nuit de plus de 3 mois.



Causes principales des variations de la température en un lieu

déterminé de la terre.


190. La quantité de chaleur que reçoit chaque jour un lieu déterminé
est très-variable: elle dépend de la durée du jour en ce
lieu et de la hauteur méridienne du soleil au-dessus de son horizon.
Plus le jour est long et plus le soleil s'élève, plus l'échauffement
est grand
79. Du solstice d'hiver au solstice d'été, la hauteur
méridienne du soleil augmente dans nos climats en même
temps que la durée du jour; la quantité de chaleur reçue quotidiennement
dans ce lieu augmente donc continuellement durant
cette période de l'année. Du solstice d'été au solstice d'hiver, au
contraire, la hauteur méridienne du soleil diminue avec la durée
du jour; la quantité de chaleur reçue journellement diminue donc
dans cet intervalle.


Note 79:
(retour)  La hauteur du soleil au-dessus de l'horizon n'est autre chose que l'angle
sous lequel les rayons solaires viennent frapper le sol au moment considéré;
or, si une surface se présente successivement aux rayons solaires sous un angle
variable, il est évident que le nombre des rayons reçus sur une étendue donnée
est le plus grand possible quand la surface leur est perpendiculaire, et que ce
nombre va en diminuant avec l'angle que les rayons forment avec la surface,
jusqu'à devenir nul avec cet angle. Tout cela se constate en physique par
l'expérience.

Prenons donc le soleil un certain jour à son lever; la quantité de chaleur qu'il
fournira dans l'unité de temps par exemple au lieu considéré, ira évidemment
en augmentant depuis zéro jusqu'à un maximum qui aura lieu à midi
vrai, puis diminuera depuis ce maximum jusqu'à zéro.


Comparons maintenant ce qui arrive à Paris, à deux époques où la durée du
jour est différente. Plus le jour est long, plus la hauteur méridienne du soleil
est grande.


Donc plus le jour est long, plus grande est la quantité de chaleur reçue par
la terre, parce qu'elle est frappée plus longtemps et avec une plus grande intensité
moyenne par les rayons solaires.
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191. Dans nos climats, et en général pour tout lieu situé entre le pôle et
le tropique, la hauteur méridienne du soleil au-dessus de l'horizon varie avec
la déclinaison du soleil dans le même sens que la durée du jour. C'est ce que
l'on voit clairement sur la fig. 63. Supposons
que PEP'E' soit le méridien du
lieu M; la hauteur méridienne du soleil
est l'angle que fait, avec la trace IH' de
l'horizon, le rayon qui va chaque jour
du centre I de la terre au point de
l'arc TS' où passe le soleil à midi. Ex.:
le jour où le soleil décrit le cercle
diurne LDCK, sa hauteur méridienne
est l'angle DIH', mesuré par l'arc DH'.
Cette hauteur méridienne, qui est à son
minimum, S'IH', au solstice d'hiver,
en même temps que la durée du jour,
augmente continuellement avec celle-ci
à mesure que le soleil remonte sur l'écliptique, se rendant du solstice d'hiver
au solstice d'été, puis diminue avec la durée du jour dans l'intervalle du
solstice d'été au solstice d'hiver. Aux environs de chaque solstice, la hauteur
méridienne, avant de varier dans un autre sens, reste quelque temps stationnaire
avec la déclinaison du soleil et la durée du jour.


A Paris, le minimum de la hauteur méridienne du soleil est 17° 42' au solstice
d'hiver; le maximum 64° 38', au solstice d'été; la moyenne est 41° 10', à l'un
ou à l'autre équinoxe.


192. Mais la température d'un lieu, à chaque instant, ne dépend
pas seulement de la quantité de chaleur qu'il reçoit à cet
instant; cette chaleur, qu'il tend à perdre par le rayonnement, lui
est plus ou moins conservée par l'atmosphère. Il résulte de là que
le maximum de la température du jour n'a pas lieu à midi, moment
où la terre reçoit la plus grande quantité de chaleur, mais à deux
heures environ; un peu plus tôt en hiver, un peu plus tard en été.


En voici la raison: A midi, par exemple, le sol reçoit plus de chaleur qu'il
n'en perd par le rayonnement, et la température s'élève. Il en est de même
jusqu'à deux heures environ; alors l'intensité du rayonnement ayant augmenté
progressivement avec la température, tandis que la quantité de chaleur reçue
à chaque instant a diminué avec la hauteur du soleil, la perte surpasse le gain,
et la température s'abaisse jusqu'à l'heure du lendemain où le sol recommence
à gagner plus qu'il ne perd.


L'heure du maximum n'est pas la même partout; sur les montagnes
elle se rapproche de midi, parce que l'atmosphère moins
dense s'oppose moins au rayonnement.


Un effet semblable se produit quant à la plus haute température
de l'année. S'il n'y avait pas accumulation de la chaleur conservée
par l'atmosphère, le jour le plus chaud de l'année serait le
21 juin, jour du solstice d'été; le jour le plus froid serait le 21
décembre, vers le solstice d'hiver. Mais, à cause de l'accumulation
susdite, la plus haute température de l'année a lieu un mois
plus tard, à la fin de juillet; le minimum trois semaines plus tard,
vers le milieu de janvier.


Au solstice d'été, par exemple, la somme des quantités de chaleur reçues
par le sol dans un jour solaire surpasse la somme de celles qu'il perd dans le
même temps par le rayonnement de jour et de nuit; par suite, la température
moyenne s'élève d'un jour à l'autre; cela continue ainsi pendant le mois qui
suit. Après ce mois, le rayonnement ayant augmenté avec la température, et
la quantité de chaleur reçue ayant diminué avec la hauteur méridienne et la
durée du jour, la perte de chaleur pour chaque jour solaire finit par surpasser
le gain, et la température moyenne s'abaisse. Cela dure ainsi jusqu'à l'époque
de l'année où le gain redevient de nouveau supérieur à la perte. Nous n'avons
pas besoin de faire remarquer l'influence des longues nuits.


193. Les variations de la température n'ont pas, en réalité, la
régularité qui vient d'être indiquée; d'autres causes accidentelles
influent considérablement sur ces variations. Les vents qui soufflent
irrégulièrement, tantôt d'un côté, tantôt d'un autre, apportant dans
un lieu des masses d'air considérables ayant pris la température
différente qui règne dans d'autres régions de la terre, modifient
la température du lieu tantôt dans un sens, tantôt dans un autre.
La température générale d'un lieu peut encore être influencée par
le voisinage des mers, d'une chaîne de montagnes, la hauteur du lieu
au-dessus du niveau de la mer. (V. la note ci-dessous)
80, et en général
par la distribution des terres et des eaux dans la région du
globe où il se trouve. Mais ces causes sont en général du domaine
de la météorologie, et nous n'avons pas à nous en occuper ici.


Note 80:
(retour)  L'atmosphère s'oppose au rayonnement de la chaleur terrestre, et par
suite au refroidissement qui en résulte. Mais à mesure qu'on s'élève au-dessus
du niveau des mers, l'air moins dense s'oppose moins au rayonnement; de là
un froid plus grand. On a remarque que la température, à latitude égale,
s'abaisse d'environ 1° pour 185 mètres d'élévation.



194. Principales zones terrestres. Sous le rapport des températures,
et quelquefois de la durée du plus long jour et de la plus
longue nuit, on divise la terre en un certain nombre de zones dont
nous indiquerons seulement les principales.


On appelle tropiques terrestres deux parallèles tracés sur le globe
terrestre à 23° 28' de part et d'autre de l'équateur; les tropiques
terrestres correspondent aux tropiques célestes (nº 120) (V. fig. 63,
les cercles ST, S'T').


On appelle cercles polaires deux parallèles situés à 23° 28' des
pôles (66° 32' de l'équateur). Le cercle polaire boréal (cercle pq,
fig. 63) passe en Islande, au nord de la Suède, dans la Sibérie, le
pays des Esquimaux, et le Groënland. Le cercle polaire austral
(cercle p'q', fig. 63) est défendu par des glaces perpétuelles.


La surface de la terre est partagée par ces quatre cercles en
cinq zones principales: 1º La zone torride, comprise entre les
deux tropiques, qui a 46° 50' de largeur; 2º deux zones tempérées
dont chacune est comprise entre l'un des tropiques et un cercle
polaire; 3º deux zones glaciales comprises entre les cercles polaires
et les pôles.


La zone torride occupe à peu près 0,40 de la surface totale de
notre globe; les zones tempérées 0,52, et les zones glaciales 0,08.


195.  Température des différentes zones. Dans la zone torride,
entre les tropiques, le soleil s'écartant peu du zénith à midi, les
rayons tombent chaque jour verticalement sur la terre et y pénètrent
en très-grande quantité. Aussi la température moyenne de cette
zone est-elle très-élevée; à l'équateur elle est de 28° centigrades.


Dans les zones tempérées, à mesure que la latitude augmente,
les rayons du soleil, tombent plus obliquement sur la terre, y pénètrent
en moins grande quantité; la température moyenne diminue
rapidement. A la latitude de Paris elle n'est plus que de 10 à
11°. Au cap nord, à la latitude de 70°, elle est descendue à 0°.


Dans les zones glaciales, à l'obliquité du soleil se joint la longueur
des nuits. Le froid y est toujours très-intense, c'est la région
des glaces perpétuelles.


Remarques. A latitude égale, la température est plus élevée en
Europe qu'en Amérique et en Asie. Par exemple: la température
moyenne est la même à Londres, dont la latitude est 51° 31', qu'à
New-York dont la latitude est 41° 55'.


L'hémisphère austral est plus froid que l'hémisphère boréal. La
ceinture de glaces perpétuelles qui entoure le pôle boréal ne s'étend
pas à plus de 9°, tandis que celle qui entoure le pôle austral s'étend
à plus de 18°.



Distance du soleil a la  terre.--Ses dimensions.


196. Après nous être occupé du mouvement du soleil et de
ses principaux effets, nous allons montrer comment on a pu
trouver la distance qui nous sépare de cet astre et ses vraies dimensions.


A propos de l'orbite solaire, nous avons dit que les diverses
valeurs que prend successivement le diamètre apparent du soleil,
fournissent autant de nombres proportionnels aux valeurs correspondantes
de la distance du soleil à la terre. On connaît ainsi la
loi suivant laquelle varie cette distance; mais cela n'apprend rien
sur sa grandeur absolue. Il faut donc recourir à d'autres moyens
pour déterminer cette grandeur.


Ainsi que nous l'avons déjà dit à propos des étoiles, nº 51, la
distance d'un astre à la terre s'obtient de la même manière que
sur la terre la distance d'un lieu où on est à un point inaccessible
mais visible. On fait choix d'une base, et on cherche à déterminer
les angles adjacents et l'angle sous lequel cette base
serait vue du lieu inaccessible. La seule difficulté de l'opération,
quand il s'agit d'un astre, consiste dans la grandeur de la distance
à mesurer relativement à la base dont on peut disposer; cette grandeur,
en rendant l'angle très-petit, donne une grande influence sur
le résultat aux erreurs d'observations. La base dont on se sert pour
le soleil, la lune, et les planètes, est le rayon de la terre; l'angle
opposé est la parallaxe de l'astre.


197. Parallaxe du soleil. La parallaxe d'un astre S (fig. 71
ci-après), relativement à un lieu A de la terre, est l'angle ASO,
sous lequel serait vu, du centre même de l'astre, le rayon AO de
la terre qui aboutit au lieu A. Quand l'astre est à l'horizon, en S',
sa parallaxe est dite horizontale; quand il est déjà à une certaine
hauteur au-dessus de l'horizon, cet angle ASO est dit une parallaxe
de hauteur.


198. On sait déjà que, à cause de l'immense éloignement des
étoiles, leurs parallaxes ainsi définies sont trop faibles pour que
nous puissions les déterminer (nº 51). Nous n'avons donc à nous
occuper sous ce rapport que du soleil, de la lune et des planètes;
les parallaxes de ces astres sont encore des angles très-petits.


199. La parallaxe horizontale du soleil, à sa distance moyenne
de la terre, est 8",57, à moins de 0",04 d'approximation en plus
ou en moins.


200.  La distance moyenne du soleil à la terre est d'environ
38000000 lieues de 4 kilomètres (24000 fois le rayon de la terre).



[image: ]Supposons qu'on observe le soleil à l'horizon; le centre O de
la terre, le centre S du soleil, et le lieu d'observation A sont reliés
par un triangle ASO (fig. 71), dans lequel l'angle A = 90°;
l'angle ASO = 8",57 (parallaxe horizontale), l'angle O = 8°-
8",57
81; un pareil triangle peut sans erreur sensible être considéré
comme isocèle, comme si l'angle O était égal à l'angle
A. Cela admis, le rayon, AO = r, de la terre
est la corde d'un petit arc de cercle de 8",57,
décrit du sommet S, avec un rayon SO précisément
égal à la distance cherchée du soleil à la
terre, que nous désignerons par D. On peut,
sans erreur relative sensible, considérer ce petit
arc de 8",57 comme égal à sa corde AO = r, avec
laquelle il se confond. En comparant cette longueur
à celle de la circonférence tout entière,
2pD, on a


2pD/r = 360°/8",57 = 1296000"/8",57 = 1296000/8,57


d'où on déduit aisément D = 1296000 · r / 2p · 8,57.


Note 81:
(retour)  La résolution de triangle ASO par la trigonométrie donne r = D sin P;
d'où D = r / sin P; à cause  de la petitesse de P (8",57), on peut remplacer
sin P par P, qui est la longueur d'un arc de 8",57 dans la circonférence dont
le rayon est 1.



En faisant le calcul on trouve D=24068r (nous avons mis
24000 en nombre rond). Le rayon considéré dans le calcul de la
parallaxe est le rayon de l'équateur égal à 6377398 mètres.


La parallaxe n'étant connue que par approximation, avec une
erreur possible de 0",04, en plus ou en moins, on ne peut répondre
de la distance du soleil à la terre qu'à quelques centaines
de mille kilomètres près. Avec cette approximation, on estime que
la distance moyenne est d'environ


38000000 lieues de 4 kilomètres
82.


Note 82:
(retour)  Cette distance moyenne est le demi-grand axe de l'orbite solaire (nº 129).
La distance apogée est 24728, et la distance périgée 23648.



201. Diamètre du  soleil; son volume, sa masse,  sa densité,
comparés aux mêmes quantités relatives à la terre.


1º Le diamètre réel du soleil égale 112 fois celui de la terre (ce
qui fait environ 357000 lieues de 4 kilomètres).


2º Le volume du soleil égale 1405000 fois celui de la terre.


3º La masse du soleil égale 355000 fois celle de la terre.


4º La densité du soleil est à très-peu près le ¼ de la densité de
la terre.


202. Diamètre réel du soleil. Reprenons le triangle ASO (fig. 71),
et prolongeons la longueur AO, considérée comme un petit arc de
cercle très-aplati, d'une longueur égale OB, (fig. 71); AOB sera
le diamètre réel de la terre; l'angle ASB, double de la parallaxe
horizontale ASO, est le diamètre apparent de la terre vue du
soleil (nº 124). Imaginons ensuite qu'on joigne de même le centre
O de la terre aux deux extrémités A' et B' d'un diamètre A'SB' du
soleil; on obtient ainsi un triangle A'OB', tout à fait analogue au
triangle ASB (faites la figure), dont l'angle au sommet, A'OB', est
précisément le diamètre apparent du soleil au même instant
(nº 124). Les diamètres réels AOB, A'SB', peuvent être regardés,
d'après les considérations qui précèdent, comme se confondant
avec les petits arcs de cercle AB, A'B'; de même rayon (OS=SO);
qu'ils sous-tendent; mais des arcs de cercle de même rayon sont
entre eux comme les angles au centre ASB, A'OB', qui leur correspondent
(2º livre de géom.).




On a donc

          A'B'      2R     A'OB'

          ---- ou   --  =  ----.

          AB        2r     ASB




Mais, à la distance moyenne, le diamètre apparent du soleil
A'OB' = 32' 3",3; et ASB double de la parallaxe horizontale
= 8",57 · 2 = 17",14; on a donc


          2R   32'3",3   1923",3    1923,30

          -- = ------- = ------- =  -------.

          2r   17",14     17",14     17",14




D'où on déduit

R = 112r.


2R = 357000 lieues de 4 kilomètres.


2º Les surfaces des deux globes sont entre elles comme les carrés
des rayons, ou comme 112² / 1; leurs volumes sont comme les
cubes des mêmes rayons, comme 112³: 1.


On a
                 S = 1254s;   V = 1404928v.


Nous avons pris en nombre rond V = 1405000v.


On se fera une idée du volume énorme du soleil en imaginant
que le centre de cet astre vienne un instant coïncider avec celui de
la terre; le globe solaire ainsi placé irait non-seulement jusqu'à la
lune, mais encore une fois au delà.


3º La masse d'un corps se définit vulgairement la quantité des
molécules matérielles qui composent ce corps. Mais comment s'imaginer
les dernières molécules matérielles d'un corps et en évaluer
le nombre?


On prend la masse d'un certain corps pour unité, et on évalue
le rapport des autres masses à celle-là d'après les principes suivants:


La masse d'un globe sphérique, comme la terre ou le soleil, se
mesure par le chemin que ce globe, en vertu de son attraction
propre, fait parcourir dans la première unité de temps à un corps
placé à une distance convenue.


Ou bien si l'on veut:


Les masses de deux globes sphériques sont entre elles comme
les vitesses avec lesquelles ces deux globes attirent respectivement
un corps quelconque placé à égale distance de l'un et de l'autre.
(V. le principe de gravitation.)


On a trouvé, d'après cela, pour le soleil et pour la terre:


M = 354936m


Nous avons mis en nombre rond M = 355000m.


4º La densité d'un corps homogène est le nombre qui mesure la
masse de l'unité de volume du corps. Si le corps n'est pas homogène,
la densité est la masse moyenne de l'unité de volume.


Il résulte de là que si M est la masse d'un corps, V son volume,
D sa densité, M = V · D. Écrivons ces égalités pour le soleil et la
terre:


               M = V · D;            m = v · d;


on déduit de là

          M     V     D         D   M  V

          -  =  -  x  -;  d'où  - = -: -.

          m     v     d         d   m  v





     M               V                 D   355000

Mais -  = 355000, et - = 1403000; d'où - = -------.

     m               v                 d   1405000



          D

On trouve - = 0,252, ou 1/4 à peu près.

          d





203. Taches du soleil. Sa rotation. A l'œil nu le soleil nous
apparaît comme un disque brillant d'un éclat uniforme; mais
quand on l'examine avec une lunette, munie de verres colorés
pour affaiblir l'éclat du disque, on aperçoit à sa surface des taches
noires de formes irrégulières dont la fig. 74 peut donner une idée.




[image: ]Si on observe ces taches sur le bord
oriental du soleil, on les voit se
déplacer chaque jour sur le disque,
allant de l'Est à l'Ouest avec
une vitesse qui croît jusqu'au milieu
du disque, puis décroît ensuite.
Après avoir décrit des droites
parallèles ou des demi-ellipses
très-aplaties, ayant toutes leur
convexité tournée vers la même
région, ces taches disparaissent
lorsqu'elles ont atteint le bord occidental. Plusieurs d'entre elles
s'évanouissent pendant leur mouvement visible; d'autres, ayant
achevé leur course visible et disparu au bord occidental, ne reparaissent
plus; elles ont dû se dissiper sur la face du soleil en ce
moment invisible pour nous. D'autres taches enfin, après avoir
disparu au bord occidental, reparaissent au bord opposé, et font
ainsi une ou plusieurs révolutions complètes avant de se dissoudre.
En déterminant (à l'aide des AR et des D) les positions successives
de chaque tache relativement au centre du soleil, on peut
construire la courbe que cette tache paraît décrire sur le disque.
Ou a constaté ainsi que toutes ces taches décrivent des courbes
semblables et parallèles; on reconnaît en même temps que celles
qui achèvent leur révolution reviennent toutes à la même position
au bout du même temps, qui est de 27j, 3.


204. Rotation du soleil. La nature de ces mouvements, leur
régularité, leur ensemble, l'égalité des temps pendant lesquels une
tache est successivement visible et invisible, ne peuvent s'expliquer
que par un mouvement de rotation du soleil sur lui-même, analogue
à celui que nous avons reconnu à la terre. Cette rotation admise,
ayant déduit d'un nombre suffisant d'observations particulières la
position de l'axe de rotation et celle de l'équateur céleste, on a pu
constater ensuite l'accord du mouvement de rotation avec les apparences
du mouvement général des taches; cet accord met hors de
doute le mouvement de rotation.


Il résulte donc de l'observation des taches du soleil que cet astre
tourne sur lui-même, d'Occident en Orient, autour d'un axe central.
Il fait une révolution en 25j, 34 
83.


Note 83:
(retour)  Durée de la rotation. Les taches qui font une révolution entière, mettant
toutes 27j, 3 à l'accomplir, il semblerait au premier abord que 27j ,3 doit
être la durée d'une révolution du soleil; mais pour déterminer cette durée il
faut avoir égard non-seulement au mouvement des taches, mais encore au
changement de place du soleil par rapport à la terre, qui change la position du
point de vue; il faut combiner ces deux mouvements. C'est d'après des observations
ainsi faites sur des taches nombreuses que M. Laugier a trouvé la durée
ci-dessus indiquée (25j, 34).



L'axe du soleil fait avec celui de l'écliptique un angle de 7° 9';
l'équateur solaire fait donc avec le même plan un angle de 82° 51';
il le coupe d'ailleurs suivant une droite faisant avec la ligne des
équinoxes un angle de 80°; On remarque que jamais les taches ne
se rencontrent dans le voisinage des pôles du soleil; elles sont comprises
dans une région qui s'étend à 30° environ de son équateur.




[image: ]205. Détails particuliers sur les taches du soleil. Voici des détails
sur les taches du soleil qui motivent l'hypothèse que l'on fait
sur la constitution physique de cet astre. Ces taches ont été observées
pour la première fois par Fabricius en
1611, et par Galilée en 1612. Elles ont une forme
irrégulière et variable, mais sont nettement définies
sur leur contour; elles sont généralement entourées
d'une sorte de bordure moins sombre, appelée
pénombre. La figure 75 peut donner une idée
de ces taches. Voici ce qu'en dit sir John Herschell dans son Traité
d'astronomie
84.


Note 84:
(retour)  Traduction de M. Cournot.



«Les taches ne sont pas permanentes; d'un jour à l'autre, ou
même d'heure en heure, elles semblent s'élargir ou se resserrer,
changer de forme, puis disparaître tout à fait, ou reparaître dans
d'autres parties du disque où il n'y en avait pas auparavant. En
cas de disparition, l'obscurité centrale se resserre de plus en plus
et s'évanouit avant les bords. Il arrive encore qu'elles se séparent
en deux ou plusieurs taches. Toutes ces circonstances annoncent
une mobilité extrême qui ne peut convenir à un fluide, et accuse
un état violent d'agitation qui ne semble compatible qu'avec
l'état atmosphérique et gazeux de la matière. L'échelle sur laquelle
s'accomplissent ces mouvements est immense. Une seconde
angulaire, pour l'observateur terrestre, correspond sur le disque
solaire à 170 lieues, et un cercle de ce diamètre (comprenant plus
de 22000 lieues carrées) est le moindre espace que nous puissions
voir distinctivement à la surface du disque solaire. Or on a observé
des taches dont le diamètre surpassait 16000 lieues, à peu près
cinq fois le diamètre de la terre. Pour qu'une pareille tache disparaisse
en six semaines (les taches durent rarement plus longtemps),
il faut que les bords, en se rapprochant, décrivent plus de 300 lieues
par jour.


»Dans le voisinage des grandes taches, ou des groupes de taches,
on observe souvent de larges espaces couverts de raies bien marquées,
courbes ou à embranchements, qui sont plus lumineuses
que le reste du disque, et qu'on nomme facules. On voit fréquemment
des taches se former auprès des facules lorsqu'il n'y en
avait pas auparavant. On peut les regarder très-probablement
comme les faîtes de vagues immenses produites dans les régions
supérieures de l'atmosphère solaire, à la suite de violentes agitations.»


206. Constitution physique du soleil. La science ne nous apprend
rien de positif sur la constitution physique du soleil. Nous
sommes réduits, sous ce rapport, à des conjectures plus ou moins
probables. Les observations faites sur les taches ont conduit à l'hypothèse
suivante, imaginée par William Herschell, et généralement
admise aujourd'hui. On suppose que le soleil est un globe
obscur entouré de deux atmosphères concentriques: une première
atmosphère dans laquelle flotte une couche de nuages opaques et
réfléchissants; une seconde, lumineuse à sa surface extérieure.
Cette dernière enveloppe, qui nous envoie la lumière et la chaleur,
et détermine le contour visible de l'astre, a reçu le nom de photosphère,
c'est-à-dire de sphère lumineuse. Quand une ouverture se
produit dans cette photosphère, nous voyons la couche nuageuse;
de là une tache grise ou pénombre. Quand une ouverture correspondante
se produit dans la couche nuageuse, nous voyons à travers
les deux ouvertures le globe obscur central; de là une tache
noire ordinairement entourée d'une pénombre
85 (V. la fig. 75).
Il est probable que ces déchirements temporaires des deux couches
sont dus à des masses de gaz qui, partant du globe intérieur, lancées
peut-être par des volcans puissants, traversent violemment
les deux atmosphères en les déchirant.


Note 85:
(retour)  Quand une tache est vue de face, la pénombre entoure la tache comme
une auréole circulaire; quand la tache, se déplaçant, approche du bord, la
largeur de la pénombre diminue du côté le plus voisin du centre, en persistant
telle qu'elle est de l'autre côté. Cette pénombre fait l'effet d'un talus descendant
dans l'intérieur du globe, et dont on verrait toute la surface dans la première
position de la tache (près du centre), puis seulement d'un seul côté
quand la tache est vue plus obliquement. De là l'idée de l'atmosphère opaque
à travers laquelle descendrait ce talus jusqu'au noyau obscur.



[image: ]207. Lumière zodiacale. On appelle ainsi une lueur très-faible
qui, à certaines époques de l'année, apparaît à l'ouest après le
crépuscule du soir, ou à l'est avant l'aurore. Elle dessine sur la
voûte céleste une sorte de triangle scalène incliné, sans contours
bien nets, dont la base de 20° à 30° repose sur l'horizon, et dont le
sommet s'élève quelquefois à 50° de
hauteur (V. fig. 76 la partie de la
figure située au-dessus de HH'). Un
arc de cercle mené du sommet au milieu
de la base coïncide à peu près
avec l'écliptique; en sorte que cette
lueur paraît, pour ainsi dire, couchée
sur le zodiaque, dans le sens de sa plus
grande dimension; de là vient son
nom.


Dans nos climats, la lumière zodiacale
se voit en général le soir à la fin
du crépuscule, pendant les mois de mars et d'avril, et le matin
avant l'aurore, en septembre et octobre; dans les régions équatoriales
on la voit toute l'année.


Deux circonstances paraissent en effet décider de sa visibilité:
1º la brièveté du crépuscule, 2º la position plus ou moins inclinée
de l'arc de l'écliptique sur laquelle cette lueur se projette. On peut
d'après cela se convaincre, à l'aide d'un globe terrestre, que les
époques les plus favorables pour la voir sont celles que nous
avons citées.


La lumière zodiacale participe d'ailleurs au mouvement diurne;
elle accompagne le soleil; son extrémité supérieure s'abaisse de
plus en plus, et au bout de quelque temps elle disparaît entièrement.
On se fait une idée nette des circonstances de ce phénomène,
en imaginant que le soleil soit environné d'une immense
atmosphère, de forme lenticulaire, fig. 76 (très-peu dense, car on
voit les étoiles à travers), dont l'astre occuperait le centre, et
dont la plus grande dimension serait dirigée dans le sens de
l'écliptique. Nous n'en voyons que la partie située au-dessus de
l'horizon H'H.


208. Irrégulariteés du mouvement apparent du soleil.


Pour terminer en ce qui concerne le mouvement apparent du
soleil par rapport à la terre, il nous reste à faire connaître succinctement
quelques irrégularités dont ce mouvement est affecté, et
dont nous avons fait abstraction à dessein. Nous nous occuperons
principalement du phénomène connu sous le nom de précession
des équinoxes. Pour bien comprendre ce que nous avons à dire à
ce sujet, il nous faut définir ici quelques termes très-usités d'ailleurs
en astronomie.




[image: ]209. Longitudes et latitudes célestes. En outre de l'ascension
droite (AR) et de la déclinaison (D), les astronomes font souvent
usage, pour définir d'une manière précisé la position d'un astre
sur la sphère céleste, de deux
quantités analogues à l'AR et à la
D, mais qui en diffèrent en ce
qu'elles se rapportent à l'écliptique,
au lieu de se rapporter à
l'équateur: ce sont la longitude
et la latitude célestes.


Soient la sphère céleste, O
(fig. 77), E?E' l'équateur, S'?S
l'écliptique, OP l'axe du monde,
ON l'axe de l'écliptique, e un astre
quelconque, PeD un arc de grand
cercle perpendiculaire à l'équateur,
NeL un autre arc perpendiculaire à l'écliptique. On sait que
l'ascension droite de l'astre e est l'arc ?D, que sa déclinaison est
eD. Sa longitude est ?L, et sa latitude eL.


210. La latitude d'un astre e, est sa distance eL à l'écliptique,
comptée sur le demi-cercle qui passe par cet astre et les
pôles de l'écliptique. La latitude est boréale ou australe suivant que
le pôle de l'écliptique le plus voisin de l'astre est boréal ou austral;
elle est positive dans le premier cas, négative dans le second, et
varie de 0 à 90°. Le demi-cercle NeL se nomme cercle de latitude.


211. On appelle longitude d'un astre, e, l'arc ?L compris entre
un point déterminé de l'écliptique et le cercle de latitude de cet
astre. L'origine des longitudes est le point équinoxial du printemps,
?; elles se comptent de l'ouest à l'est; à partir de ce point,
et varient en général de 0° à 360°.


212. Le mouvement diurne apparent de la sphère céleste,
autour d'un axe perpendiculaire à l'équateur, permet de déterminer
facilement l'ascension droite et la déclinaison d'un astre à
l'aide des instruments méridiens, comme nous l'avons expliqué,
nº 34 à 39. Mais cet axe de rotation étant oblique à l'écliptique,
on ne peut arriver par le même moyen à la connaissance des longitudes
et des latitudes.


La longitude et la latitude d'un astre se déduisent par un calcul
de trigonométrie sphérique, de son ascension droite et de sa déclinaison
observées
86.


Note 86:
(retour)  Ce calcul consiste dans la résolution du triangle sphérique NPe (fig. 77),
dont nous allons indiquer les éléments. On y connaît: 1º le côté Pe = 90°-Déclinaison;
2º le côté NP qui mesure l'angle PON, inclinaison de l'écliptique sur
l'équateur; 3º l'angle NPe qui a pour mesure l'arc ED = 90° + ?D = 90° + AR.
Connaissant deux côtés d'un triangle et l'angle compris, on peut résoudre ce
triangle et calculer: 1º le troisième côté Ne = 90°-Latitude; 2º l'angle PNe,
qui a pour mesure l'arc d'écliptique LS = 90°-Longitude; d'où la longitude
et la latitude célestes.



C'est pour rendre plus facile cette conversion très-fréquente des
ascensions droites et des déclinaisons en longitudes et en latitudes,
qu'on a choisi pour origine commune des ascensions droites et
des longitudes le point équinoxial ?, commun aux deux cercles
sur lesquels se comptent ces coordonnées.


213. Mouvements directs, rétrogrades. On sait que le soleil se
meut sur l'écliptique, de l'ouest à l'est; sa latitude est constamment
nulle; ses diverses positions se distinguent par leurs longitudes.


Comme on a souvent à considérer, en astronomie, des mouvements
qui ont lieu sur la sphère céleste, soit le long de l'écliptique,
soit suivant des lignes qui ne s'en écartent pas beaucoup,
on a adopté des dénominations spéciales pour désigner le sens de
ces mouvements. Tout mouvement qui s'effectue dans le même
sens que celui du soleil, de l'ouest à l'est (dans le sens des longitudes
croissantes), est dit un mouvement direct; dans le sens contraire,
le mouvement est dit rétrograde.


214. On dit que deux astres sont en conjonction quand leurs
longitudes sont égales; en opposition, quand leurs longitudes diffèrent
de 180°; en quadrature, quand elles diffèrent de 90°.




PRÉCESSION  DES ÉQUINOXES.



215. Supposons qu'à une certaine époque on ait formé un
catalogue des ascensions droites et des déclinaisons d'un certain
nombre d'étoiles, rapportées au point équinoxial ?, puis qu'à
d'autres époques, séparées les unes des autres par des intervalles
de plusieurs années, on ait recommencé plusieurs fois la même
opération, en ayant soin de déterminer chaque fois la position
précise du point équinoxial ?, comme nous l'avons indiqué au
nº 135. On reconnaît ainsi que les ascensions droites des étoiles
augmentent avec le temps; les déclinaisons varient aussi. La loi
de ces variations est assez complexe et difficile à établir; mais si
on convertit les ascensions droites et les déclinaisons en longitudes
et en latitudes, une loi très-simple se manifeste aussitôt:


Les longitudes célestes de toutes les étoiles augmentent proportionnellement
au temps, à raison de 50",2 environ par an, tandis que
leurs latitudes ne varient pas sensiblement.


Exemple: Épi de la Vierge.


Longitude; d'après Hipparque, 128 ans avant J.-C. 174°  7' 30"

  --      --   Bradley, en 1760....... 200° 29' 40"

  --      --   Maskelinè, en 1802...... 201°  4' 41"





[image: ]216.  Cette égale variation des longitudes de toutes les étoiles
peut s'expliquer de deux manières:


1º Ou bien, le point équinoxial ?, origine des longitudes, restant
fixe, chaque étoile e (fig. 78) se
déplace, en tournant autour, de
l'axe ON, de manière que son cercle
de latitude s'éloigne de ? d'un
mouvement continu, occupant
des positions successives telles que
NeL, Ne1L1, Ne2L2,...; après un
an, la longitude de l'étoile est devenue
?L1 = ?L + LL1 = ?L + 50",2;
après une nouvelle année, ?L2 =
?L1 + L1L2 = ?L1 + 50",2 etc.


2° Ou bien chaque étoile e et son cercle de latitude NeL restant
fixes (fig. 79), le point équinoxial ? s'en éloigne vers l'ouest, d'un
mouvement continu, uniforme, tel que, après un an, la longitude de
l'étoile est devenue ?1L = ?L + ??1 = ?L + 50",2; après deux ans,
?2L = ?1L + ?1?2 = ?1L + 50",2, etc.


Si on adoptait la première hypothèse, comme d'ailleurs il résulte
de l'observation que les latitudes des étoiles ne varient pas sensiblement
(Le = L1e1 = L2e2,...), il faudrait admettre comme fait
général que toutes les étoiles décrivent de l'est à l'ouest des cercles
parallèles à l'écliptique, exemple: ee1 e2..., d'un mouvement direct
et uniforme, avec la même vitesse constante de 50",2 par an. Mais un
pareil mouvement général des étoiles n'est pas plus vraisemblable
que le mouvement diurne attribué aux mêmes astres; il donne
lieu aux mêmes objections, et on pourrait répéter ici tout ce qui a
été dit page 22; cette première explication doit donc être rejetée.
En effet, c'est la seconde qui est aujourd'hui exclusivement adoptée.
L'égale variation des longitudes de toutes les étoiles est attribuée
au phénomène suivant que l'on désigne sous le nom de précession
des équinoxes.


217. Précession des équinoxes. Le point équinoxial ? et son opposé,
? tournent indéfiniment sur l'écliptique d'un mouvement uniforme
et rétrograde, de l'est à l'ouest, avec une vitesse constante
d'environ 50",2 par an (fig. 79).




[image: ]Comme nous l'avons déjà fait observer, il résulte de ce mouvement
rétrograde du point équinoxial
que la longitude d'une étoile
quelconque, e (fig. 79), si elle
est ?L, à une certaine époque,
devient après un an, ?1L = ?L +
??1 = ?L + 50",2; après deux
ans, ?2L = ?1LL + ?1?2 = ?1L +
50",2, etc. Ce mouvement rétrograde
des points équinoxiaux est
désigné sous le nom de précession
des équinoxes, parce qu'il en résulte
cette conséquence très-remarquable:


L'époque à laquelle arrive un équinoxe du printemps précède
chaque-année d'environ 20m 25s celle à laquelle il arriverait, si le
mouvement rétrograde des points équinoxiaux n'avait pas lieu.


Ceci s'explique aisément (fig. 79).


En effet, un équinoxe du printemps a lieu quand le soleil et le
point équinoxial se rencontrent en un certain point ? de l'écliptique.
A partir de ce moment, tandis que le soleil continue à tourner sur
l'écliptique dans le sens ?S?S'. le point équinoxial tourne sur l'écliptique
dans le sens contraire ?S'?S. Ces deux points mobiles,
aussitôt séparés, marchent donc à la rencontre l'un de l'autre,
mais avec des vitesses très-différentes. Le point équinoxial arrivé
en ?1, est de nouveau rencontré par le soleil; alors a lieu un nouvel
équinoxe du printemps. Si le mouvement rétrograde des points
équinoxiaux n'existait pas, ce nouvel équinoxe n'aurait lieu qu'au
retour du soleil en ?; comme par le fait il s'en faut alors de l'arc
?1? = 50",2 que le soleil soit de retour en ?, l'époque du nouvel
équinoxe est avancée du temps qu'il faut au soleil pour parcourir
cet arc de 50",2, c'est-à-dire d'environ 20m 25s.


conséquences de la précession des équinoxes.


218. Une des premières conséquences de la précession des
équinoxes est la différence entre l'année sidérale et l'année tropique.


Année sidérale. On appelle année sidérale le temps qui s'écoule
entre deux retours consécutifs du soleil au même point ? de l'écliptique.


On peut concevoir que le cercle de latitude N? soit celui d'une
étoile fixe e; on peut donc dire que l'année sidérale est le temps
qui s'écoule entre deux retours consécutifs du soleil au cercle de
latitude d'une étoile déterminée quelconque; de là le nom d'année
sidérale.


219. Différence entre l'année sidérale et l'année tropique. Supposons
qu'une année tropique et une année sidérale commencent toutes
deux au même équinoxe du printemps, le soleil étant en ? sur
l'écliptique; l'année tropique finit quand le soleil arrivé en ?1 a
encore un arc ?1? = 50",2 à parcourir pour être de retour en ?.
Le soleil parcourt donc 360° de l'écliptique en une année sidérale,
et 360°-50",2 en une année tropique. La vitesse moyenne étant
supposée la même durant ces deux années, celles-ci sont entre
elles comme ces deux nombres 360° et 360°-50",2. Donc une
année sidérale = 365j.sol.moy.,2422 x (360°/(360°-50",2)). On  trouve
ainsi 1an.sid. = 365j.sol.moy.,25638.


La différence est 0j,01418 = 20min, 25s
87.


Note 87:
(retour)  Nous avons déjà indiqué cette différence entre l'année tropique et l'année
sidérale, nº 217.



220. Désaccord entre les signes et les constellations du zodiaque.
La rétrogradation des points équinoxiaux a encore sur le
zodiaque un effet remarquable que nous avons déjà signalé nº 123.
Dès avant Hipparque, on avait pris le point équinoxial du printemps
pour origine des divisions du zodiaque partagé en douze parties
égales nommées signes, et on avait donné à chacun de ces douze espaces
égaux le nom de la constellation qui l'occupait à cette époque
(nº 123). Ainsi le soleil entrant dans le premier signe à l'époque de
l'équinoxe du printemps, y trouvait la constellation du Bélier; de
là le nom de signe du Bélier; un mois après, entrant dans le second
signe, il y rencontrait la constellation du Taureau, etc., jusqu'au
douzième signe où se trouvait la constellation des Poissons. Aujourd'hui
il n'en est plus de même; comme il s'est écoulé 2000 ans
environ depuis l'invention du zodiaque, le point équinoxial ? a
rétrogradé vers l'ouest de 50",2 x 2000 ou de 27° 53' à peu près;
chaque signe ayant une étendue de 30° dans le sens de l'écliptique,
le point ? est venu se placer à peu près à l'endroit où commençait
le douzième signe des anciens, celui des Poissons.


Il résulte de là que le soleil, entrant à l'équinoxe dans le premier
signe, toujours nommé le Bélier, y rencontre la constellation
des Poissons; un mois après, entrant dans le signe du Taureau, il
y trouve la constellation du Bélier, etc., etc. Tous les signes ont
rétrogradé d'une place à peu près. Ce désaccord ne peut qu'augmenter
avec le temps, jusqu'à ce que le point équinoxial ayant fait
le tour de l'écliptique soit revenu à la position qu'il occupait il y
a 2000 ans
88.


Note 88:
(retour)  V. dans les notes, à la fin du chapitre, un Appendice sur ce qui vient d'être
dit sur la précession des équinoxes et ses conséquences.



MOUVEMENT RÉEL DE LA TERRE.


221. Quand nous étudions avec précision les diverses positions
successivement occupées par le soleil par rapport à un lieu déterminé
de la terre, cet astre nous paraît animé à la fois de deux
mouvements: 1º du mouvement diurne qui lui est commun avec
les étoiles; 2º d'un mouvement de translation qui lui est propre,
le long d'un orbite elliptique dont la terre occupe un foyer. Ainsi
que nous l'avons expliqué nº 26, le premier mouvement n'est
qu'une apparence due à la rotation de la terre. Sachant que le
mouvement diurne du soleil n'a rien de réel, on peut se demander
également s'il n'en est pas de même de son mouvement de translation
autour de la terre. Ne pourrait-il pas se faire que celui-ci
ne fût aussi qu'une simple apparence due à un second mouvement
dont la terre serait animée en même temps qu'elle tourne autour
de son axe. Il y a bien des exemples de mouvements composés
analogues à celui que l'on est ainsi conduit à attribuer à la terre;
une pierre lancée dans une direction quelconque tourne sur elle-même
plus ou moins rapidement en même temps qu'elle parcourt
sa trajectoire parabolique. La terre étant un corps isolé de toutes
parts (nº 59), et pouvant par conséquent se comparer à la pierre,
on conçoit qu'elle puisse se mouvoir comme celle-ci autour de son
centre de gravité, tandis que ce point, mobile lui-même, décrit une
certaine courbe dans l'espace. Voyons donc si un pareil mouvement
de la terre n'expliquerait pas le second mouvement apparent
du soleil.




[image: ]222. Pour simplifier, nous ferons
abstraction du premier mouvement,
c'est-à-dire du mouvement
de rotation de la terre que
nous supposerons réduite à son
centre: cela ne change rien évidemment
à la question à résoudre,
qui est celle-ci:


Le centre T de la terre se meut
sur une ellipse TT'T"... autour du
soleil immobile au foyer S; un observateur
(fig. 82) placé sur la ligne
mobile TS, à peu près au point T, et se croyant immobile dans l'espace,
cherche à se rendre compte des positions différentes que le
soleil lui paraît successivement occuper; à quel résultat doit-il
arriver?


Cet observateur voit d'abord le soleil se projeter successivement
en des points différents s, s', s",... de la sphère céleste; d'où il
conclut que cet astre en mouvement tourne autour de lui dans le
sens ss's".


Les rayons visuels TSs, T'Ss',T"Ss",... étant par le fait dans le
même plan (celui de l'ellipse TT'T"), les positions apparentes
s, s', s",... que l'observateur détermine d'abord, sont à l'intersection
de ce plan et de la sphère céleste; c'est pourquoi en étudiant
sur un globe céleste la forme de la courbe ss'ss"..., on a trouvé une
circonférence (l'écliptique). (Nº 116).



[image: ]Par suite du mouvement elliptique de la terre, T, sa distance au
soleil S varie continuellement (fig. 82); le diamètre apparent du
soleil vu de la terre doit donc varier en conséquence. C'est en effet
ce que remarque l'observateur; mais croyant le soleil en mouvement
sur l'écliptique (à cause du déplacement de sa position apparente s),
il attribue à ce mouvement la variation continuelle de la
distance des deux globes. En conséquence, pour construire une
courbe semblable à celle que la position réelle du soleil doit suivant
lui décrire autour de la terre, il opère comme nous l'avons
indiqué nº 129; il obtient ainsi la fig. 53 que nous reproduisons
ici. Mais voyons maintenant ce qui arrivera
si, dans l'hypothèse du mouvement
de la terre, on veut connaître la forme
de sa trajectoire TT'T"T"'... (fig. 82).
On devra, comme au nº 129, reproduire
l'écliptique sur le papier, et y remarquer
de même les positions apparentes s, s',
s"... relevées sur le globe; puis joindre
les points s, s', s",... au centre, considéré
comme point d'intersection des rayons visuels issus de la terre;
mais cette fois, comme on sait que ce point d'intersection est le
centre du soleil, on l'appellera S. Jusqu'à présent la nouvelle figure
(fig. 82) ne diffère pas de la précédente. Mais, pour continuer,
on devra porter les longueurs proportionnelles aux distances du
soleil à la terre, non plus sur les rayons Ss, Ss', Ss?,.... mais
sur leurs prolongements ST, ST', etc. On obtient aussi une courbe
TT'T?T?... semblable à celle que la terre décrit autour du soleil.
Or cette courbe est évidemment identique à la courbe intérieure
SS'S?S?... du nº 129 (fig. 53); en effet, TS = ST; TS' = ST';
TS? = ST?, etc.; l'angle STS' = TST'; S'TS? = T'ST?, etc. Cela
posé, si on transporte l'une des courbes sur l'autre, par exemple
SS'S?..... sur TT'T?....., en retournant la première de manière
que T coïncide avec S, TS avec ST, et TS' avec ST', tous les
autres rayons vecteurs coïncidant, les deux courbes coïncident
dans toute leur étendue.


La courbe que le soleil nous paraît décrire autour de la terre
supposée immobile est donc précisément égale à celle que, dans
l'hypothèse du mouvement de la terre, celle-ci décrit autour du
soleil.


Ainsi donc il suffit que la terre décrive une ellipse dont le soleil
occupe un des foyers, pour que cet astre nous paraisse animé du
mouvement de translation que nous lui avons attribué jusqu'à
présent.


223. Preuves du mouvement de translation de la terre. Les apparences
du mouvement de translation du soleil peuvent donc s'expliquer
avec la même facilité, soit qu'on regarde la terre comme
immobile et le soleil tournant effectivement autour d'elle, soit
qu'on regarde la terre comme se mouvant autour du soleil. Ces
apparences ne doivent donc pas entrer en ligne de compte dans
l'examen des motifs que nous pouvons avoir d'ailleurs de nous
arrêter à l'une de ces deux idées plutôt qu'à l'autre.


Or, la plus simple observation faite avec une lunette nous fait
voir certains corps célestes tournant continuellement autour d'un
corps plus gros qu'eux. Nous voyons de cela plusieurs exemples
(ex.: les satellites d'une planète tournent autour de cet astre).
Nulle part nous ne voyons de grands corps tournant autour d'un
plus petit. Peut-on alors admettre que le soleil, 1405000 fois plus
gros que la terre, ayant une masse 355000 fois plus grande, tourne
autour de notre globe?


Quand on étudie les apparences que présentent les mouvements
des planètes, on trouve que ces apparences s'expliquent beaucoup
plus simplement dans l'hypothèse du mouvement de la terre
autour du soleil que dans l'hypothèse de son immobilité.


La terre se mouvant autour du soleil peut être assimilée aux
planètes; on reconnaît alors que son mouvement satisfait complètement
aux lois qui, dans cette hypothèse, régissent les mouvements
des planètes autour du soleil.


Il y a plus: ce mouvement des planètes et de la terre est précisément
celui que ces corps doivent avoir autour du soleil, si on
s'en rapporte à la théorie de la gravitation universelle dont l'exactitude
a été vérifiée dans des circonstances si nombreuses et si
variées. Ce sont là évidemment des preuves frappantes du mouvement
de la terre autour du soleil.


On peut ajouter que divers phénomènes, inexplicables dans l'hypothèse
absolue de l'immobilité de la terre ou de son centre, s'expliquent
parfaitement, si on admet son mouvement de translation
autour du soleil. Ex.: le phénomène connu sous le nom
d'aberration; la parallaxe annuelle actuellement connue de quelques
étoiles.


Ces raisons sont plus que suffisantes pour nous faire admettre le
mouvement de la terre autour du soleil comme une vérité incontestable;
nous tiendrons donc pour certaine la proposition suivante:


La terre tourne constamment, d'un mouvement uniforme, autour
d'un axe central, effectuant une révolution en 24 heures sidérales;
elle se meut en même temps autour du soleil, son centre décrivant une
ellipse dont cet astre occupe un foyer.


Note I.

Calcul des parallaxes.




[image: ]224. Il existe entre la parallaxe horizontale et une parallaxe de hauteur
quelconque une relation très-simple,
qui sert à déduire l'une de
l'autre. Soient r le rayon de la
terre, D la distance du soleil à la
terre, P la parallaxe horizontale,
p la parallaxe correspondant à une
hauteur quelconque h: le triangle
AOS, fig. 72, donne


sin ASO     sin ASO   AO = r

-------  =  ------- = -- = -    (1)

sin OAS     sin ZAS   OS   D




Si ASO est la parallaxe horizontale,
ZAS est un angle droit, sin ZAS = 1, et dans ce cas


        r

sin P = -    (2)

        D




Si ASO est un parallaxe de hauteur, la distance zénithale ZAS de l'astre est le
complément de sa hauteur h au-dessus de l'horizon(11); sin ZAS = cos h;


l'égalité (1) devient donc


 sin p   r           r

 ----- = -;  sin p = - cos h;

 cos h   D           D




ou enfin


sin p = sin P cos h.    (3)




Les parallaxes étant en général des angles très-petits, notamment celle du
soleil, on peut remplacer sin p par p, et sin P par P; les égalités (2) et (3) deviennent
alors

    r

P = -   (4); et p = P cos h, ou p = P sin Z,      (5).

    D



Z étant la distance zénithale de l'astre.


Cos h, ou sin Z, étant moindre que 1 dès que h existe, il résulte de la formule
(5) qu'une parallaxe de hauteur quelconque est inférieure à la parallaxe
horizontale, et que la parallaxe est d'autant moindre que la hauteur h est plus
grande. Quand l'astre est au zénith, h= 90°, cos h = 0; sa parallaxe est nulle.
La parallaxe correspondant à une hauteur quelconque, h, se déduisant de la
parallaxe horizontale (formule 5), il suffit de trouver celle-ci. Voici comment
on y peut parvenir en général pour la lune et les planètes.


225. Deux observateurs se placent l'un en A, l'autre en A' (fig. 73), sur
le même méridien; l'un au nord, l'autre au sud de l'équateur terrestre. Ils
observent à un même instant convenu, l'un la distance zénithale méridienne
ZAS, l'autre Z'A'S. Cela fait, on connaît dans le quadrilatère AOA'S les rayons
terrestres OA, OA', les angles OAS, OA'S (180°--distance zénithale), et AOA'=
L + L', somme des latitudes des lieux A et A'.


           ASO = p;     A'SO = p';     ASA' = p + p'.




La parallaxe horizontale P est la même pour A que pour A', si on suppose la
terre sphérique. Nous savons que p = P cos h = P sin Z (Z distance zénithale);


p' = P sin Z'; d'où p + p' = P (sin Z + sin Z') (1).


Mais le quadrilatère AOA'S donne

         ASA' + SAO + SA'O + AOA' = 360°;



ou    p + p' + 180-Z + 180-Z' + L + L' = 360°,



d'où    p + p' = Z + Z'-(L + L').                     (2)




En égalant les valeurs (1) et (2) de p + p', on a

          P(sin Z + sin Z') = Z + Z'-(L + L'),




d'où l'on tire

                   Z + Z'-(L-L')

               P =-----------------;

                   sin Z + sin Z'




ou bien, si on rend la formule calculable par logarithmes,



d'où l'on tire


                         Z + Z' - L - L'

              P =--------------------------;

                       Z + Z'       Z - Z'

                 2 sin ------ + sin------ '

                         2            2




226. C'est par cette méthode que Lalande, à Berlin, et Lacaille, au cap
de Bonne-Espérance, ont calculé les parallaxes de la Lune, de Vénus et de
Mars. Celle du soleil est trop petite; elle serait relativement trop affectée par
les erreurs d'observations commises sur les angles qui entrent dans ce calcul.
La valeur de cette parallaxe que nous avons indiquée n° 199 a été obtenue par
l'observation d'un passage de Vénus sur le soleil (V. ce qui concerne cette
planète).


227. Usage de la parallaxe pour ramener les observations à ce qu'elles
seraient si l'observateur était placé au centre de la terre.


[image: ]Quand on regarde un astre S d'un lieu A de la surface de la terre, la
direction ASsi (fig. 73), dans laquelle
on le voit, n'est pas généralement
la même que si on l'observait du
centre, O, de la terre; dans le
premier cas on le voit en si sur
la sphère céleste; dans le second
on le voit en s. Le changement de
direction du rayon visuel As', dû
au déplacement de l'observateur,
est donc précisément mesuré par
la parallaxe.



Observée au point A, la distance
zénithale est ZAS; observée au
point O, cette distance est ZOS =
ZAS-ASO = ZAS-p.
On comprend, à l'aide des mêmes considérations, que le soleil ne doit pas
paraître, au même instant donné, placé de la même manière sur la sphère
céleste pour des observateurs placés en des lieux différents de la surface de la
terre. Le mouvement annuel du soleil sur la sphère céleste ne doit donc pas
présenter absolument le même caractère pour ces divers astronomes. D'un
autre côté, le mouvement diurne faisant occuper au soleil diverses positions
relativement à l'horizon d'un lieu déterminé, il doit en résulter des irrégularités
pour les observations du soleil faites de ce lieu seul. Pour faire disparaître
ces discordances entre les observations faites en divers lieux ou à des moments
divers de la journée, on opère comme nous allons l'indiquer.


228. Afin que les observations faites à la surface de la terre soient comparables
les unes aux autres, on les ramène à ce qu'elles seraient si l'observateur
était placé au centre de la terre. Il faut donc corriger les observations de
la parallaxe; c'est là le principal usage qu'on fait des parallaxes en astronomie.


Le plan ZOS, qui est vertical, comprend à la fois les deux directions ASsi
et OSs; quand ce plan vertical coïncide avec le plan méridien, les deux directions
AS, OS sont à la fois dans ce plan; le parallaxe n'influe donc ni sur
l'azimuth ni sur l'ascension droite d'un astre; mais elle influe sur la distance
zénithale qu'elle augmente (fig. 72 et 73), et sur sa hauteur au-dessus de
l'horizon qu'elle diminue; elle influe sur ces deux angles en sens contraire
de la réfraction (108). Ainsi, quand on veut ramener les observations au centre
de la terre, la hauteur observée h doit être diminuée de la réfraction, R,
et augmentée de la parallaxe; H = h — R + p est la hauteur telle qu'on la
trouverait s'il n'y avait pas d'atmosphère, et si on observait du centre de la
terre. On applique cette formule quand on fait des observations sur le soleil,
la lune ou les planètes; quant aux étoiles, on a simplement H = h — R.


229. Cette correction de l'effet de la parallaxe sur la position apparente du
soleil dans le ciel suppose que l'on connaît la parallaxe de hauteur de l'astre
pour le moment et le lieu où l'observation se fait; voici comment on arrive à la
connaître. La parallaxe horizontale est égale à 8",6 quand le soleil est à la distance
moyenne de la terre; le diamètre apparent du soleil est, pour la même
distance, 32'3",3. La parallaxe horizontale varie évidemment dans le même
rapport que le diamètre apparent (n° 124) (les deux quantités varient en raison
inverse de la distance D du soleil à la terre); il suffit donc de connaître le diamètre
apparent, à une époque quelconque, pour en déduire la valeur de la
parallaxe horizontale à la même époque; de celle-ci on déduit la parallaxe de
hauteur à l'instant considéré.


230. Tables des parallaxes du soleil. Pour faire les corrections aux hauteurs
observées du soleil, il faut donc connaître les valeurs de la parallaxe de
hauteur pour les différentes hauteurs de l'astre au-dessus de l'horizon, ou, ce
qui est la même chose, pour les différentes distances zénithales; on emploie
pour cela la formule (5) quand on connaît d'avance les valeurs de P. On sait
que, pour le soleil, la valeur de P à la distance moyenne est 8",57, et qu'à
toute autre distance elle est réciproque à cette distance (formule 4), ou proportionnelle
au diamètre apparent de l'astre. On a donc les éléments nécessaires
pour calculer la table des parallaxes, que l'on trouve dans les recueils spéciaux
d'astronomie.





Note II.


Appendice au chapitre de la précession des équinoxes.



[image: ]231. Changement de direction de l'axe du monde.--Déplacement du pôle.
La variation des longitudes célestes, en nous faisant connaître le mouvement
rétrograde des points équinoxiaux, met par cela même en évidence un mouvement
d'ensemble dont cette rétrogradation n'est qu'un incident particulier. Le
point, ?, en effet, n'est point un point isolé, arbitraire; c'est l'une des extrémités
de la ligne des équinoxes, intersection de l'équateur céleste et de l'écliptique.
Si on admet que le point équinoxial occupe successivement diverses
positions, ?, ?1, ?2..., il faut admettre en même temps que la ligne des
équinoxes occupe, aux mêmes époques, les positions correspondantes ?OO,
?1OO, etc. (fig. 80); cette ligne est donc animée d'un mouvement de révolution
qui correspond exactement à celui
du point ?. Mais cette ligne ?OO est,
d'après sa définition même, perpendiculaire
à l'axe ON de l'écliptique et à
l'axe OP de rotation de la terre (fig. 81);
elle est donc perpendiculaire au plan
PON de ces deux lignes. Si la ligne ?OO
tourne constamment de l'est à l'ouest,
d'un mouvement uniforme, il faut admettre
que le plan PON tourne dans le
même sens, de manière que ?? lui
soit toujours perpendiculaire. Comme il
résulte d'ailleurs de l'observation des
étoiles que l'axe ON de l'écliptique est
sensiblement fixe, et que l'angle PON qui mesure l'inclinaison de l'écliptique
sur l'équateur ne change pas non plus sensiblement, de ce mouvement du
plan PON il faut conclure que l'axe OP de rotation de la terre tourne autour
de l'axe ON de l'écliptique, d'un mouvement conique de révolution tel que
chacun de ses points est précisément animé du même mouvement uniforme et
rétrograde que le point ?. Résumons-nous:



232. La direction de l'axe du monde n'est pas constante; elle varie lentement,
mais d'une manière continue; cet axe, faisant toujours avec une perpendiculaire
ON au plan de l'écliptique un angle de 23° 27' 30" environ, tourne
autour de cette perpendiculaire d'un mouvement conique de révolution, uniforme
et rétrograde, tel que chacun de ses points décrit une circonférence
avec une vitesse angulaire constante d'environ 50", 2 par an.


Mais le pôle boréal P est un de ces points.


[image: ]Le pôle boréal P n'est donc pas fixe sur la sphère céleste; tournant autour
d'une perpendiculaire à l'écliptique (fig. 81), il décrit sur cette sphère, dans
le sens rétrograde, une circonférence de
petit cercle PP'P''P''' avec une vitesse
angulaire constante de 50",2 par an.
Le pôle N de celle circonférence en est
distant de 23° 27' 30" environ
89.


L'équateur céleste est, à une époque
quelconque, le grand cercle de la sphère
céleste perpendiculaire à l'axe de rotation
de la terre. De cette définition il
résulte que la direction de cet axe OP
changeant continuellement, la position
de l'équateur céleste doit changer d'une
manière correspondante. Ce qu'on exprime
en disant que l'équateur céleste
tout entier tourne autour d'une perpendiculaire
à l'écliptique, de la même manière et dans le même sens que les
points équinoxiaux. Le nom de précession des équinoxes se donne aussi au
phénomène complet, c'est-à-dire à l'ensemble des rotations que nous avons
indiquées; c'est pourquoi nous avons placé ce titre en tête du chapitre actuel.


Note 89:
(retour)  V. la nutation ci-après.



233. Toutes ces rotations découvertes par l'observation des étoiles (variations
de leurs longitudes), se trouvent être une conséquence du principe de la
gravitation universelle. On démontre en effet, dans la mécanique céleste, que
l'attraction du soleil sur le renflement du sphéroïde terrestre imprime à l'axe
de rotation de la terre, et à tous les points invariablement liés à cet axe, un
mouvement de rotation autour d'une perpendiculaire à l'écliptique, qui est
précisément celui que nous venons d'indiquer.


Or, comme l'existence de la gravitation universelle est aujourd'hui mise hors
de doute par une foule d'autres faits vérifiés, qui en sont des conséquences
nécessaires, nous devons conclure de cette coïncidence que la variation observée
des longitudes célestes est bien due au mouvement rétrograde des points
équinoxiaux.


234. NUTATION. Le mouvement de l'axe de la terre et celui du pôle seraient
tels que nous les avons définis tout à l'heure, si le soleil agissait seul sur le
renflement de notre sphéroïde; mais la lune a aussi sur ce renflement une
action beaucoup plus faible, mais suffisante néanmoins pour imprimer aux
mouvements en question une modification qui les rend tels que nous allons
l'indiquer. Concevons un petit cône Op'p''p''' (fig. 81 bis), ayant pour axe OP
et pour base une petite ellipse p'p''p''', tangente à la sphère céleste en P, et
dont le grand axe soit dans le cercle de latitude du point P (n° 209); ce grand
axe de l'ellipse est vu de la terre sous un angle de 19",3, et son petit axe sous
un angle de 14",4. Imaginons maintenant que la ligne OP tourne autour de la
perpendiculaire ON au plan de l'écliptique, emportant avec elle le petit cône
ainsi construit, comme un corps solide qui lui serait invariablement attaché.


[image: ]Concevons, enfin, qu'un point p' parcoure
indéfiniment cette ellipse, mobile,
d'un mouvement rétrograde et uniforme,
tel qu'il décrive l'éclipse entière en
18 ans 2/3 environ. Les positions successives
p', p'', p''',...  du point p'
sont celles que le pôle boréal occupe
en réalité, et les directions Op'; Op'',
Op''',... sont les positions que prend
successivement l'axe de rotation de la
terre.




Le pôle p' décrivant cette ellipse est
tantôt en arrière, tantôt en avant du
point P, dans le mouvement angulaire
autour de l'axe ON de l'écliptique; il en
résulte que la vitesse du mouvement rétrograde des points équinoxiaux qui
correspond exactement au mouvement angulaire du pôle p' n'est pas précisément
constante et égale à 50'',2 par an, mais oscille de part et d'autre de
cette valeur, dans des limites très-restreintes. Le point équinoxial est tantôt
en avant, tantôt en arrière de la position qu'il occuperait s'il avait cette vitesse
constante de 50'',2 par an.


Par suite, la différence entre l'année tropique et l'année sidérale n'est pas
constante; autrement dit, la valeur de l'année tropique varie périodiquement
mais très-peu, de part et d'autre, d'une valeur moyenne. En second lieu,
l'angle NOp', de Op' avec la perpendiculaire ON à l'écliptique, est évidemment
tantôt plus grand, tantôt plus petit que l'angle NOP, qui est constamment
égal à 28° 27' 1/2 environ; or l'angle NOp' est l'obliquité vraie de l'écliptique;
donc l'obliquité de l'écliptique doit éprouver, dans ces 18 ans 2/3, des variations
périodiques, oscillant de part et d'autre de sa valeur moyenne, dans des
limites qui ne dépassent pas (19",3)/2 = 9",65  (demi-grand axe de la petite
ellipse).


Le mouvement angulaire du point P ou de l'axe OP autour de l'axe ON de
l'écliptique conserve le nom de précession des équinoxes; c'est le mouvement
moyen des points équinoxiaux. Le mouvement de l'axe Op' sur le petit cône
est ce qu'on appelle nutation de cet axe.


235. Changement d'aspect du ciel. Les mouvements que nous avons décrits
changent à la longue l'aspect du ciel pour l'observateur terrestre. Si on
veut se rendre compte de leur effet, on n'a qu'à prendre un globe céleste,
construit à une époque déterminée, sur lequel soient marqués l'équateur et
son pôle P, l'écliptique et son pôle N. De N comme pôle avec le rayon sphérique
NP, égal à 28°27'30'' environ, on décrit un petit cercle PP'P''P'''...
(fig. 81). Sachant que le pôle boréal P décrit cette circonférence, de l'est à
l'ouest (sens PP'P''P'''...), avec une vitesse constante d'environ 50'',2 par an,
on se rendra compte de sa position sur la sphère céleste à une époque
antérieure
quelconque, ou à une époque future indiquée. Ainsi, il y a 4000 ans,
il était à l'est de sa position actuelle, à une distance de 50",2X4000 = 50°46
environ; il était alors voisin de a du Dragon. Maintenant il est voisin de a de
la Petite Ourse (étoile polaire); dont il est distant de 1°28' environ; il continuera
à s'en rapprocher pendant 265 ans environ, après lesquels la distance
ne sera plus que d'un demi-degré; puis il s'en éloignera pour passer dans
d'autres constellations. Dans 8000 ans ce ne sera plus a de la Petite Ourse,
mais a du Cygne qui méritera le nom d'étoile polaire; dans 12000 ans ce sera
la belle étoile Wéga, de la Lyre, qui ne sera plus alors qu'à 5° du pôle.


Les mêmes mouvements doivent aussi modifier à la longue la situation des
étoiles par rapport à l'horizon d'un lieu déterminé de la terre. La distribution
des étoiles en étoiles circompolaires, étoiles ayant un lever et un coucher,
étoiles constamment invisibles, ne reste pas la même.




[image: ]236. Variation de la durée des saisons. La rétrogradation des points équinoxiaux
a aussi une certaine influence sur la durée des saisons (n° 171). En
effet, reprenons la fig. 65; nous voyons que le mouvement annuel de l'est à
l'ouest du point ? (0° de cette
figure) tend à le rapprocher du
périgée dont il est actuellement
éloigné de 79"37'environ. Lorsque,
dans la suite des temps,
ces deux points se trouveront
confondus, le printemps sera
égal à l'hiver, l'été à l'automne,
et ces deux dernières saisons seront
les plus longues, tandis que
maintenant les saisons les plus
longues sont l'été et le printemps.
D'ici là, le printemps diminuera
et l'automne augmentera (faites tourner simultanément les deux lignes ponctuées
de la figure jusqu'à ce que (le point ? (0°) soit arrivé au périgée). Si,
retournant vers le passé, on fait mouvoir ces deux mêmes lignes des équinoxes et des solstices, en sens contraire (de l'ouest à l'est), on comprend qu'à
une époque antérieure moins éloignée de nous, la ligne des équinoxes
s'est trouvée perpendiculaire au grand axe de l'ellipse (Périg., Apog.). Alors
le printemps et l'été étaient égaux, et ces deux saisons étaient, comme au
temps présent, plus longues que les deux autres; pour calculer la date précise
de ce phénomène, il faut avoir égard non-seulement à la précession des
équinoxes, mais encore au déplacement annuel du périgée solaire (n° 237), qui
a lieu dans le sens direct (de l'ouest à l'est), et accélère le rapprochement de
ce périgée et du point ?. Par ces deux causes, ces points se rapprochent en
réalité de 62" et non de 50",2 par an. Ils sont actuellement distants de 79°37'
(V. Mr Faye); à quelle époque étaient-ils éloignés de 90°? Cela revient à demander
combien ils ont mis de temps à se rapprocher de 10° 23'; la question
est facile à résoudre. Ils ont mis 604 ans, et c'est à peu près vers l'an 1250 de
notre ère que leur distance était de 90°; depuis cette époque, le printemps a
diminué et l'été a augmenté. On peut se demander à quelle époque encore plus
éloignée le point ? (0° de la figure) coïncidait avec l'apogée. Il faut se reporter
de 90° vers l'est, à partir de l'an 1250. On trouve que l'époque en question
coïncide à peu près avec celle que la Genèse attribue à la création du monde;
alors le printemps était égal à l'hiver, l'été à l'automne, et ces deux dernières
saisons étaient les plus courtes.


237. Déplacement lent du périgée. Le périgée se déplace sur l'écliptique
d'environ 11",7 par an, dans le sens direct, c'est-à-dire de l'ouest à l'est. Il
résulte de ce mouvement, combiné avec celui du point équinoxial, que ces
deux points se rapprochent d'environ 61",9 par an, ou, en nombre rond,
de 62", comme nous l'avons dit n° 236. Ce déplacement du périgée a été ainsi
découvert.


Des observations de Flamsteed en 1690, et de Delambre en 1800, il résulte
que la longitude du périgée augmente de 61",9 par an (rappelons-nous que la
longitude se compte de l'ouest à l'est, à partir de ?) (de 0° vers 90°, etc.). Si cet
accroissement n'était que de 50",2, le périgée se comporterait comme une étoile
et devrait être considéré comme étant fixe comme elle, cet accroissement de
50",2 étant dû au mouvement rétrograde du point équinoxial ?. Mais l'excès de
61",9 sur 50", indique que le périgée lui-même se déplace lentement en sens
contraire du mouvement de ?, c'est-à-dire de l'ouest à l'est.


Tandis que l'écliptique change peu à peu de direction dans l'espace, l'ellipse
que le soleil nous paraît décrire tourne donc lentement dans ce plan, dans le
sens direct, avec une vitesse angulaire de 11",7 par an.


238. Diminution séculaire de l'obliquité de l'écliptique. Dans ce qui précède,
nous avons regardé l'obliquité de l'écliptique comme restant toujours la
même, ou plutôt comme oscillant de part et d'autre d'une valeur moyenne
constante, égale à 23° 27' 30", dont elle ne s'écarterait que de 9",65 environ,
revenant tous les 18 ans 2/3 à la même valeur; mais il n'en est pas tout à fait
ainsi. Il résulte d'observations faites à des époques très-éloignées que l'obliquité
moyenne en question a constamment diminué depuis les premières
observations.


D'après les observations les plus modernes, cette diminution de l'obliquité
moyenne de l'écliptique est d'environ 48" par siècle ou de 0",48 par an.


Elle a été découverte par l'observation des latitudes des étoiles qui ne sont
pas rigoureusement constantes. L'examen attentif des variations de ces latitudes
a fait voir que le mouvement de l'écliptique, quelle qu'en soit la cause,
ne diffère pas beaucoup de celui que ce grand cercle prendrait s'il tournait
autour de la ligne ?O des équinoxes, comme charnière, pour se rabattre sur
le plan de l'équateur, avec une vitesse constante d'environ 48" par siècle, ou
de 0",48 par an.


Suivant Delambre, l'obliquité moyenne de l'écliptique était en 1800 de
23° 27' 57"; en 1850, elle était de 23° 27' 33"; en 1900, elle se réduira à
23° 27' 9".











CHAPITRE IV.


LA LUNE.











239. Après le soleil, il est naturel que nous nous occupions de
l'astre qui éclaire fréquemment nos nuits, c'est-à-dire de la lune.


Ce qui nous frappe d'abord quand notre attention se porte sur
cet astre, c'est sa grandeur apparente, ce sont les aspects si variés
sous lesquels nous le voyons.


Grandeur de la lune, son diamètre apparent.. La lune nous paraît
à peu près aussi grande que le soleil; en effet, tandis que le diamètre
apparent du soleil varie entre 31' 1/2 et 32' 1/2, celui de la
lune varie entre 29' 22" et 33' 31".


240. Phases de la lune. La lune nous paraît animée du mouvement
diurne comme les étoiles et le soleil; de même que celui-ci,
elle se lève, traverse le méridien, puis se couche pour passer un
certain temps au-dessous de notre horizon. Mais elle ne se présente
pas constamment à nous sous la forme d'un cercle brillant;
son aspect change, pour ainsi dire, tous les jours. Les formes
diverses sous lesquelles nous la voyons s'appellent ses phases.
Nous allons décrire ces phases qui, chacun le sait, se reproduisent
périodiquement.


À une certaine époque (qui revient plusieurs fois dans l'année),
le soir, peu après le coucher du soleil, on aperçoit la lune à l'occident,
sous la forme d'un croissant très-délié, dont les pointes sont
en haut (fig. 88, ci-après). C'est un simple filet demi-circulaire dont
la convexité est tournée vers l'occident, et dont la concavité a une
forme elliptique. Ce croissant animé du mouvement diurne, commun
à tous les astres, disparaît bientôt au-dessous de l'horizon.


Le lendemain la lune est un peu plus éloignée de l'horizon quand
le soleil se couche, le croissant a plus de largeur.


Les jours suivants, dans les mêmes circonstances, c'est-à-dire
peu après le coucher du soleil, on voit la lune de plus en plus
éloignée du point de l'horizon où le soleil s'est couché; son croissant s'élargit de jour en jour (fig. 89); son coucher retarde de plus
en plus sur celui du soleil. Six ou sept jours après la première
observation, la lune se montre à nous sous la forme d'un demi-cercle
(fig. 90). Elle est alors déjà assez éloignée du soleil pour ne
passer au méridien qu'environ 6 heures après lui, c'est-à-dire à
6 heures du soir. On est arrivé au premier quartier.


À partir de là, la lune continue à s'élargir; le bord oriental que
nous avons vu concave, puis droit, devient convexe et elliptique;
de sorte que la figure de l'astre nous paraît formée d'un demi-cercle,
et d'une demi-ellipse qui s'élargit continuellement (fig. 91).
Six ou sept jours après que la lune a été vue sous la forme d'un
demi-cercle, elle est devenue tout à fait circulaire (fig. 92). À cette
époque, elle passe au méridien 12 heures après le soleil; elle se
lève à peu près quand celui-ci se couche, et se couche quand il se
lève. Nous sommes à la pleine-lune.
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En continuant à observer la lune, on voit qu'elle se lève de plus
en plus tard, et repasse par les mêmes formes que précédemment,
mais dans un ordre inverse. Le cercle, que nous avons vu, se déprime
vers l'occident; la figure prend de ce côté une figure elliptique
de plus en plus aplatie (fig. 93). La partie la plus convexe du
contour, toujours circulaire, est désormais tournée vers l'orient.
Le septième jour, après la pleine lune, la figure de l'astre est celle
d'un demi-cercle (fig. 94) dont le diamètre est du côté de l'occident; nous sommes arrivés au dernier quartier. La lune passe alors
au méridien 18 heures après le soleil, c'est-à-dire vers 6 heures du
matin. À partir de ce moment, la figure de l'astre se creuse de
plus en plus du côté de l'occident; bientôt la lune nous présente
de nouveau la forme d'un croissant qui se rétrécit chaque jour
(fig. 95); son lever retarde de plus en plus. Environ 6 jours après
que nous l'avons vue pour la seconde fois sous la forme d'un
demi-cercle, nous ne voyons plus qu'un croissant très-délié dont
la convexité est cette fois tournée vers l'orient (fig. 96), et qui ne
se montre à nous que le matin, un peu avant le lever du soleil,
non loin de l'endroit où cet astre va bientôt apparaître. À partir de
là, pendant deux ou trois jours, on ne voit plus la lune du tout.
On est arrivé à la néoménie ou nouvelle lune. Au bout de ce temps,
on recommence à l'apercevoir le soir, du côté de l'occident, un
peu après le coucher du soleil, sous la forme du premier croissant
dont il a été question (fig. 88). Puis les mêmes formes que nous
avons décrites se reproduisent indéfiniment de la même manière
et dans le même ordre.


Ce n'est pas seulement la nuit que l'on peut observer la lune;
toutes les fois qu'elle n'est pas trop rapprochée du soleil, on la voit
sans peine en plein jour; il en résulte une plus grande facilité
pour suivre ses changements de forme, et s'assurer qu'ils se produisent bien comme nous venons de le dire.


241. D'où vient que la lune se montre à nous sous des aspects
si divers? C'est toujours le même corps que nous voyons. En
effet, quand la lune encore nouvelle nous apparaît sous la forme
d'un croissant lumineux, nous apercevons à côté le reste de son
disque circulaire éclairé par une lumière plus faible, et qui va en
s'affaiblissant chaque jour (V. plus loin la lumière cendrée). Quand
le croissant s'est élargi jusqu'au demi-cercle, nous ne voyons plus
le reste du disque. Mais un phénomène, qui se répète souvent,
prouve évidemment que cette seconde partie du disque lunaire
existe toujours, bien qu'elle ait cessé temporairement d'être visible
pour nous: ce phénomène est l'occultation des étoiles par la lune.




[image: ]Quand le croissant de cet astre, convexe
du côté de l'orient (fig. 88), approche
d'une étoile, celle-ci disparaît
bien avant qu'elle ne soit atteinte par
ce bord concave a (fig. 97). Elle devient
invisible précisément au moment
où elle doit être atteinte par le
bord oriental c du disque supposé circulaire
et complet. Il est donc évident
que la face de la lune qui est devant
nous a toujours la même étendue et la même forme circulaire;
mais que nous n'en voyons généralement qu'une portion plus ou
moins grande.


Les phases de la lune s'expliquent parfaitement si on admet que
cet astre est un corps sphérique et opaque comme la terre, dont
une moitié seulement, celle qui fait face au soleil, est éclairée par
cet astre. La lune changeant continuellement de position relativement
à nous et au soleil, nous apercevons suivant sa position une
portion plus ou moins grande de la moitié éclairée. De là les différents
aspects qu'elle nous présente. C'est ce que nous allons expliquer
plus au long.


242. Explication des phases de la lune. Concevons que la lune
se meuve en décrivant autour de la terre T un cercle, le cercle Tl
(fig. 98), et que le soleil S soit situé sur le plan de ce cercle à une
distance tellement grande par rapport au rayon Tl, que les rayons
lumineux envoyés par le soleil à la lune dans ses diverses positions
puissent être regardés comme parallèles. Les positions relatives de la
terre, du soleil et de la lune que cette figure nous indique, considérées
par ordre, sont à peu près celles qui ont lieu en réalité (V. nº 145).
L'hémisphère éclairé de la lune tourné vers le soleil S est limité
par un cercle dont la trace est ss´ (nous dirons cercle ss´), perpendiculaire
à la direction lS des rayons lumineux (considérez sur la
figure l'une quelconque des positions de la lune). D'un autre côté,
quand même la surface tout entière de la lune serait éclairée, nous
ne pourrions voir que la moitié de l'astre, qui, faisant face à la
terre, est limitée par un cercle dont la trace est tt´ (cercle tt´), perpendiculaire
au rayon Tl qui va de la terre à la lune
90. La trace
tt´ est tangente à l'arc que la lune intercepte sur sa trajectoire.


Note 90:
(retour)  Circonf. ss´ est la ligne de séparation de l'ombre et de la lumière; on
l'appelle quelquefois cercle d'illumination. Circonf. tt´ est celle qu'on appelle le
contour apparent de la lune.



[image: ]


Il est évident, d'après cela, que de la terre, on n'aperçoit en réalité
que la partie de l'hémisphère éclairée s´ts, qui lui est commune avec
l'hémisphère visible t´st. (La partie commune à ces deux hémisphères
est, en général, ce qu'on nomme un fuseau sphérique
(V. la surf. blanche psp´t sur chacune des petites sphères, à droite
et à gauche, en dehors du cercle Tl); la plus grande largeur de ce
fuseau est mesurée en son milieu par l'arc st qui se retrouve précisément
sur notre figure principale. D'après cela, pour nous rendre
compte des phases, il nous suffira, en suivant la lune dans son
mouvement autour de la terre T, de déterminer cette partie commune
aux deux hémisphères.


Quand la lune est en (A), son hémisphère obscur est tout entier
tourné vers la terre; l'astre est invisible pour nous. À mesure
qu'elle s'avance de (A) vers (B), le cercle tt' tournant avec le rayon
Tl, s'écarte de plus en plus, du cercle ss'; une partie de l'hémisphère
éclairé, s'ts, de plus en plus grande, devient visible pour
nous. Quand la lune est en B, nous voyons un fuseau dont la largeur
est mesurée par l'arc st (V. sphère psp's', à côté); c'est ce fuseau
qui, projeté sur la sphère céleste, nous apparaît sous la forme
d'un croissant (fig. 88)
91. La lune s'avançant de (B) vers (C), le
fuseau s'élargit (l'arc st augmente); en (C) nous voyons la moitié de
l'hémisphère éclairé, c'est alors que la lune est vue sous la forme
d'un demi-cercle (fig. 90). Lorsqu'elle s'avance de (C) vers (D), puis
de (D) vers (E), la partie visible de l'hémisphère éclairé augmente
de plus en plus (l'arc st grandit). En (D) la lune nous apparaît sous
la forme indiquée (fig. 91). En (E) nous voyons l'hémisphère éclairé
tout entier; la lune a la forme d'un cercle brillant (fig. 92). Après
cela une partie de plus en plus grande de cet hémisphère éclairé
redevient invisible. Le cercle brillant se défait du côté où il a commencé
à se former (V. désormais l'arc s't' sur la figure). En (F) nous
avons la phase indiquée par la figure 93; en (G) nous avons un demi-cercle (fig. 94); dans la position (H) nous avons un croissant (fig. 96),
et enfin quand la lune est revenue à sa première position (A) nous
ne voyons plus rien. Puis la lune continuant à tourner, les mêmes
phases se reproduisent indéfiniment.


Note 91:
(retour)  Remarque. La circonférence tt' perpendiculaire à la ligne qui va de la
terre à la lune, termine la partie du globe lunaire sur lequel arrivent directement
les rayons visuels issus de T; cette circonférence est donc la ligne de contact
du globe lunaire et du cône des rayons visuels tangents, lequel a son sommet
en T; cette ligne est vue de face; tout ce qui en est éclairé doit donc avoir
pour nous la forme circulaire. Quant au cercle ss', il n'est vu par l'observateur
T qu'en projection sur le plan même du cercle tt', et si nous regardons
cette projection comme à peu près orthogonale à cause de l'éloignement du
point de vue, T, situé sur une perpendiculaire au plan de projection, le cercle
ss' doit nous faire l'effet d'une demi-ellipse convexe du côté du soleil avant le
1er quartier et après le dernier; concave de ce côté, dans l'intervalle: à chaque
quadrature, le cercle projeté ss' coupant à angle droit le plan de projection, sa
projection nous fait l'effet d'une ligne droite. La partie la plus convexe du contour
du fuseau lunaire éclairé et visible appartient donc au cercle tt'; c'est la
plus rapprochée du soleil; la partie généralement aplatie de ce contour appartient
à la projection du cercle ss'; celle-ci est plus éloignée que l'autre du soleil.
Ainsi se trouve expliquée une particularité de notre description des phases.







243. Remarques. Dans cette explication des phases de la lune, nous avons
supposé que cet astre décrit un cercle, et que le soleil est fixe dans le plan de
ce cercle. Ces conditions ne sont pas exactement remplies, en réalité; mais elles
ne sont pas indispensables pour l'explication des phases. En fait de distances,
nous avons seulement opposé que la distance du soleil à la terre ou à la
lune était extrêmement grande par rapport à la distance qui sépare ces deux
derniers corps; ce qui est toujours vrai en réalité. Nous avons supposé que la
lune tournait dans le plan de l'écliptique; elle s'en écarte un peu, mais les
phases telles que nous les avons expliquées ne peuvent être que fort peu modifiées
par cette circonstance; car le cercle ss' restant toujours parallèle à lui-même,
le cercle tt' dans le mouvement réel de la lune doit tourner à fort peu
près comme nous l'avons supposé; or tout dépend des positions relatives de ces
cercles. Nous avons supposé que le soleil ne tournait pas en même temps que
la lune  en réalité, les positions relatives des trois astres sont les mêmes que
si le soleil tournait autour de la terre en même temps que la lune, mais avec
une vitesse angulaire 13 fois-1/3 plus petite. Il résulte de là que si on représente
par 1 l'angle que la ligne TS a décrit dans un temps donné quelconque,
13-1/3 représente l'angle dont le rayon Tl qui va à la lune a tourné dans
le même temps; si donc ces lignes coïncidaient d'abord (position (A) de la
lune), après ce temps donné elles sont séparées par un angle dont la grandeur
est représentée par 12-1/3. On représente donc avec exactitude les positions
relatives successives des trois corps en supposant que, le soleil restant sur la
ligne fixe TS, la lune tourne autour de la terre avec une vitesse 12 fois-1/3 plus
grande que celle du mouvement apparent de translation du soleil; c'est ce
que nous avons fait sans mentionner la vitesse. La lune doit donc revenir sur
la ligne TS après-3651,256/12-1/3, c'est-à-dire 291-1/2 à peu près.


244. Syzygies et quadratures. Quand la lune, située entre la
terre et le soleil, sur la ligne qui joint ces deux corps, est invisible
pour nous (position A), on dit qu'elle est nouvelle. Il y a pleine
lune, au contraire, quand cet astre, occupant la position opposée
(E), nous offre l'aspect d'un cercle entier. En (C), à 90° de la
ligne TS, on dit que la lune est à son premier quartier; en (G), de
même, à 90° de TS, on dit qu'elle est à son dernier quartier. Les
deux phases principales, pleine lune et nouvelle lune, se désignent
souvent sous le nom commun de syzygies; le premier quartier et le
dernier quartier s'appellent quadratures. Les quatre positions qui
tiennent chacune le milieu entre deux des précédentes s'appellent
des octants.


245. Quelquefois ces expressions nouvelle lune, pleine lune, etc.,
ne désignent pas des phases, mais quatre périodes de la révolution
lunaire. On dit que la lune est nouvelle pendant tout le temps qu'elle
met à aller de la position (A) à la position (C), qu'elle est dans son
premier quartier pendant qu'elle va de (G) à (D), etc.


246. Remarque. Quand la lune est en (A), sur la ligne TS, ou
plutôt quand sa longitude céleste est la même que celle du soleil,
les deux astres sont dits en conjonction. À cette époque, au moment où le soleil passe au méridien, la ligne TS y passe avec lui;
donc la lune doit y passer à peu près en même temps. La lune s'éloignant du soleil en tournant sur la sphère céleste, les longitudes
des deux astres sont de plus en plus différentes, l'intervalle de
leurs passages au méridien augmente de plus en plus. Quand la
lune est en (C), la longitude des deux astres diffère de 90°; la lune
passe au méridien environ 6 heures après le soleil. Quand elle arrive
en (E), la différence des longitudes est 180°; les deux astres
sont en opposition. La lune se trouve à peu près sur le cercle horaire
opposé à celui du soleil; elle passe au méridien 12 heures
après lui. Enfin en (G), la différence des latitudes est de 270º; la
lune passé alors au méridien environ 18 heures après le soleil. Ainsi
se trouve expliqué ce que nous avons dit, nº 240, à propos du lever
et du coucher de la lune.


247.  Lumière cendrée. Quand on observe attentivement la lune,
quelques jours avant le premier quartier, ou quelques jours après
le dernier, quand le croissant est très-étroit, on voit distinctement
le reste du disque éclairé par une lumière pâle, très-faible, qu'on
appelle lumière cendrée. La lune nous offre alors l'aspect représenté
par la fig. 88 et la fig. 96. La lumière cendrée disparaît toujours
avant le premier quartier, et ne reparaît que quelque temps après
le dernier quartier.


248.  Explication de la lumière cendrée. Examinons la terre T
vis-à-vis du soleil S, et vis-à-vis de la lune (positions diverses). La
terre éclairée par le soleil doit produire à l'égard de la lune des
phénomènes semblables à ceux que la lune produit à l'égard de la
terre, c'est-à-dire que l'hémisphère terrestre éclairé par le soleil
présenterait à un habitant de la lune des phases semblables à celles
que la lune présente à un habitant de la terre. Suivons sur la fig. 99,
à partir de la première position (A) de la lune; d'abord la terre doit
offrir à l'habitant de la lune un cercle lumineux; puis un fuseau
brillant décroissant du cercle au demi-cercle de (A) jusqu'à (C); puis
du demi-cercle au croissant, au filet, puis à zéro, de (C) à (D), puis
de (D) à (E). A partir de la position (E) de la lune, le fuseau terrestre,
se reformant, grandit, et les phases se reproduisent dans un
ordre inverse. Suivant la position occupée par la lune, la partie
éclairée de la surface terrestre, qui se trouve vis-à-vis de cet astre,
lui envoie par réflexion une partie plus ou moins grande de la lumière
qu'elle reçoit directement du soleil; la lune nous renvoie une
partie de cette lumière réfléchie. C'est cette lumière affaiblie par
une double réflexion qu'on appelle lumière cendrée.


En jetant les yeux sur la fig. 98, on verra qu'abstraction faite des diamètres
apparents des deux disques, terrestre et lunaire, la portion s1at1, du disque
terrestre éclairé visible de la lune, et la partie, ts, du disque lunaire éclairé
visible de la terre, se complètent constamment de manière à former, par addition,
un cercle éclairé entier
92. Quand la lune est nouvelle, position (A), tout
l'hémisphère terrestre éclairé s´1a1s1 est visible de la lune; pour l'habitant de la
lune, il y a pleine terre; la masse de lumière réfléchie de la terre vers la lune
est alors la plus grande possible; elle n'est pas effacée d'ailleurs par la lumière
arrivée du soleil à la lune, entièrement cachée pour l'observateur terrestre; il
en résulte que, à cet instant, la lumière cendrée a sa plus grande intensité; avec
de bons yeux ou une faible lunette, nous voyons le disque lunaire éclairé d'une
lumière beaucoup plus faible que celle de la pleine lune. Plus tard, quand le
filet lumineux de la lune se forme et s'agrandit, la terre réfléchit vers la lune
une masse de lumière de moins en moins grande; de plus, cette lumière
réfléchie est effacée en partie par la lumière plus brillante arrivée directement
du soleil à la lune; il résulte de là que le disque lunaire se partage en deux
fuseaux inégalement éclairés, l'un étroit et brillant, qui grandit; l'autre, plus
large et plus terne, qui diminue. Bientôt la lumière directe efface tout à fait
la lumière réfléchie, et dès la première quadrature la lumière cendrée n'existe
plus pour l'observateur terrestre. Plus tard, après le dernier quartier, quand
la lune se rapproche de sa position première, de la position (G) à la position (A),
la lumière cendrée reparaît et grandit, les mêmes effets, déjà décrits,
se reproduisant dans l'ordre inverse.


Note 92:
(retour)  V. la fig. 71, position (2), de la lune, le fuseau lunaire éclairé et visible
est mesuré par l'arc st, le fuseau terrestre par l'arc
s1t1, mais s1t´1 = st; or
s1t´1 + s1t1 = 180°, donc st + s1t1 = 180°. En général, menez t1t´1 parallèle à tt´,
et remarquez la partie commune aux hémisphères terrestres t1s´1t´1 et s1t1s´1;
c'est le fuseau terrestre brillant pour l'habitant de la lune; on a constamment
s1t´1 = st; et s1t´1 + s1t1 = 180°; d'où st + s1t1 = 180°.





249. Nous allons maintenant revenir, pour nous en occuper
spécialement, au mouvement propre de la lune que nous n'avons
fait qu'indiquer succinctement nº 243. Pour commencer, nous expliquerons
comment on détermine avec précision chacune des positions
successives de l'astre; puis nous indiquerons les principales
circonstances de son mouvement.


250. Forme du disque de la lune. La lune ayant des dimensions
apparentes très-appréciables, il est nécessaire d'indiquer auquel
de ses points se rapportent les observations faites pour déterminer
les positions successives de l'astre. Tout nous porte à croire, ainsi
que nous l'avons expliqué nº 241, que la lune est un corps sphérique
opaque comme la terre, et, de même que celle-ci, éclairé en
partie par le soleil. En conséquence, adoptant cette opinion, on
opère constamment, à propos de la lune, comme si on avait devant
soi un disque circulaire analogue à celui du soleil. C'est au
centre de ce disque que se rapportent les observations qui servent
à déterminer de temps en temps la position de la lune. On mesure
l'ascension droite et la déclinaison de ce centre, et on se sert de
ces angles pour étudier le mouvement de l'astre sur la sphère
céleste.


251. Mesure du diamètre apparent, de l'ascension droite, et de
la déclinaison du centre de la lune. Pour trouver l'ascension droite
et la déclinaison de la lune, on ne peut pas opérer tout à fait
de la même manière que pour le soleil, puisqu'on n'aperçoit le
plus souvent qu'une moitié du contour circulaire du disque de la
lune; on supplée à ce qui manque sous ce rapport, en faisant usage
du diamètre apparent de l'astre que l'on peut toujours déterminer.
En effet, dès qu'on aperçoit la lune sous la forme d'un croissant,
ou autrement, on voit toujours au moins la moitié de son contour
circulaire; il suffit donc de mesurer l'angle sous lequel se voient
les extrémités de cette demi-circonférence pour avoir le demi-diamètre apparent de l'astre (nº 124, définition)
93. Ce diamètre apparent
varie d'une époque à une autre avec la distance de l'astre à
la terre; il change même sensiblement d'une heure à une autre de
la même journée; il est donc important de connaître sa valeur pour
l'instant où on fait l'observation du centre comme nous allons le
dire.


Note 93:
(retour)  On peut employer, pour mesurer ce diamètre apparent, un micromètre à
fils parallèles, c'est-à-dire une lunette astronomique dans laquelle les fils du
réticule, au lieu d'être perpendiculaires, sont parallèles entre eux; l'un de
ces fils est fixe; l'autre fil, demeurant toujours parallèle au premier, peut en
être éloigné ou rapproché au moyen d'une vis. Quand le disque de la lune est
entièrement visible, on amène les fils à être tangents au contour; puis on fait
tourner la lunette de manière à ce que l'un des fils ne cesse pas d'être tangent;
l'autre fil, sans être dérangé, continue à être également tangent au
disque; ce qui prouve que le diamètre de ce disque est le même dans toutes
les directions, c'est-à-dire que ce disque est exactement circulaire; l'écart des
deux fils donne la mesure du diamètre apparent. Il est évident que les choses
ne se passent pas ainsi quand le disque n'est pas entièrement visible; la moitié
du contour circulaire est toujours visible, et les extrémités de cette demi-circonférence
sont les points du contour de la figure les plus éloignés l'un de
l'autre, ceux pour lesquels les fils parallèles de la lunette, amenés au contact,
sont les plus écartés. Le plus grand écart des fils amenés au contact donne
donc la mesure du diamètre apparent de l'astre au moment de l'observation.



Déclinaison. Pour obtenir la déclinaison du centre de la lune, on
observe le bord inférieur du disque, ou bien son bord supérieur
au moyen du mural, afin de déterminer la déclinaison de ce bord;
cela fait, on n'a plus qu'à ajouter ou à retrancher le demi-diamètre
apparent pour connaître la déclinaison du centre.


Ascension droite. Pour déterminer l'ascension droite du centre de
la lune, on opère d'une manière analogue; on observe l'heure du
passage au méridien du bord oriental, ou du bord occidental (celui
qui est visible); on ajoute ou on retranche ensuite la moitié du temps
que le disque tout entier met à traverser le méridien; le résultat est
l'heure du passage du centre. (Le temps en question se calcule d'après
le diamètre apparent de la lune, au moment de l'observation,
et d'après la valeur de la déclinaison du centre.)


Ces préliminaires exposés, nous allons résumer ce qui concerne
le mouvement propre de la lune.


252. Mouvement propre de la lune. La lune se déplace parmi les
étoiles; pour le reconnaître, il suffit de remarquer attentivement la
position que cet astre occupe par rapport à quelques étoiles voisines;
on voit cette position changer d'une manière sensible dans l'espace
de quelques heures.


Pour étudier ce mouvement de la lune, on emploie le même procédé
que pour celui du soleil. On observe l'astre, aussi souvent que
possible, à son passage au méridien; on détermine chaque fois son
ascension droite et sa déclinaison; puis on se sert de ces angles pour
construire graphiquement sur un globe, ou calculer trigonométriquement
les positions apparentes successives de la lune sur la
sphère céleste. D'après ce travail:


La lune nous paraît décrire, d'occident en orient, un grand cercle
de la sphère céleste, faisant avec l'écliptique un angle de 5° 9' environ.


253. Mais ce grand cercle, analogue à l'écliptique, n'est que
le lieu des projections des positions réelles de l'astre sur la sphère
céleste (nº 117); le travail précédent ne nous apprend donc rien
sur l'orbite de la lune, c'est-à-dire sur le lieu de ses positions
réelles, si ce n'est que cette orbite est plane. Mais la connaissance
des diamètres apparents de l'astre permet de déterminer la nature
de l'orbite lunaire.


254. Le diamètre apparent de la lune varie, comme nous
l'avons dit, entre 29' 22" et 33' 31"; la distance de la lune à la terre
varie donc dans des limites correspondantes. La lune ne décrit pas
un cercle dont la terre occupe le centre.


Connaissant les positions apparentes successives de la lune sur
la sphère céleste et les diamètres apparents correspondants, on
peut, comme on a fait pour le soleil nº 129, construire une courbe,
semblable à celle que la lune décrit autour de la terre. On arrive
ainsi au résultat suivant:


255. Orbite lunaire. La lune décrit autour de la terre une ellipse
dont la terre occupe un foyer. Cette ellipse est ce qu'on nomme
l'orbite de la lune.


L'excentricité de l'orbite lunaire est environ 0,055 ou 1/18 de
son grand axe; elle surpasse 3 fois celle de l'orbite terrestre qui
est 1/60; ainsi l'orbite de la lune est plus allongée, approche moins
de la forme d'un cercle que l'orbite de la terre. Le grand axe de
l'orbite lunaire s'appelle aussi la ligne des apsides; l'une de ses
extrémités (la plus voisine de la terre) est le périgée de la lune;
l'autre est l'apogée (nº 129).


256. Loi des aires. Le principe des aires se vérifie dans le mouvement
de la lune: les aires elliptiques décrites par le rayon vecteur
qui va de la terre à la lune sont proportionnelles aux temps employés
à les parcourir.


On vérifie également que la vitesse du mouvement angulaire de la
lune autour de la terre varie en raison inverse du carré de la distance
des deux globes.


257. Longitudes et latitudes de la lune. Avant d'aller plus loin,
observons que le mouvement de la lune est beaucoup plus simple
à étudier quand on le rapporte à l'écliptique et à son axe que si
on le rapporte à l'équateur. C'est pourquoi, dans l'étude de ce
mouvement, on convertit ordinairement l'ascension droite et la
déclinaison, trouvées au moyen des instruments méridiens, en
longitudes et en latitudes, pour se servir préférablement de ces
derniers angles.


258. Durée de la révolution de la lune. La position apparente
de la lune fait le tour de la sphère céleste 13 fois-1/3 plus vite que
celle du soleil; en effet, la longitude de la lune varie moyennement
de 13° 10' 35" par jour solaire moyen, tandis que celle du
soleil ne varie que de 59' 8".


Révolution sidérale de la lune. On appelle ainsi le temps qui
s'écoule entre deux retours consécutifs de la lune à la même
étoile. La révolution sidérale de la lune est de 27j 7h 43m 11s, ou
27j. sol. moy.,321661
94.


Révolution synodique. On appelle révolution synodique de la
lune, mois lunaire, ou lunaison, le temps qui s'écoule entre deux
retours consécutifs de la lune à la longitude du soleil. La durée de
la révolution synodique de la lune ou le mois lunaire est de
29j. sol. moy. 12h 14m ou 29j. sol. moy.,53, à peu près 29j.-1/2 
95.


Note 94:
(retour)  On appelle révolution tropique de la lune le temps qui s'écoule entre deux
retours consécutifs de cet astre à la même longitude. On calcule ce temps
comme on a calculé l'année tropique (nº 157); on détermine à deux époques
assez éloignées le moment précis où la longitude de la lune a une valeur donnée,
0° par exemple; puis on divise le temps écoulé par le nombre des révolutions qui ont eu lieu entre ces deux époques. La révolution tropique est de
27 j. sol. moy.,321582.

La lune ayant quitté une étoile revient plus tôt à la même longitude qu'à la
même étoile; en effet, tandis que la lune a fait le tour de la sphère, la longitude
de l'étoile augmente par l'effet de la précession des équinoxes (nº 216).
La révolution tropique est donc plus courte que la révolution sidérale. La révolution
sidérale se déduit de la révolution tropique par une proportion qui résulte
de ce que le chemin angulaire parcouru par l'astre dans la dernière période
est 360°-(50",2 · 27,321582 / 365,2422) et dans la première 360°.




Note 95:
(retour)  Quand le soleil et la lune ont la même longitude, il y a nouvelle lune:
quand, après une révolution synodique, ils se retrouvent avoir même longitude,
il y a encore nouvelle lune. En général, toutes les phases de la lune se produisent
dans l'intervalle d'une nouvelle lune à l'autre; la révolution synodique est précisément
la période des phases; de là son importance et son nom de lunaison.



259. La révolution synodique de la lune est plus longue que
la révolution sidérale; cela s'explique aisément. En effet, concevons que la lune, le soleil et une étoile se trouvent ensemble à
un moment donné sur le même cercle de latitude; à partir de ce
moment, la lune prenant l'avance fait d'abord le tour de la
sphère céleste et revient à l'étoile après une révolution sidérale,
c'est-à-dire après 27j 7h 43m (27j,321661); pendant ce temps, le
soleil a parcouru un certain arc sur l'écliptique, vers l'est; il
faudra donc que la lune, recommençant une nouvelle révolution
sidérale, fasse un certain chemin pour se retrouver avec le soleil
sur un même cercle de latitude; le temps qu'elle met à faire ce
chemin est l'excès de la révolution synodique sur la révolution
sidérale.


260. La durée d'une révolution synodique est facile à trouver quand on
connaît les durées des révolutions sidérales du soleil et de la lune qui sont respectivement
365j,25638 et 27j,321661. En prenant le rapport de ces deux nombres,
on trouve que la lune parcourt 360º de longitude 13 fois-1/3 plus vite que
le soleil; il résulte de là, en moyenne, que si, après un certain temps écoulé,
le soleil a fait autour de la terre un chemin angulaire représenté par 1, la lune
en a fait un représenté par 13-1/3; donc, l'avance de la lune sur le soleil est représentée
après le même temps par 12-1/3.


Si donc on compare les positions respectives des cercles de latitude de la lune
et du soleil, on voit que, sous ce rapport, les choses se passent exactement
comme si, le soleil restant fixe, la lune tournait autour de l'axe de l'écliptique avec une vitesse 12 fois-1/3 plus grande que celle du mouvement de translation
du soleil autour de la terre. La lune ayant quitté le soleil doit donc le
retrouver après un temps 12 fois-1/3 moins grand que celui qu'il faut au soleil
pour faire le tour de la sphère, c'est-à-dire qu'elle le rejoindra de nouveau
après 365j,25638 / 12-1/3
96. C'est le même raisonnement que nous avait fait nº 284
dans notre explication des phases de la lune.


Note 96:
(retour)  Plus exactement
365,25038 / [(365,25638 / 27,321661)-1] = 365,25638 / 12,35...



261. Nœuds de la lune.--Mouvement de la ligne des nœuds.
Le mouvement de la lune n'est pas tout à fait tel que nous l'avons
décrit; il est affecté de certaines irrégularités que, pour plus de
clarté et de simplicité, nous avons à dessein passées sous silence.
Nous indiquons, dans une note à la fin du chapitre, la principale de
ces irrégularités dont il suffit de tenir compte pour avoir une idée
à très-peu près exacte du mouvement de la lune (V. cette note).


262. Distance de la lune a la terre.  Nous avons déjà dit,
d'après Lalande, que la parallaxe horizontale moyenne de la lune
est à l'équateur de 57'40"; elle varie entre 53'53" et 61'27".


D'après cela, en faisant usage de la formule D = r / sin. P (n° 224),
on arrive à ce résultat:


La distance de la lune à la terre a pour valeur moyenne à peu
près 60 fois le rayon de la terre (celui de l'équateur); ce qui fait à
peu près 95000 lieues de 4 kilomètres.


Cette distance varie entre 57 fois et 64 fois le même rayon
97.
On voit par là que la lune est bien moins éloignée de nous que le
soleil, dont la distance moyenne est de 24000 rayons terrestres;
le soleil est 400 fois plus éloigné que la lune.


Note 97:
(retour)  Les distances citées sont plus exactement 59r,617; 56r,947 et 63r,802.



263. En comparant cette distance moyenne de la lune à la
terre (60 rayons terrestres) au rayon du soleil qui comprend
112 de ces rayons, on arrive à une conséquence curieuse. Si le
centre du soleil venait coïncider avec le centre de la terre, la lune
serait située dans l'intérieur du soleil, même assez loin de la surface.
Cette comparaison donne une idée de l'immensité de l'astre
qui nous éclaire.


264. Dimensions de la lune. D'après le raisonnement déjà fait,
n° 201, à propos du soleil, le diamètre réel de la lune est au diamètre
de la terre comme le diamètre apparent de la lune est au
diamètre apparent de la terre vue de la lune, c'est-à-dire au
double de la parallaxe de cette dernière. En faisant usage des
valeurs moyennes de ces angles, qui sont 31' 25",7 = 1885",7 et
57' 40" = 3460", on arrive à ce résultat:


Le rayon de la lune est à très-peu près les 3/11 du rayon de la terre. r' = 3/11 r.


Le volume de la lune, supposée sphérique, est environ 1/49 de
celui de la terre. v' = 1/49 de v.


Sa surface est à peu près les 3/40 de celle de la terre, s' = 3/40 de s.


265. Masse. La masse de la lune est à peu près 1/81 de celle de la terre.


Densité. On obtient son rapport à celle de la terre en divisant la
masse par le volume, ce qui donne 49/81. La densité de la lune est à
peu près les 6 dixièmes de celle de la terre.


266. Le mouvement propre de la lune est un mouvement réel. De
ce que la distance de la lune à la terre ne dépasse jamais 64 rayons
terrestres, tandis que la terre tournant autour du soleil occupe successivement
des positions différentes, dont la distance, périodiquement
variable, s'élève jusqu'à 48000 rayons terrestres, on conclut
naturellement que la lune et son orbite accompagnent la terre dans
son mouvement autour du soleil. La lune est le satellite de la terre.
Nous avons vu tout à l'heure que la lune est plus petite que la terre;
il résulte de là et de la faible distance des deux globes que la lune,
soumise à l'attraction de la terre, doit décrire autour de notre globe
précisément l'orbite elliptique que l'observation nous a fait connaître.
Ainsi le mouvement de la lune autour de la terre n'est pas
une simple apparence comme le mouvement annuel de translation
du soleil, avec lequel il a d'ailleurs tant de rapports; c'est un mouvement
réel dont toutes les circonstances s'expliquent par les lois
de la gravitation universelle
98.


Note 98:
(retour)  Ces lois expliquent et font connaître les irrégularités que nous indiquons à
la fin du chapitre. L'explication de la rétrogration des nœuds est analogue à celle
de la rétrogradation des points équinoxiaux, le corps attirant principal étant la
terre au lieu du soleil.



267. Taches de la lune. Même à la vue simple, on aperçoit sur
la surface de la lune des taches grisâtres dont l'ensemble donne
grossièrement à la lune l'apparence d'une figure humaine. À
chaque lunaison, à mesure que le disque s'éclaire, on retrouve
les mêmes taches occupant les mêmes positions respectives par
rapport au contour du disque. On tire de ce fait une conclusion
remarquable.


268. La lune montre toujours à la terre à peu près la même partie
de sa surface. Nous ne voyons jamais qu'un hémisphère de la lune;
l'hémisphère opposé nous reste constamment caché.


269. Rotation de la lune. De ce que la lune nous montre toujours
la même face dans sa révolution autour de la terre, on doit
conclure qu'elle tourne sur elle-même.


La lune, comme le soleil et la terre, tourne continuellement sur
elle-même, d'occident en orient, autour d'un axe central; elle fait
un tour entier dans le même temps qu'elle fait sa révolution sidérale
sur son orbite, c'est-à-dire en 27j 7h 43m 11s
99. Ce mouvement de
rotation de la lune est uniforme comme celui du soleil et de la
terre.


Note 99:
(retour)  Il est facile de se rendre compte par une expérience de ce double mouvement
de translation et de rotation de la lune.

Figurons-nous un spectateur fixe en S, sur TS (fig. 98), à une grande distance
d'une table ronde, autour de laquelle une seconde personne l circule sans
bouger la tête, les yeux constamment fixés vers le centre T de la table. Partie
de la position (A), cette personne l tourne dans le sens des lettres (A), (B), (C)...
Quand ce mouvement commence, le spectateur, S, ne voit que le derrière de
la tête de la personne l; puis un peu de sa figure en (B); puis la voit de profil
(pos. C); de (C) à (D) et de (D) à (E), le profil s'élargit, et quand la personne l
arrive en (E), le spectateur S la voit en face. Cette personne l a fait évidemment
un demi-tour sur elle-même, en même temps qu'elle a tourné autour de
la table, puisqu'elle voit en face une personne à laquelle elle tournait d'abord
le dos. La personne l continuant à circuler autour de la table, une partie de
plus en plus grande de sa figure se cache pour le spectateur S; à la position (G),
elle n'est plus vue que de profil, et le côté visible de sa figure n'est pas celui qui
l'était à la position (C). Enfin, revenue à la position (A), la personne l tourne de
nouveau le dos à la personne S. La tête de l représentant la lune a donc fait
un tour sur elle-même, en même temps qu'elle tournait autour du point central
T représentant la terre.





Les extrémités de l'axe de rotation sont les pôles de la lune; le
grand cercle perpendiculaire à cet axe est l'équateur lunaire; l'équateur
lunaire coupe l'écliptique suivant une ligne parallèle à la ligne
des nœuds, en rétrogradant avec elle.


L'axe de rotation de la lune fait avec l'écliptique un angle presque
droit, de 88° 29' 49", et avec le plan de l'orbite lunaire un angle
de 83° 20' 49".


Démonstration. La rotation de la lune est prouvée par la fixité de ses taches.




[image: ]En effet, considérons, pour plus de
simplicité (fig. 101); une tache, m,
située au centre même du disque, sur
la ligne Tl qui joint ce centre à celui de
la terre, et suivons le mouvement de
la lune à partir de la position (A). Si la
lune se déplaçait le long de son orbite
sans tourner sur elle-même, chaque
ligne lm de son intérieur se transportant
parallèlement à elle-même, dans la
position (B) de cet astre, la tache m
serait vue en m'; on la voit toujours
en m sur la direction du rayon Tl' qui
va de la terre au centre du disque; cette
tache a donc tourné dans l'intervalle de
l'arc m'm = m'l'T = l'Tl. Quand la lune arrive à la position (C), la tache, au
lieu d'être vue en m?, est toujours vue en m; elle a donc tourné de l'arc
m?m = m?l?T = l?Tl; voyez encore ce qui arrive à la position (D), etc. Il
résulte donc de la fixité des taches que chaque point m de la surface de la
lune est animé, autour d'un axe passant en l, d'un mouvement angulaire précisément
égal au mouvement du centre de la lune autour de la terre. Chaque
tache doit faire un tour entier dans le même temps que le centre l de la lune
fait une révolution autour de la terre. Tel est précisément le mouvement de
rotation indiqué.



270. Libration de la lune. A la vue simple, les taches de la
lune nous paraissent toujours garder la même position; mais si on
les observe attentivement pendant quelques jours avec une lunette,
on remarque que les points observés ne conservent pas en réalité
la même position sur le disque; chacun d'eux nous paraît osciller
de part et d'autre d'une position moyenne. L'impression générale
que nous laissent tous ces petits mouvements, qui d'ailleurs à une
même époque quelconque de l'observation, ont tous lieu dans le
même sens, c'est que la lune tout entière éprouve un mouvement
d'oscillation, ou de balancement, autour de son centre, qui produit
celui des taches que nous voyons à sa surface. Ce mouvement
particulier de la lune, découvert par Galilée, a reçu le nom de
libration.


La libration de la lune est un mouvement composé, dû à trois
causes distinctes produisant chacune une libration particulière. Ces
trois librations particulières, dont la coexistence produit le mouvement
d'oscillation des taches tel qu'on l'observe, sont connues
sous les noms de libration en longitude, libration en latitude, et
libration diurne. Nous les décrirons séparément afin de les mieux
faire comprendre.




271. Libration en longitude. Les taches de la lune les plus rapprochées
du centre nous paraissent osciller de part et d'autre de ce
point; celles qui avoisinent l'un ou l'autre bord se montrent et se
cachent alternativement; en somme, le globe lunaire nous paraît
se balancer légèrement, en tournant de droite à gauche, puis vice
versa, de gauche à droite autour d'une perpendiculaire au plan de
son orbite. C'est ce balancement de la lune que l'on désigne sous
le nom de libration en longitude.



Pour parler d'une manière plus précise, nous dirons:


La libration en longitude, considérée seule, consiste dans une espèce de balancement
continuel, ou mouvement de va-et-vient circulaire, du globe lunaire
autour d'un axe perpendiculaire au plan de son orbite. Par suite, une tache
centrale nous parait osciller de part et d'autre du centre. Quand la lune part
du périgée, les taches situées alors près du bord oriental disparaissent successivement,
pour ne reparaître qu'au moment où la lune apparaît à l'apogée; dans
le même temps, de nouvelles taches, invisibles auparavant, apparaissent au
bord occidental, se rapprochent du centre, puis, s'en retournant vers le bord,
disparaissent successivement. Quand la lune va de l'apogée au périgée, les
mêmes taches du bord oriental se rapprochent du centre; puis, arrivées à une
certaine distance du bord, s'en retournent pour y être revenues au moment où
la lune arrive au périgée; les taches vues au commencement de cette seconde
période sur le bord occidental disparaissent pour ne reparaître qu'à l'arrivée de
la lune au périgée.


L'amplitude de chaque oscillation est de 8°; par exemple: une tache qui, à
peine arrivée au bord occidental, disparaît, a parcouru, pour arriver là de sa
position la plus éloignée, un arc de 8°. Nous voyons donc, à l'ouest et à l'est du
globe lunaire, successivement, un fuseau de 8° de largeur que nous ne verrions
pas sans la libration en longitude.




272. Libration en latitude. La lune nous paraît se balancer
légèrement de haut en bas, puis de bas en haut, autour d'un axe
situé dans le plan de son orbite. Des taches apparaissent successivement
au bord supérieur du disque (par rapport à l'orbite),
s'avancent un peu en deçà; puis, s'en retournant, disparaissent
les unes après les autres; tandis que des taches voisines du bord
inférieur opposé, s'en rapprochent progressivement, disparaissent
pour reparaître plus tard. L'amplitude d'une oscillation est d'environ
6°-1/2.



273. Libration diurne. Enfin on remarque encore un troisième
balancement de l'astre beaucoup plus faible que les deux autres,
et dont la période ne dure qu'un jour: c'est un mouvement de
va-et-vient circulaire autour de l'axe de rotation de là terre,
c'est-à-dire
suivant le parallèle céleste que la lune nous paraît décrire
au-dessus de notre horizon dans le mouvement diurne de la sphère
céleste. L'amplitude de cette oscillation est égale à la parallaxe de
l'astre, environ 1°
100.


Note 100:
(retour)  Voir note II, à la fin du chapitre, l'explication de chaque libration.



274. Montagnes de la lune. A l'aide du télescope on distingue
à la surface de la lune des inégalités qui ne peuvent être que des
montagnes; car elles projettent des ombres très-caractérisées dont
la position et la grandeur se rapportent exactement à la direction
des rayons solaires qui arrivent sur les lieux de la surface de la lune
où ces inégalités s'observent.


Le bord du fuseau brillant de la lune tourné du côté du soleil est
toujours circulaire et à peu près uni; mais le bord opposé de la partie
éclairée qui devait offrir l'apparence d'une ellipse bien tranchée, si
la surface lunaire avait une courbe unie, se montre toujours avec des
déchirures ou des dentelures qui indiquent des cavités et des points
proéminents. Les dentelures sont de grandes ombres que présentent
des montagnes situées sur ce bord, quand le bord éclairé dépasse
ces points proéminents; le soleil gagnant en hauteur, ses rayons
sont moins inclinés; les ombres se raccourcissent. Quand la lune
est pleine, les rayons solaires arrivant perpendiculairement en même
temps que nos rayons visuels, on n'aperçoit plus d'ombre sur aucun
point de la surface lunaire.


L'existence des montagnes lunaires est encore confirmée par ce
fait, qu'il existe même en dehors de la partie éclairée des points
brillants, qui sont les sommets de montagnes éclairées avant les
vallées voisines.


On a pu, à l'aide de mesures micrométriques des ombres portées,
calculer les hauteurs de plusieurs montagnes de la lune. MM. Beer
et Maddler, de Berlin, après avoir effectué un grand nombre de ces
mesures dans les diverses parties de l'hémisphère lunaire visible,
ont trouvé 22 montagnes dont la hauteur dépasse 4800 mètres (hauteur
du mont Blanc).


Voici, les plus hautes que nous désignons par leurs noms généralement
adoptés:




                   Dorfel       7603 mètres.

                   Newton       7264

                   Casatus      6956

                   Curtius      6769

                   Calippus     6216

                   Tycho        6151

                   Huyghens     5530





275. Remarque. Les taches grisâtres que l'on remarque à l'œil
nu sur la surface de la lune ne sont pas des montagnes; ce sont
des parties qui réfléchissent moins bien les rayons solaires que les
régions environnantes. Ces parties moins brillantes ne renferment
presque pas de montagnes; on leur a donné jusqu'ici le nom de
mers, à tort, puisque, ainsi que nous l'expliquerons bientôt, il ne
peut exister d'eau à la surface de la lune.
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276. Constitution volcanique de la lune. Les montagnes très-nombreuses
de la lune présentent un caractère particulier extrêmement
remarquable. Elles offrent en général l'aspect d'un bourrelet
circulaire entourant une cavité dont le fond est quelquefois
au-dessous du niveau des parties environnantes de la surface de la
lune. Souvent il existe au milieu de cette cavité centrale une montagne
isolée en forme de pic (fig. 106). Ces montagnes circulaires
ressemblent assez aux cratères des volcans éteints qui existent à la
surface de la terre; mais les diamètres des montagnes lunaires sont
incomparablement plus grands que les diamètres de ces volcans.
Le diamètre de l'Etna, dans son maximum, a atteint 1500 mètres;
et celui du Vésuve, environ 700 mètres. Or, parmi les plus grandes
montagnes circulaires de la lune on en cite deux qui ont 91200 et
87500 mètres de diamètre. A partir de là on en trouve de toutes les
dimensions, jusqu'aux plus petites que nous puissions apprécier à
la distance de la lune. Eu égard à leurs dimensions, les grandes
montagnes lunaires sont plutôt comparables à certains cirques montagneux
que l'on rencontre sur la terre, et que l'on désigne sous le
nom de cratères de soulèvement. Tels sont, par exemple, le cirque
de l'île de Ceylan, qui a 70000 mètres de diamètre; celui de l'Oisans,
dans le Dauphiné, qui en a 20000, et le cirque du Cantal
(Auvergne), qui en a 10000.

En somme la surface de la lune nous offre l'aspect général des
contrées volcaniques; on y voit presque partout des accidents de
terrain considérables; le sol paraît avoir été tourmenté par des
actions volcaniques intérieures; il n'offre pas les traces d'un nivellement
pareil à celui que les eaux et les agents atmosphériques ont
produit avec le temps sur la surface de la terre.



277. Absence d'atmosphère à la surface de lune. Il résulte de
divers indices que la lune n'est pas entourée d'une atmosphère gazeuse
analogue à celle dans laquelle nous vivons; voici l'observation
qui démontre de la manière la plus précise cette absence d'atmosphère
autour de la lune. (V. aussi la note ci-après.)


Quand cet astre, en vertu de son mouvement propre, vient à
passer devant une étoile, on peut observer avec une grande exactitude
l'instant précis de la disparition de l'étoile, puis l'instant de
sa réapparition; de là on déduit la durée de l'occultation. D'un
autre côté, les lois connues du mouvement de la lune nous apprennent
quelle est la position de cet astre par rapport à la terre et à
l'étoile, au moment de l'observation, et par suite quelle est la corde
du disque qui passe précisément entre l'observateur et l'étoile.
Connaissant la vitesse du mouvement propre de la lune au même
moment, on peut calculer le temps qu'il faut au dernier point de
cette corde (considérée dans le sens du mouvement), pour venir
remplacer le premier sur la direction du rayon visuel qui va de
l'observateur à l'étoile; car ce temps est précisément celui qu'il
faut à cette deuxième extrémité comme à tout autre point de la
lune pour parcourir dans le sens de l'orbite un chemin ayant la longueur
connue de la corde en question. Or on trouve toujours que
ce temps est égal à la durée de l'occultation; ou du moins la différence
qui existe entre ces deux temps est assez faible pour qu'on
puisse la regarder comme résultant des erreurs d'observation.


Il n'en peut être ainsi évidemment que si la lune n'a pas d'atmosphère gazeuse analogue à la nôtre; en effet, le temps calculé
est précisément celui pendant lequel le rayon lumineux qui va en
droite ligne de l'étoile à l'observateur est successivement intercepté
par les divers points de la corde que nous avons considérés; c'est
donc précisément le temps que doit durer l'occultation, si ce rayon
direct est le seul qui puisse nous montrer l'étoile. Cela posé, admettons
que la lune soit entourée d'une atmosphère gazeuse plus
ou moins étendue, et considérons l'étoile e un peu après le moment
où le disque lunaire a commencé à s'interposer entre elle et
l'observateur placé en O (fig.107,
nº 1).




[image: ]Le rayon direct eO est intercepté
et ne nous montre plus
l'étoile; mais le rayon lumineux
ec qui traverse l'atmosphère tout
près de ce disque se réfracte et
nous apporte indirectement la
vue de l'astre; celui-ci ne cesse
d'être vu que lorsqu'il est déjà
assez avancé derrière la lune
pour que la réfraction ne puisse
plus dévier jusqu'à nous aucun
des rayons qui vont de l'étoile à
l'atmosphère: l'occultation commencerait
donc en réalité un certain
temps après le passage entre
la terre et l'étoile de la première extrémité de la corde que nous
considérons. Elle cesserait aussi un certain temps avant le passage de la seconde extrémité; car un peu avant ce dernier passage,
la vue de l'étoile nous serait apportée par un des rayons lumineux
réfractés allant de l'étoile à la partie de l'atmosphère qui
avoisine cette seconde extrémité (fig. 107, nº 2). La durée de l'occultation,
ainsi diminuée au commencement et à la fin, différerait
donc du temps qui a été calculé d'après la longueur de la corde,
d'une quantité d'autant plus grande que l'atmosphère lunaire serait
plus étendue et plus dense. Comme il n'existe pas de différence
appréciable entre ces deux durées, il en résulte que la lune n'a pas
d'atmosphère d'une densité appréciable.


On a pu reconnaître ainsi que l'atmosphère de la lune, s'il y en
a une, est nécessairement moins dense à la surface même de l'astre
que l'air qui reste dans nos meilleures machines pneumatiques
lorsqu'on y a fait le vide autant que possible. Cela revient à dire
que la lune n'a pas d'atmosphère
101.


Note 101:
(retour)  On arrive à la même conséquence de la manière suivante: Si la lune a
une atmosphère, il n'y a pas de nuages flottants dans cette atmosphère comme
dans la nôtre; car des nuages cacheraient nécessairement certaines portions de
la surface de la lune, et l'aspect général du globe lunaire varierait d'un instant
à l'autre d'une manière irrégulière; or nous savons qu'il ne se passe rien de
pareil.

S'il n'y a pas de nuages dans l'atmosphère de la lune, cette atmosphère est
tout à fait transparente; mais une pareille atmosphère doit, en réfléchissant les
rayons lumineux qui la traversent en dépassant la lune, produire sur cet
astre quelque chose d'analogue à notre crépuscule: une moitié de la lune étant
éclairée comme la moitié de la terre, des rayons solaires seraient réfléchis par
l'atmosphère de cette première moitié de la lune sur une partie de la seconde
moitié en quantité décroissante, à mesure qu'on s'éloignerait des bords de
l'hémisphère éclairé. À l'époque où la lune n'est pas pleine, la surface de la
lune qui est vis-à-vis de nous se composerait toujours d'une partie éclairée et
d'une partie obscure, mais sans transition brusque de l'une a l'autre; il devrait
y avoir une dégradation insensible de lumière du côté de la partie de cette surface
qui ne reçoit pas directement les rayons du soleil; il n'y aurait pas une
séparation nette des deux parties. Or, comme cette dégradation de lumière
n'existe pas, que les deux parties de l'hémisphère lunaire qui fait face à la terre
sont séparées par une ligne elliptique très-tranchée, on conclut de là que la lune
n'a pas d'atmosphère.




278. Absence d'eau sur la lune. De ce que la lune n'a pas d'atmosphère,
on conclut immédiatement qu'il n'existe pas d'eau à
la surface de cet astre; car s'il y en avait, cette eau, dont la surface
serait libre de toute pression, produirait des vapeurs qui constitueraient immédiatement une atmosphère. C'est donc à tort qu'on
a donné le nom de mers aux taches grisâtres qu'on aperçoit à la
surface de la lune (nº 286).


279. Une conséquence immédiate de l'absence d'atmosphère et
d'eau sur la lune, c'est que cet astre ne peut être habité par des
êtres animés, au moins par des êtres analogues à ceux qui habitent
la terre.


La surface de la lune ne doit offrir aucune végétation; la température
y doit être très-basse. En raison de l'absence d'eau et
d'atmosphère, la configuration du globe lunaire a dû se conserver
telle qu'elle était au moment où ce globe s'est solidifié. C'est ce
qui explique le grand nombre de cirques qu'on y voit, tandis que,
les cirques sont rares sur la terre, où les eaux et les agents atmosphériques,
par leur action continue, ont en général dégradé les
aspérités et comblé les cavités.


DES  ÉCLIPSES.


280.  Il arrive de temps en temps, à l'époque de la pleine lune,
que le disque de cet astre s'entame peu à peu d'un côté; une
échancrure s'y forme, augmente progressivement d'étendue, puis
diminue peu à peu, et finit par s'anéantir, le disque redevenant ce
qu'il était avant le commencement du phénomène. Quelquefois
l'échancrure augmente à tel point qu'elle envahit le disque entier;
l'astre disparaît complètement pendant un certain temps; au bout
de ce temps il reparaît; le disque se découvre progressivement,
en nous présentant en sens inverse les mêmes phases successives
qu'avant sa disparition. Le phénomène que nous venons de décrire
est ce qu'on appelle une éclipse de lune partielle ou totale.


Les phases d'une éclipse de lune ont quelque analogie avec celles
que cet astre nous présente régulièrement à chaque lunaison; mais
elles en diffèrent essentiellement par leur durée (les phases d'une
éclipse se produisent toutes dans un petit nombre d'heures), et par
l'irrégularité des intervalles de temps compris entre les éclipses
successives.


281.  Il y a aussi des éclipses de soleil partielles ou totales. De
temps à autre, à des intervalles irréguliers, le disque du soleil
disparaît graduellement, en partie ou en totalité, nous offrant
des phases analogues à celles que nous venons de décrire pour la
lune.


282.  Les éclipses de lune ont toujours lieu, au moment de
l'opposition, quand la lune est pleine; or à cette époque la terre
se trouve entre le soleil et la lune (nº 242, fig. 98); en se rendant
compte d'une manière précise de la position des trois corps, on
reconnaît facilement qu'une éclipse de lune a pour cause l'interposition
de la terre qui intercepte une partie ou la totalité des
rayons solaires dirigés sur le globe lunaire.


283. Les éclipses de soleil ont toujours lieu à l'époque de la
conjonction, quand la lune est nouvelle; or à cette époque la lune
se trouve entre le soleil et la terre (nº 242, fig. 98); on reconnaît
aisément qu'une éclipse de soleil, partielle ou totale, est due à l'interposition de la lune qui intercepte une partie ou la totalité des
rayons solaires dirigés vers la terre.


284. Explication des éclipses. La figure 108 rend manifeste
cette explication des éclipses.
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102


Considérons deux globes sphériques S et T; le premier S plus
grand que le second est lumineux; l'autre T est opaque, et ne
peut être éclairé que par le globe S.


Note 102:
(retour)  La concavité de la courbe que décrivent les différentes positions l, l', l"...
de la lune doit être tournée en sens inverse (vers la terre): le graveur s'est
trompé.



Concevons par la ligne des centres, ST, un plan qui détermine
sur les globes les circonférences de grands cercles, circ. SB',
circ. TB; soit DBB' une tangente commune aux deux circonférences.
Imaginons que cette tangente fasse une révolution autour
de TS avec les demi-circonférences qu'elle touche. Tandis que
celles-ci décrivent les surfaces des deux globes, la tangente engendre
un cône droit indéfini dont le sommet est en D; ce cône DB'C' touche
et enveloppe les deux globes T et S; c'est ce qu'on appelle le cône
tangent extérieur aux deux sphères. Limitons ce cône au petit
cercle BKC; on a ainsi le cône circulaire droit DBC; ce cône est ce
qu'on appelle le cône d'ombre du globe opaque T par rapport au
globe lumineux S. On le nomme ainsi parce que tous les points,
N, de l'intérieur de ce cône, sont dans l'obscurité; tous les rayons
lumineux, qui pourraient y arriver en ligne droite du globe S,
étant, comme le montre la figure, interceptés par le globe opaque
T (essayez de joindre, par une ligne droite, un point du globe S
au point N). D'aucun de ces points, N, intérieurs au cône d'ombre
DBC, on ne peut non plus apercevoir le globe S
103.


Note 103:
(retour)  Pour plus de clarté et de simplicité, nous faisons ici et plus loin abstraction
de tout effet de réfraction; il en sera ainsi jusqu'à l'endroit où nous expliquons
l'effet de l'atmosphère terrestre sur les éclipses de lune.



Concevons maintenant une tangente commune, HIH', passant
entre les mêmes circonférences, circ. TB et circ. SB'; faisons encore
tourner cette tangente en même temps que les deux circonférences
autour de ST comme axe; cette tangente engendre une nouvelle
surface conique indéfinie dont le sommet est en I, et qui touche et
enveloppe les globes T et S, de ses deux nappes pIq, P'Iq'; ce
nouveau cône est le cône tangent intérieur aux deux sphères.
Le tronc de cône indéfini pEHq comprend dans son intérieur
le cône d'ombre, DBC, du globe T. L'espace qui existe dans ce
tronc de cône, autour et au delà du cône d'ombre, DBC, se
nomme la pénombre du globe opaque T par rapport au globe lumineux
S. Ce nom de pénombre (presque ombre) vient de ce que
chaque point; M, situé dans l'espace ainsi désigné, est mis par le
globe opaque T à l'ombre d'une partie du corps lumineux S.
Ainsi le point M, marqué sur notre figure, ne reçoit pas de lumière
de la partie G'E'C' du globe S, tandis qu'il en reçoit librement de
la partie supérieure G'H'B' (essayez de joindre M, par une ligne
droite, à un des points de G'E'C; MG' est une tangente au globe T).


Du point M on ne voit pas la partie G'E'C de S, on ne voit que la
partie supérieure G'H'B'. Chaque point M de la pénombre reçoit
du globe S une somme de rayons lumineux d'autant moindre qu'il
est plus rapproché du cône d'ombre; c'est ce que la figure met en
évidence.


A l'aide de ces explications géométriques, on comprendra facilement
ce que nous allons dire des éclipses. Nous commencerons
par les éclipses de lune.


285.  Éclipses de lune. Supposons que le globe lumineux S
soit le soleil, et que le globe T soit la terre. Celle-ci se meut autour
du soleil avec son cône d'ombre. Quand, à l'époque de l'opposition
(pleine lune), la terre se trouve entre le soleil et la lune, il peut
arriver que cette dernière, qui se trouve précisément du côté du cône
d'ombre, se rapproche assez de la terre pour pénétrer dans ce cône
en totalité ou en partie, comme il est indiqué sur notre figure;
positions l et l' de la lune. Quand la lune se trouve dans la position
l, elle ne reçoit aucune lumière du soleil; elle n'en reçoit pas
non plus de la terre par réflexion (car elle est précisément vis-à-vis
de l'hémisphère obscur de la terre). La lune est donc alors complètement obscure et invisible; on ne la voit plus d'aucun point de
la terre, ni de l'espace (V. nº 290). Il y a alors éclipse totale de lune.


286.  Les phases d'une pareille éclipse s'expliquent naturellement. La lune tournant autour de la terre, de l'ouest à l'est, arrive
au cône d'ombre de la terre dans lequel elle se plonge peu à peu
(du côté DB par exemple); le disque lunaire s'échancre vers le
bord oriental (position l'); l'échancrure, augmentant progressivement, envahit tout le disque; l'astre est alors tout entier dans le
cône (position l). Son mouvement vers l'est continuant, il atteint
l'autre côté (DC) du cône, et commence à en sortir (4e position);
le bord oriental du disque, éclipsé le premier, reparaît aussi le
premier; l'astre sortant peu à peu de l'ombre, le disque se
découvre progressivement, nous offrant les mêmes phases qu'à
l'entrée, mais en sens inverse; après quoi nous le revoyons tel
qu'il était avant le commencement de l'éclipse.


Il y a éclipse partielle quand la lune, au lieu d'entrer en plein
dans le cône d'ombre, atteint ce cône sur le côté: une partie seulement
du globe lunaire, l', traverse l'ombre; elle y entre progressivement,
puis en sort de même; on se figure aisément la
marche du phénomène et les apparences qui en résultent pour nous.


287. Effet de la pénombre. Avant d'entrer dans le cône d'ombre,
la lune traverse la pénombre (de EP à BD); la quantité de
rayons solaires qu'elle reçoit en général du soleil diminue de plus
en plus; il en résulte que l'éclat de chaque partie du disque s'affaiblit
progressivement à mesure que l'astre approche du cône
d'ombre. Il n'y a donc pas passage subit de l'éclat ordinaire du
disque à l'obscurité, mais dégradation progressive de lumière depuis
l'un jusqu'à l'autre
104. De même à la sortie, l'astre, quittant
le cône d'ombre (du côté CD), entre dans la pénombre; à mesure
qu'il s'avance vers la limite extérieure (HQ) de cette pénombre, le
disque d'abord terne reprend peu à peu son éclat ordinaire[A].


Note 104:
(retour)  Cette dégradation de teinte est tellement prononcée, qu'il est impossible
d'indiquer avec précision l'instant où un point remarquable de la lune quitte la
pénombre pour entrer dans l'ombre pure, ou inversement.



288.  Il peut arriver que la lune ne passe pas assez près de
l'axe DTS du cône d'ombre pour entrer dans ce cône, mais qu'elle
traverse la pénombre à côté du cône; alors son éclat se ternit, le
disque nous paraît moins brillant; mais comme aucune de ses
parties ne cesse absolument d'être éclairée par le soleil, il n'y a
pas d'éclipse proprement dite.


289.  Les éclipses de lune ne peuvent avoir lieu que vers l'opposition,
à l'époque de la pleine lune; mais il n'y a pas nécessairement
éclipse à toutes les oppositions.


A l'inspection de la fig. 108, on voit aisément qu'il ne peut y
avoir éclipse de lune qu'aux époques où cet astre est assez rapproché
de l'axe STD du cône d'ombre de la terre, du côté de la terre opposé
au soleil. Or cette ligne STD qui joint le centre du soleil à celui de
la terre n'est autre que la ligne ST de la fig. 98, sur laquelle nous
avons indiqué approximativement les positions relatives que prend
successivement la lune dans sa révolution autour de la terre. A
l'inspection de cette figure 98, on voit que les deux conditions ci-dessus
exprimées ne peuvent être remplies que vers l'époque où
la lune arrive à la position (E), c'est-à-dire à l'opposition.


Si la lune se mouvait exactement dans le plan de l'écliptique,
comme nous le supposons dans la fig. 98, il suffirait évidemment,
pour qu'il y eût éclipse à chaque opposition, que la distance Tl
qui sépare en ce moment la lune de la terre fût moindre que la
longueur TD du cône d'ombre; de plus, pour que l'éclipse fût
totale, il suffirait que Tl fût assez notablement inférieur à TD pour
que la lune arrivât dans une partie du cône d'ombre suffisamment
large pour la contenir tout entière, à l'instant où son centre
arriverait sur l'axe STD. Ces deux conditions sont toujours remplies;
car la longueur TD, du cône d'ombre de la terre est, en
moyenne, d'environ 216 rayons terrestres, tandis que la distance,
Tl de la lune à la terre est en moyenne de 60 rayons terrestres
(au maximum 63,9). De plus, à cette distance 60r de la terre, le
diamètre de la section circulaire du cône d'ombre est beaucoup
plus grand que celui de la lune. Tout cela se vérifie par la géométrie
la plus simple
105. Il est donc certain que si la lune se mouvait
dans le plan même de l'écliptique, il y aurait éclipse de lune à
chaque opposition ou pleine lune.


Note 105:
(retour)  Longueur du cône d'ombre de la terre. Il s'agit de comparer cette longueur
DT au rayon de la terre TB = r. Les triangles rectangles semblables
DSB', DTB donnent:

          SD   SB'        SD-DT    ST   SB'-TB

          -- = -- ; d'ou  ----- ou -- = ------ .

          DT   TB'         TD      TD    TB




La distance, ST, du soleil à la terre, vaut moyennement 24000 r; le rayon
SB' du soleil vaut 112r; donc SB'-TB = 112r-r  = 111r. En mettant ces
valeurs dans la dernière égalité, on trouve


           24000r    111r

          ------- =  ---- = 111.

             DT       r





D'où on déduit DT = 24000r/112 ou 216r, à moins d'un rayon terrestre.


A la distance moyenne de la lune à la terre, et même au maximum de cette
distance, 63 à 64r, le diamètre de la section circulaire du cône d'ombre de la
terre est beaucoup plus grand que le diamètre de la lune; il en est plus que le
double.


À moitié chemin de la terre T au sommet D du cône d'ombre, c'est-à-dire à
la distance 108r, le diamètre de la section circulaire du cône est évidemment
là moitié du diamètre de la terre. Or le diamètre de la lune est égal aux 3/11
du diamètre de la terre, â peu près le quart. Le diamètre de la section circulaire
à la distance 108r étant presque le double du diamètre de la lune, on en
conclut qu'à la distance 60r, le premier diamètre est à fortiori beaucoup plus
grand que le second. Si on veut avoir leur rapport exactement, il suffit, en appelant x le diamètre de la section à la distance 60r, de résoudre cette équation
très simple:


x    216r-60r   156    13               8

-- = -------- = --- =  --; à peu près  -- .

2r     216r     216    18              11








Nous pouvons donc dire en toute certitude:


S'il n'y a pas d'éclipses de lune à toutes les oppositions, cela tient
à ce que cet astre ne se meut pas sur le plan même de l'écliptique,
mais dans un plan incliné à celui-là d'environ 5° 9'.


Il résulte de là, en effet, qu'au moment de l'opposition la lune ne
se trouve pas, en général, sur le plan de l'écliptique; qu'elle peut,
par suite, ne pas rencontrer l'axe ST du cône d'ombre, et même
passer assez loin de cette ligne pour ne pas entrer, même partiellement,
dans le cône; dans ce cas, il n'y a pas d'éclipse du tout.
(V. dans les notes, p. 228, ce qui concerne la prédiction des éclipses.)


290. Influence de l'atmosphère terrestre sur les éclipses de
lune. Les circonstances d'une éclipse de lune ne sont pas tout à
fait telles que nous les avons indiquées; elles sont un peu modifiées
par l'influence de l'atmosphère qui entoure la terre. Dans les
explications précédentes, nous n'avons tenu compte, en fait de
rayons solaires arrivant sur la lune, que de ceux qui y arrivent en
ligne droite, sans avoir été brisés; il n'a donc été nullement question
des rayons lumineux qui arrivent à la lune après avoir traversé
l'atmosphère; car ceux-là, comme on l'a vu, nº 107, sont
brisés et déviés par la réfraction atmosphérique. Nous allons réparer
cette omission volontaire
106.


Il résulte de la réfraction qu'éprouvent les rayons solaires qui
traversent l'atmosphère, sans être arrêtés par la terre, que tel de
ces rayons qui, en entrant, avait la direction SA (fig. 109), sort de
l'atmosphère, dans la direction AS"
107, après une série de déviations
éprouvées toutes dans le même sens par rapport à la direction
primitive SA. On conçoit bien qu'il peut résulter de cette
déviation des rayons solaires, que le rayon brisé AS" atteigne le
cône d'ombre situé du même côté de la terre que lui (V. la fig. 110).



Note 106:
(retour)  Nous agissons dans l'explication des éclipses comme dans celle des mouvements
propres du soleil ou de la lune; nous avons divisé notre explication pour
la rendre plus claire. Nous exposons d'abord les circonstances et les causes principales
du phénomène, en omettant à dessein certaines circonstances moins importantes;
c'est là une première approximation. Puis nous complétons cette
première explication par l'examen de ce qui a été omis.



Note 107:
(retour)  Voici, avec un peu plus de détail, ce qui se passe quand un rayon lumineux
traverse l'atmosphère, sans être arrêté par le soleil.

L'extrémité mobile de ce rayon, se rapprochant d'abord de la terre, commence
par traverser une série de couches d'air de plus en plus denses; chaque
fois qu'elle entre dans une nouvelle couche, la direction de ce rayon éprouve
une déviation telle que son prolongement s'abaisse de plus en plus vers la
terre. Au bout d'un certain temps, cette direction déviée devient tangente
à la couche atmosphérique qu'elle vient d'atteindre; elle est devenue, par
exemple, S'AS'1 (fig. 109). La déviation totale depuis l'entrée du rayon dans
l'atmosphère est, par exemple, l'angle S1AS'1 (SAS1 est une parallèle à la direction
primitive du rayon). A partir de ce contact, l'extrémité mobile de notre
rayon lumineux, s'éloignant du centre de la terre, traverse des couches d'air
de moins en moins denses; à son entrée dans chaque couche, la direction de
ce rayon éprouve une déviation telle, que son prolongement s'abaisse encore de
plus en plus du côté de la terre. Quand il sort, il a éprouvé depuis son passage
en A une nouvelle déviation S'1AS" = S1AS'1; ce qui fait en tout, depuis son
entrée dans l'atmosphère, une déviation S1AS" double de S1AS'1 (AS" est une
parallèle à la direction définitive du rayon quittant l'atmosphère). A l'inspection
de la figure 110, on voit qu'il peut résulter de la réfraction que le rayon
dévié AS" atteigne le cône d'ombre DBC de la terre, située précisément du même
côté que lui. Il suffit pour cela que le point A ne soit pas trop éloigné de la surface de la terre.
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Si on considère, en effet, un rayon qui traverse l'atmosphère terrestre en
passant tout près du sol de la terre, la déviation qu'il éprouve jusqu'à son
arrivée en A est d'environ 33" (nº 108); quand il sort, la déviation doublée,
S1AS", dépasse 1º dans les circonstances ordinaires. Cette déviation totale
qu'éprouve un rayon lumineux qui traverse l'atmosphère sans s'arrêter à la
terre est d'ailleurs plus ou moins grande, suivant que ce rayon s'approche plus
ou moins de la surface du sol; elle présente tous les états de grandeur, depuis
la déviation de 1°,6 relative aux rayons qui pénètrent dans les couches les plus
basses de l'atmosphère, jusqu'à la déviation nulle du rayon qui touche l'atmosphère
sans y pénétrer.


Remarque. On conçoit aisément qu'à l'entrée d'un rayon dans l'atmosphère,
la réfraction rapprochant le prolongement de ce rayon de la normale intérieure
à la couche, ce prolongement s'abaisse progressivement du coté de celle-ci.
Pour concevoir ce qui se passe dans la seconde période, depuis le point A,
il faut se transporter à la sortie du rayon et faire le chemin en sens inverse;
dans ce mouvement inverse, le rayon considéré S"A, revenant vers des couches
plus denses, doit continuellement se relever; en se relevant ainsi, il revient à
la position AS'1; donc, réciproquement, il s'est abaissé de AS'1, à sa sortie dans la
direction AS".
Les deux cônes D et I n'ont pas tout à fait la même base; nous l'avons,
supposé pour ne pas compliquer la figure; le sommet I étant donné, le lecteur
voit bien où doit être la base du petit cône.




[Illustration: 218a, Fig. 110]


C'est, en effet, ce qui arrive; une partie du cône d'ombre pure,
DBC, est atteinte et détruite par les rayons solaires réfractés qui y
apportent de la lumière.
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Comme tout se passe de la même manière autour de ST et de
la terre, les rayons solaires réfractés, les plus rapprochés de celle-ci,
parmi ceux qui sortent de l'atmosphère, forment un cône IBC
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(fig. 111) tangent à la terre, et dont l'axe est aussi dirigé suivant ST;
ce cône IBC est le véritable cône d'ombre pure de la terre; la nuit
est absolue dans son intérieur. Mais ce qui dépasse la surface de
IBC, dans le cône DBC, par exemple, est atteint et éclairé par un
nombre de rayons solaires réfractés de plus en plus grand, à mesure
qu'on s'éloigne du sommet I, ou de la surface IBC; cette partie
excédante DIBC du cône d'ombre est littéralement détruite par ces
rayons réfractés. La lumière que ceux-ci y apportent croît insensiblement, depuis l'obscurité absolue, à partir de la surface IBC,
ou bien du sommet I.


À l'aide du calcul on peut déterminer la distance du sommet I
au centre de la terre; cette distance est en moyenne de 42 rayons
terrestres. On voit donc que la lune ne peut jamais pénétrer dans
l'espace IBC complètement privé de lumière; au moment d'une
éclipse totale, cet astre se trouve tout entier dans la partie du cône
DBC, où pénètrent les rayons réfractés. Dans une éclipse totale la
lune ne perd donc pas complètement sa lumière; elle est faiblement
éclairée par les rayons réfractés.


On a observé que cette faible lumière que la lune conserve dans
les éclipses totales, présente une teinte rougeâtre très-prononcée.
Cet effet est dû à un mode d'action de l'air sur les rayons solaires
qui le traversent; il se produit une décomposition de la lumière
solaire que nous ne pouvons expliquer ici.


Nous n'avons pas besoin de dire que dans une éclipse partielle
l'intensité de l'éclipse est de même diminuée par l'effet des mêmes
rayons réfractés.


291. Remarque. On ne peut voir une éclipse de lune que si cet
astre et le cône d'ombre de la terre, ou au moins une partie de
cette ombre, se trouvent ensemble au-dessus de l'horizon; ce qui
ne peut avoir lieu que lorsque le soleil est au-dessous; on ne peut
donc voir des éclipses de lune que pendant la nuit. Cependant il
peut arriver quelquefois que la réfraction atmosphérique permette
d'observer une éclipse un peu après le coucher du soleil, et un
peu avant son lever; cela se comprend aisément. (V. le complément,
page 228).


292. Éclipses de soleil. Une éclipse de soleil n'a jamais lieu
qu'à l'époque d'une conjonction, ou nouvelle lune. La lune se
trouvant alors entre le soleil et la terre, cache à certains lieux de
celle-ci une partie ou la totalité du disque du soleil. Ce phénomène
s'explique de la même manière que les éclipses de lune.


[image: ]


293. Explication des éclipses de soleil, totales, annulaires,
partielles. Dans la fig. 114, à laquelle s'applique tout ce que nous
avons dit nº 284 relativement à la fig. 108, le corps lumineux S
est toujours le soleil, mais le corps opaque est la lune, l, qui, de
même que notre globe, a un cône d'ombre DBC, et une pénombre
PEHQ, qui l'accompagnent dans sa révolution autour de la terre.
À l'époque d'une conjonction ou nouvelle lune, il peut arriver que,
la lune se trouvant entre le soleil et la terre, celle-ci soit atteinte
en partie par le cône d'ombre et la pénombre lunaire, comme l'indique
la fig. 114, ou seulement par la pénombre comme on le voit
sur la fig. 115 ci-après
108. (V. la note).


Note 108:
(retour)  Longueur du cône d'ombre pure de la lune. On détermine la longueur lD
du cône d'ombre pure de la lune de la même manière que la longueur de l'ombre
de la terre (page 211, en note); il suffit de remplacer le rayon TB de la terre
par le rayon lB de la lune dans les formules trouvées. En remplaçant dans ces
formules la distance du soleil à la lune par ses valeurs extrêmes, on trouve
que la longueur du cône d'ombre pure de la lune varie entre 57r,76 et 59r,76
(r rayon de la terre); on sait que la distance lT, de la terre à la lune, varie
entre 55r,95 et 63r,80. Il peut arriver que la longueur de l'ombre étant à son
maximum ou près de ce maximum, 59r,76, la distance de la terre soit à peu
près au minimum, 55r,95; dans ce cas, si la ligne Sl n'est pas trop écartée de
la ligne ST (V. nº 296), le cône d'ombre pure de la lune peut atteindre (fig. 114)
et même traverser la terre; il y a alors éclipse totale de lune pour une certaine
région de la terre. Les nombres ci-dessus nous apprennent également qu'il arrivera
le plus souvent qu'au moment d'une conjonction la longueur lD sera plus
petite que la distance lT-r, auquel cas il n'y a nulle part éclipse totale du
soleil. On peut calculer le diamètre de la section de l'ombre pure de la lune à
la distance minimum de la surface terrestre; on sait ainsi dans quelle étendue
de cette surface on peut cesser de voir complètement le soleil à un moment
donné. Cette étendue est relativement très-petite.



Éclipse totale. Quand une partie ab de la terre est atteinte par
l'ombre pure de la lune, chaque lieu de cette région ab cesse de
voir le soleil et d'être éclairé par ses rayons; il y a pour ce lieu
éclipse totale du soleil. Chaque lieu M simplement atteint par la
pénombre de la lune cesse de voir une certaine partie, GE', du
soleil; il n'en reçoit plus de lumière; il y a pour ce lieu éclipse
partielle de soleil. En même temps qu'il y a éclipse totale pour les
lieux de la région ab, et éclipse partielle pour les lieux tels que M,
il n'y a pas d'éclipse de lune pour d'autres lieux, tels que N, situés
sur la terre, en dehors de l'ombre et de la pénombre de la lune.

Éclipses partielles. Il peut arriver, avons-nous dit, que la terre
soit atteinte par la pénombre seule de la lune (fig. 115); alors
il n'y a éclipse totale pour aucun lieu de la terre; il y a seulement
éclipse partielle pour chaque lieu M, atteint par la pénombre.
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Il y a deux espèces d'éclipses partielles de soleil; les éclipses
annulaires, et les éclipses partielles proprement dites. L'éclipse est
annulaire, quand, au milieu du phénomène, le disque solaire nous
présente l'aspect d'un cercle noir entouré d'un anneau ou couronne
lumineuse (fig. 116). L'éclipse partielle ordinaire est celle
dans laquelle il se forme simplement une échancrure plus ou moins
étendue sur un côté du disque solaire (fig. 117).
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Il y a éclipse annulaire pour tous les points de la terre qui sont
atteints par la seconde nappe du cône d'ombre de la lune, prolongé
au delà du sommet D (fig. 115 et 118). La fig. 118 montre
que pour chacun de ces points p le disque du soleil se partage en
deux zones; la plus avancée, ef, comprenant le centre du disque
est cachée par la lune; c'est elle qui fait l'effet d'un cercle noir.
Le reste du disque déborde, pour ainsi dire, la lune, et fait l'effet
d'un anneau lumineux, entourant le cercle noir. L'éclipse annulaire
est centrale, l'anneau est régulier pour les lieux de la terre
successivement atteints par le prolongement de l'axe SlD du cône
d'ombre; il est moins régulier pour ceux qui sont seulement atteints
par les bords de la seconde nappe du cône.
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Dans l'éclipse partielle ordinaire, l'échancrure du disque solaire
est d'autant plus grande que le lieu de la terre est plus rapproché
de la limite de l'ombre pure ou de son prolongement; comme la
pénombre dépasse aussi bien la seconde nappe du cône d'ombre
que la première, il peut arriver que la terre ne soit atteinte que
par cette partie excédante de la pénombre; alors il n'y a pour
aucun lieu de la terre ni éclipse totale, ni éclipse annulaire, mais
seulement une éclipse partielle pour les lieux atteints par la pénombre.
Il peut arriver, encore qu'à l'époque d'une opposition
l'ombre pure et la pénombre de la lune n'atteignent ni l'une ni
l'autre aucun lieu de la terre (nº 296).


294. Explication des phases d'une éclipse de soleil. Dans le cas
d'une éclipse totale pour un lieu a de la terre, fig. 114, ce lieu est
d'abord atteint par le côté oriental HQ de la pénombre lunaire; le
disque du soleil s'échancre à l'occident (vers B'); l'échancrure
augmente à mesure que l'ombre pure approche. Quand le premier
côté, DC, de cette ombre atteint le lieu a, le disque solaire est devenu
tout à fait invisible. Il reparaît quand le côté occidental DB,
du cône d'ombre, étant passé à son tour en a, ce lieu est atteint
par la seconde partie PED de la pénombre. A mesure que celle-ci
passe en a, l'échancrure du disque solaire diminue du côté occidental
et finit par s'anéantir quand la pénombre a fini de passer.


On se rend compte de la même manière des phases d'une éclipse
partielle.


On peut encore expliquer les phases (sans figure) comme il suit:
Le disque lunaire, dans le mouvement propre de l'astre, atteint en
face de nous le disque solaire, et passe progressivement devant lui.
Si le mouvement de la lune est dirigé de manière que le centre de
son disque doit passer sur le centre du soleil, ou très-près de ce
centre, l'éclipse est totale ou annulaire, suivant que, à l'époque du
phénomène, le diamètre apparent de la lune est plus grand ou plus
petit que celui du soleil
109. Considérons le premier cas: le bord
oriental du disque lunaire atteignant, puis dépassant le bord occidental
du disque solaire, celui-ci s'échancre progressivement de
plus en plus; quand le centre de la lune passe sur le centre du
disque solaire, ou très-près, le disque solaire recouvert en entier
est devenu invisible. Bientôt la lune continuant son mouvement
vers l'orient, le bord occidental du soleil reparaît; l'échancrure du
disque diminue de plus en plus et s'anéantit quand la lune quitte
le soleil, le laissant à l'ouest.


Note 109:
(retour)  V. nº 239, les limites respectives des demi-diamètres apparents des deux
astres.



On s'explique de même les phases d'une éclipse annulaire, ou
d'une éclipse partielle ordinaire; cette dernière a lieu quand le
centre de la lune passe trop loin de celui du soleil
110.


Note 110:
(retour)  Dans cette explication nous parlons comme si le soleil était immobile en
face de nous; il n'en est pas ainsi. La lune atteint et dépasse le soleil en vertu
de l'excès de vitesse de son mouvement propre, qui est 13 fois-1/3 plus rapide
que celui du soleil. Tout se passe, en apparence, comme si le soleil était immobile
en face de nous, la lune se mouvant de l'ouest à l'est avec une vitesse égale
à 12 fois-1/3 la vitesse du mouvement propre apparent du soleil.



295. Les éclipses du soleil n'ont lieu qu'à l'époque de la conjonction ou nouvelle lune.


En effet, pour que l'ombre ou la pénombre de la lune atteignent
la terre, il faut évidemment que la lune se trouve entre le soleil et
la terre, et que l'axe Sl de l'ombre et de la pénombre lunaires fasse
un angle nul pu très-petit avec la ligne ST qui va du soleil à la
terre. Or, la fig. 98 nous montre que cette double condition n'est
remplie qu'à l'époque de la conjonction.


296. Il n'y a pas d'éclipses de soleil à toutes les conjonctions, par
la raison déjà donnée à propos des éclipses de lune; c'est que la lune
ne circule pas sur le plan de l'écliptique, mais sur un plan incliné à
celui-là d'environ 5° 9'. Il résulte, en effet, de cette circonstance qu'à
l'époque de la conjonction, les intersections de ces deux plans avec
le cercle de latitude du soleil, qui sont précisément les lignes ST
et Sl, font entre elles en général un angle d'une certaine grandeur.
On conçoit que cette divergence des deux lignes puisse quelquefois
être assez grande pour que l'ombre et la pénombre de la lune, qui
entourent leur axe Sl, n'atteignent ni l'une ni l'autre aucun lieu de
la terre
111. (V. la note , page 228.)


Note 111:
(retour)  On conçoit également qu'il dépend de la grandeur de cet angle qu'une
partie plus ou moins grande de l'ombre ou de la pénombre lunaire atteigne une
partie plus ou moins grande de la terre.



297. Phénomènes physiques des éclipses totales de soleil
112.
Plaçons-nous sur le parcours de l'ombre pure, en un des points où
l'éclipse est totale et même centrale. L'éclipse commence; le bord
occidental
113 du soleil paraît entamé par la lune; celle-ci avance
de plus en plus sur le disque qu'elle échancre et où elle se projette
en noir. La clarté du jour diminue peu à peu; les objets environnants
prennent une teinte blafarde; mais tant que le soleil
n'est pas entièrement masqué, il fait encore jour. Enfin le soleil,
réduit à un croissant extrêmement mince, disparaît, et aussitôt
les ténèbres succèdent au jour. Les étoiles et les planètes, auparavant,
effacées par l'éclat du soleil, deviennent visibles. La température
a baissé comme la lumière; une brusque impression de froid
se fait sentir, et bientôt une rosée abondante viendra prouver que
tous les corps de la surface de la terre ont participé à l'abaissement
de la température. Les plantes sensibles à l'action de la lumière
se replient, comme pendant la nuit; les animaux éprouvent de
l'effroi; les hommes eux-mêmes ne peuvent se soustraire à un
sentiment pénible qui rappelle et explique la terreur profonde que
ces phénomènes grandioses ont inspirée autrefois. Cependant la
nuit n'est pas complète; il se forme autour du disque noir de la
lune une auréole de lumière (la couronne) qui répand une faible
clarté sur les objets environnants. Cette auréole encore inexpliquée,
sur laquelle la lune se dessine comme un grand cercle noir
à contours tranchés, a produit souvent un effet extraordinaire sur
les spectateurs de ce magnifique phénomène; en 1842, à Pavie,
vingt mille habitants battirent des mains à son apparition. Mais
l'éclipse totale dure peu; au bout de 5m au plus, un jet de lumière
jaillit à l'orient du disque noir de la lune et ramène subitement la
clarté du jour. C'est le soleil qui reparaît pour présenter, en ordre
inverse, toutes les phases qui ont précédé l'obscurité totale. Ce
premier rayon dissipe à la fois les ténèbres et l'espèce d'anxiété à
laquelle l'astronome lui-même ne saurait échapper.



Note 112:
(retour)  D'après M. Faye.



Note 113:
(retour)  C'est toujours par le bord oriental de la lune que commencent les éclipses
de soleil ou de lune, car c'est par l'excès de vitesse de la lune sur le soleil, ou
sur l'ombre terrestre, que la lune atteint, soit le disque solaire, soit le cône
d'ombre pure de la terre; elle les traverse de l'ouest à l'est, et finalement elle les
dépasse. En prenant deux disques, dont l'un représentera la lune L et l'autre le
soleil ou l'ombre de la terre, S ou O, il suffit de placer L à droite (à l'ouest) de S
et de le faire marcher de droite à gauche pour figurer assez bien les phases des
éclipses. On verra que la première impression sera faite par le bord oriental de
la lune sur le bord occidental du soleil ou de l'ombre, en sorte que l'échancrure
aura lieu à peu près au bord occidental du soleil dans les éclipses de soleil, ou
au bord oriental de la lune, dans les éclipses de lune.



298. Occultation des étoiles par la lune. Ces phénomènes sont analogues
aux éclipses du soleil; seulement une étoile n'a pas de mouvement propre, son
diamètre apparent n'a pas d'étendue appréciable, et sa distance à la lune est
excessivement grande. L'ombre de la lune relativement à une étoile a sensiblement
la forme d'un cylindre parallèle à la ligne qui joint l'étoile au centre de la
lune. Ce cylindre, qui se déplace avec la lune, venant à atteindre la terre, passe
successivement sur une certaine partie de sa surface et y produit le phénomène
de l'occultation. Connaissant le mouvement de la lune et de la terre, les astronomes
peuvent suivre la marche du cylindre d'ombre d'une étoile donnée
quelconque, et prédire le commencement et la fin de chaque occultation pour
un lieu donné de la terre. Nous avons dit, nº 277, que la durée de l'occultation
fournie par le calcul est précisément celle qui résulte de l'observation du
phénomène.


299. Détermination des longitudes terrestres par les distances lunaires.
Le bureau des longitudes de France fait calculer et insérer à l'avance, dans la
Connaissance des temps, les distances angulaires qui doivent exister entre le
centre de la lune et les étoiles principales qui l'avoisinent, de trois heures en
trois heures, pour tous les jours de chaque année. Ces distances sont calculées en
supposant l'observateur placé au centre de la terre, et les heures sont données
en temps vrai de Paris.


L'observateur qui veut connaître la longitude d'un lieu où il se trouve cherche
à déterminer l'heure qu'il est à Paris à un certain moment de la nuit. Pour cela,
il mesure la distance angulaire d'une étoile principale au bord du disque de la
lune; il en déduit la distance au centre même du disque, à l'aide du diamètre
apparent. En corrigeant son observation des effets de la parallaxe et de la réfraction,
l'observateur détermine la distance angulaire précise de l'étoile au centre
de la lune, pour un observateur placé au centre de la terre. Cette distance angulaire
connue, il cherche dans la Connaissance des temps à quelle heure de
Paris elle correspond dans les tables: si cette distance ne se trouve pas exactement,
elle est comprise entre deux distances angulaires des tables; alors il détermine
l'heure de Paris par une proportion. Il possède d'ailleurs un chronomètre
réglé sur le temps solaire du lieu où il est. La différence entre l'heure locale et
celle de Paris donne la longitude cherchée.


APPENDICE AU CHAPITRE IV.


NOTE I.


Sur les noeuds de l'orbite lunaire.


300.Ligne des noeuds. On appelle
ligne des noeuds de la lune l'intersection
nn' de l'écliptique et du plan de l'orbite lunaire (fig. 99 ci-après); les noeuds
sont les points où la lune, dans son mouvement de révolution, rencontre
l'écliptique. Le nœud ascendant, n, est celui où passe la lune quittant l'hémisphère
austral pour l'hémisphère boréal; l'autre n', est le nœud descendant.


On s'aperçoit que la lune a passé par un de ses nœuds quand la latitude,
d'australe qu'elle était, est devenue boréale, et vice versa. On détermine l'heure
du passage de la lune à un nœud, et la longitude de ce point, de la même
manière qu'on détermine l'instant précis d'un équinoxe, et l'ascension droite
relative du droit équinoxial (nº 135). Si on fait cette opération à un certain
nombre de passages consécutifs, on trouve que la longitude de chaque nœud
varie continuellement d'un passage à l'autre. En étudiant cette variation on
arrive à ce résultat:


[image: ]301. Rétrogradation des nœuds. La ligne nOn' (fig. 99) des nœuds de la
lune tourne sur l'écliptique d'un mouvement
rétrograde, avec une vitesse angulaire
constante d'environ 3' 10"-2/3 par
jour solaire moyen. Chacun des nœuds
fait ainsi le tour de l'écliptique en
18 ans-2/3 environ. C'est là un mouvement
tout à fait analogue à la rétrogradation
des points équinoxiaux, mais
beaucoup plus rapide.


302. Il résulte de ce mouvement des
nœuds que la lune ne décrit pas précisément,
sur la sphère céleste, le cercle
que nous avons indiqué; elle ne décrit
pas même une courbe fermée; puisque,
après une révolution sur cette sphère,
elle ne revient pas couper l'écliptique au même point. Néanmoins, si on considère
un certain nombre de positions consécutives quelconques de la lune sur le
globe céleste, elles sont très-sensiblement sur un même grand cercle du globe;
incliné de 5° 9' sur l'écliptique. Si on considère plusieurs séries semblables de
positions consécutives on trouve des grands cercles qui ne sont pas tous absolument
les mêmes, mais qui, se succédant d'une manière continue et régulière,
font tous avec l'écliptique le même angle de 5° 9'. Ce n'est donc que par approximation
que nous avons dit que la lune décrivait un grand cercle de la sphère céleste.
Tenant compte de l'observation précédente et du mouvement de la ligne
des nœuds, on approche plus de la vérité en définissant comme il suit le mouvement
propre de la lune:


Par deux positions observées, l', l", de la lune (fig. 99), concevons un grand
cercle de la sphère céleste, rencontrant l'écliptique suivant la ligne nOn', et
faisant avec ce plan un angle de 5° 9'. Puis imaginons, à partir du moment où
la lune se projette en l", ce cercle l'Ol" animé d'un mouvement uniforme et
continu de révolution autour de l'axe de l'écliptique, tel que l'inclinaison de ce
cercle sur l'écliptique restant la même, son diamètre nOn' tourne sur ce plan,
dans le sens rétrograde, avec une vitesse constante de 3' 10"-2/3 par jour solaire
moyen. La projection de la lune sur la sphère céleste, c'est-à-dire le point où on
voit son centre sur cette sphère, ne quitte pas cette circonférence mobile
nl'l"... n' et la parcourt d'une manière continue, dans le sens direct, exactement
comme le soleil parcourt l'écliptique (nº 116).


La lune parcourt en réalité dans ce plan mobile l'ellipse dont nous avons
parlé; c'est à cette ellipse mobile que se rapporte tout ce que nous avons dit de
l'orbite lunaire.



303. Ce mouvement de révolution du plan de l'orbite lunaire correspond à
un mouvement conique de révolution, uniforme et rétrograde, d'une perpendiculaire
au plan de cet orbite, qui, faisant avec une perpendiculaire à l'écliptique
un angle constant de 6° 9', tournerait autour de cette ligne avec une vitesse angulaire
de 3' 10"-2/3 par jour solaire moyen. Ce mouvement conique, analogue à
celui de l'axe de rotation de la terre (précession des équinoxes), s'explique de
même; il est dû à l'action de la terre sur le renflement du sphéroïde lunaire.
L'analogie est d'ailleurs complète, car ce mouvement est aussi affecté de l'irrégularité
que nous avons désigné sous le nom de nutation.



[image: ]304. Nutation. Il y a aussi pour la lune un mouvement de nutation de
l'axe de son orbite. La perpendiculaire OR au plan de l'orbite lunaire (c'est-à-dire
l'axe de cet orbite), décrit continuellement un cône ORR'R" à base circulaire
(fig. 100); ce cône se meut de lui-même tout d'une pièce, de telle sorte
que son axe Or a précisément le mouvement conique que dans l'approximation
précédente, nous avons attribué à l'axe de l'orbite
lunaire. L'axe OR, dans son mouvement sur
le cône ORR'R", tantôt se rapproche, tantôt s'éloigne
de l'axe ON de l'écliptique; de sorte que
l'angle qu'il fait avec cet axe varie entre 5º et
5° 17' 1/2; or, cet angle mesure l'inclinaison de
l'orbite lunaire sur l'écliptique.


L'inclinaison de l'orbite lunaire sur l'écliptique
varie donc entre 5° et 5° 17' 1/2; 5° 9' n'est qu'une
valeur moyenne.




De plus le point R de l'axe, OR, de l'orbite lunaire
qui décrit le cercle RR'R", étant sur la
sphère céleste, tantôt en avant, tantôt en arrière
du centre r de cette base, lequel tourne autour
de ON avec la vitesse constante de 3' 10" 1/3 par
jour, il en résulte que le mouvement de chaque
nœud qui est le même que celui de R, n'est pas
uniforme; ce nœud oscille de part et d'autre de la
position qu'il devrait avoir suivant la loi indiquée nº 301, comme étant celle de
son mouvement sur l'écliptique.



305. Mouvement du périgée lunaire. Le périgée lunaire se déplace en
tournant autour de la terre dans le plan de l'orbite, de manière à faire une
révolution entière dans l'espace de 3232j,57 (un peu moins de 9 ans).




Ainsi l'ellipse que la lune décrit n'est pas fixe dans son plan mobile; comme
l'orbite terrestre elle tourne dans ce plan autour de son foyer; il n'y a de différence
dans les deux mouvements que dans la vitesse, beaucoup plus grande
pour le périgée lunaire que pour l'autre.


Il y a encore d'autres irrégularités du mouvement lunaire moins considérables
que les précédentes; il nous serait très-difficile d'en rendre compte. La mécanique
céleste se fondant sur le principe de la gravitation universelle les explique
et les laisse prévoir, de manière que les astronomes peuvent prédire à l'avance
les mouvements de la lune avec une très-grande précision.







Note II.
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306. Explication de la libration en longitude. Le mouvement de rotation
de la lune est uniforme; le mouvement de translation de son centre sur
son orbite ne l'est pas; il a lieu conformément aux principes des aires; les
aires parcourues par le rayon vecteur Tl sont proportionnelles aux temps employés
à les parcourir. L'orbite de la lune étant elliptique (fig. 102), il arrive
que des aires égales parcourues ne correspondent pas à des mouvements angulaires
égaux du rayon vecteur Tl; cela devient évident si l'on divise, par
exemple, chacune des demi-ellipses lLl'',  l''l'''L'l en deux aires équivalentes par
un rayon vecteur Tl' ou Tl''; les deux angles l'Tl, l'Tl''; correspondant à deux
aires équivalentes, diffèrent très-sensiblement l'un de l'autre. Cela posé,
suivons la lune à partir du périgée l, durant une révolution synodique, en
observant la tache m qui se voit au centre du disque. Quand la lune est arrivée
en l', comme le rayon vecteur Tl a décrit une aire égale au quart de
l'ellipse, nous sommes au quart de la révolution. La tache m, qui doit décrire
uniformément 360° dans une révolution, se trouve en m à 90° de m',
qui serait alors sa position si la lune ne tournait pas. Mais le centre du
disque est en n sur la ligne Tl'; celle-ci a tourné d'un angle l'Tl plus grand
que 90°; le centre a été plus vite que la tache; celle-ci doit nous paraître avoir
rétrogradé de l'arc nm; il est bien entendu que cet écart s'est produit progressivement.
Quand la lune, au milieu de sa révolution, arrive à l'apogée l", la
tache m ayant décrit 180° depuis la première position, doit se trouver en m
(distant de m" de 180°). Le point m est précisément le centre du disque. La
tache, après être restée en arrière du centre, est donc revenue à ce point; son
mouvement de libration est devenu direct. Quand la lune arrive en l''', le rayon
vecteur a décrit 3/4 de l'ellipse; la tache qui a décrit les 3/4 de 360°, ou 270°
depuis m''', dans le sens m'''nm, est arrivé en m; tandis que le centre du disque
est en n sur le rayon vecteur, Tl''', qui n'a pas tourné de 270° depuis le périgée;
il s'en faut de l'arc nm; le centre n du disque ayant tourné moins vite que la
tache, celle-ci a pris l'avance et nous a paru tourner, par continuation, dans le
sens direct. Enfin, la lune étant revenue au périgée l, la tache est revenue au
centre; elle a rétrogradé vers ce point. Comme la lune tourne tout d'une pièce
dans le même sens, en expliquant la libration de la tache m, nous avons expliqué
généralement la libration en longitude.


307. Explication de la libration en latitude. Cette libration a lieu
parce que l'axe de rotation de la lune n'est pas perpendiculaire au plan de son
orbite, mais fait avec une perpendiculaire à ce plan un angle mlp d'environ
6° 1/2 (nº 268).
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Soient lTl' (fig. 103) le grand axe de l'orbite lunaire, mm' une perpendiculaire
à l'orbite, pp' l'axe de la lune, T le centre de la terre. La lune occupant la
position l, l'observateur, placé en T, verra l'hémisphère mp'm'; il ne verra
donc pas le pôle p, qui est de l'autre côté du bord visible, à la distance sphérique
mp; tandis qu'il verra au delà du pôle p', à une distance p'm'. Quand la
lune, après une demi-révolution, sera arrivée en l', l'axe p'p étant resté parallèle
à lui-même, l'observateur verra le pôle p, et les points situés au delà, à
la distance sphérique pm, autour de ce point; il ne verra plus que le pôle p', ni
aucun des points qu'il voyait précédemment autour de ce point, à la distance
p'm'. Il y a donc eu, dans l'intervalle, un mouvement du pôle p qui s'est
rapproché du bord supérieur, a reparu, puis s'est avancé à quelque distance de
ce bord sur la partie visible du disque, tandis que le pôle p' se rapprochant
du bord inférieur, a fini par disparaître de l'autre côté de ce bord. La lune
tournant tout d'une pièce dans l'un ou l'autre sens, ceci explique en général
la libration en latitude.
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308. Explication de la libration diurne. Du centre T de la terre, abstraction
faite des autres librations, on voit toujours la même partie de la surface
de la lune, ni plus ni moins, quelque position que prenne cet astre. Cela posé,
suivons (fig. 104) la lune d'un point A de la surface de la terre, depuis son
lever en l jusqu'au méridien en l' puis de là jusqu'à son coucher en l". Quand
la lune est au méridien en l', l'observateur A voit précisément la partie de
l'astre que l'on aperçoit du centre T. Au lever l, il aperçoit, près du bord occidental,
un fuseau ac invisible du centre T, tandis qu'il ne voit pas, près du
bord oriental, un fuseau bd, visible de T. Au coucher l', au contraire, l'observateur
voit, près du bord oriental, un fuseau d'b' invisible du centre T, et ne
voit plus près du bord occidental le fuseau c'a', visible du point T. Or les points
de la surface de la lune, invisibles du centre T dans l'une des positions de la
lune, sont invisibles du même point dans toute autre position; donc, par l'effet
du mouvement diurne, l'observateur A voit d'abord près du bord occidental
un fuseau ac, puis au bord oriental un fuseau b'd' qu'il ne verrait pas sans ce
mouvement. Comme d'ailleurs tout arrive progressivement, du lever de la lune
à son coucher, les taches du fuseau ac, qui auront disparu en l', se rapprochent
successivement du bord occidental et disparaissent les unes après les autres,
tandis que les taches du fuseau bd reparaissent les unes après les autres au
bord oriental, s'avançant progressivement à une petite distance sur le disque.
Du méridien au coucher on voit apparaître au bord oriental, et successivement,
les lâches du fuseau b'd' qui s'avancent un peu sur le disque; enfin,
on voit celles du fuseau a'c', près du bord occidental, s'avancer vers le bord et
disparaître successivement. C'est dans l'apparition et la disparition successive
de ces fuseaux que consiste la libration diurne.


Chacun des fuseaux ac, b'd', bd, a'c', a environ 1° de large. En effet, l'angle
alc par exemple est égal à l'angle AlT, qui est précisément la parallaxe horizontale
de la luné, laquelle varie, comme on sait, de 54' à 1°.







Note III.


Complément du chapitre des éclipses.



309.. Prédiction des éclipses de lune. Les anciens, qui étaient loin de
connaître les lois du mouvement du la lune aussi bien qu'on les connaît aujourd'hui,
étaient cependant parvenus à prédire les éclipses avec une assez grande
exactitude; c'est qu'ils avaient remarqué qu'après une certaine période fixe les
éclipses de lune se reproduisent dans le même ordre et sensiblement dans les
mêmes circonstances. Cette période, connue des Chaldéens sous le nom de
saros, se compose de 223 lunaisons formant environ 18 ans 11 jours; elle comprend
en général 70 éclipses, dont 41 éclipses de soleil et 29 de lune. Cela
admis, il suffit de tenir compte par ordre et par date, d'une manière précise et à
partir d'un certain jour, des éclipses de lune qui se produisent dans l'espace
de 18 ans 11 jours, pour connaître, à très-peu près:, l'époque et même les
circonstances de chacune des éclipses qui se produiront dans la période suivante
de 18 ans 11 jours; de même pour une troisième période, et ainsi de suite. C'est
ainsi que faisaient les anciens.

Maintenant qu'on sait comment et pourquoi les mêmes ellipses se reproduisent
ainsi périodiquement, on sait aussi que cette ancienne méthode de
prédire les éclipses n'est pas tout à fait exacte, et ne permet de prédire ces
phénomènes qu'avec une certaine approximation. Nous l'indiquons néanmoins
parce qu'elle est encore de quelque utilité, et qu'elle est d'ailleurs intéressante
par le rôle qu'elle a joué bien longtemps.



309 bis. Voici comment on explique la reproduction périodique des éclipses.
On démontre aisément, et nous l'expliquons même un peu plus loin (nº 311),
que la reproduction d'une éclipse dépend de la position relative, au moment
de l'opposition, du soleil et des nœuds de la lune; cela admis, on comprendra
aisément, après les explications suivantes, la reproduction périodique des
éclipses telle que nous venons de l'indiquer.


On appelle révolution synodique des noeuds de la lune le temps qui s'écoule
entre deux rencontres consécutives du soleil et de l'un de ces points. Si les
noeuds de la lune étaient fixes sur l'écliptique, la durée de cette révolution
serait précisément l'année sidérale (nº 218). Mais à cause du mouvement rétrograde
des nœuds (nº 265), en vertu duquel ces points vont constamment à la
rencontre du soleil, leur révolution synodique est plus courte et ne dure que
346j,619; 19 de ces révolutions synodiques font 6585j,76, ou 18 ans 11 jours
environ; d'un autre côté, 223 lunaisons font 6585j,32. Donc 19 révolutions
synodiques de la lune font à peu près 223 lunaisons; c'est lu période chaldéenne.
Supposons un instant que l'on ait exactement 18 ans 11 jours = 19
révolutions synodiques des nœuds de la lune = 223 lunaisons; puis, qu'à une
certaine époque il y ait éclipse de lune. En ce moment la lune est à l'opposition,
et le soleil et les nœuds de la lune occupent certaines positions relatives;
après 18 ans et 11 jours, comme il se sera écoulé 223 lunaisons, la lune se
trouvera encore à l'opposition; comme il se sera écoulé 19 révolutions
synodiques des nœuds, ces points et le soleil seront revenus aux mêmes positions
relatives; la même éclipse se reproduira donc exactement.

Dans notre hypothèse, la méthode des anciens serait donc parfaitement
exacte; si elle ne l'est pas, cela tient aux faibles différences qui existent entre
les nombres 6585j,76, 6585j,32 et 18 ans 11 jours; ces différences sont à peine
sensibles, et la méthode réussit à très-peu près quand on passe d'une période
à la période suivante, ou même à quelques périodes consécutives; mais elles
le deviendraient si, à partir d'une première observation réelle des éclipses,
on voulait faire un tableau de prédictions pour un grand nombre de périodes
suivantes. Il faut donc, au bout d'un certain temps, recommencer le premier
travail d'observation.



310. Aujourd'hui les astronomes connaissent parfaitement les lois du mouvement
de la lune, et peuvent calculer à l'avance pour un temps quelconque
les positions de cet astre relativement au soleil et à la terre; ils le font pour
tous les jours de chaque année, et même pour des époques plus rapprochées;
les résultats de leurs calculs sont insérés dans la Connaissance des temps de
chaque année prochaine. A l'aide de ces tables on peut prédire les éclipses et
leurs principales circonstances; le lecteur peut voir dans les ouvrages spéciaux
comment on arrive à un pareil résultat.
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savoir s'il y aura ou s'il n'y aura pas éclipse de lune à une opposition donnée.
Considérons la terre, son cône d'ombre, et la lune au moment d'une opposition;
imaginons alors une sphère ayant son centre au centre T de la terre,
fig. 112, et pour rayon la distance Tl qui sépare en ce moment les centres des
deux globes. Cette sphère coupe la lune suivant un de ses grands cercles,
cercle l, et le cône d'ombre suivant un cercle, cercle Oc, qu'on appelle le
cercle d'ombre de la lune; ce cercle Oc a son centre O sur l'axe de ce cône,
c'est-à-dire sur les prolongement de la ligne ST qui va du soleil à la terre. La
même sphère coupe le plan
de l'écliptique suivant un
cercle, cercle ON'S, et le
plan de l'orbite lunaire suivant
un autre grand cercle,
cercle N'lN, qui se confond
sensiblement avec cette orbite
elle-même (dans la partie
lN); enfin, le grand cercle
de cette sphère qui passe
par ST et le centre l de la
lune, cercle Ols, n'est autre
que le cercle de latitude
de la lune, puisque, à l'opposition,
ce dernier cercle
doit passer par le soleil; ce
grand cercle Ols (qui est vu
de face), tout en passant par
les centres l et O, de circ. l et cir. Oc, rencontre ces circonférences elles-mêmes
sur la sphère. De cette exposition il résulte qu'à l'époque considérée, lO est la
latitude de la lune, li son demi-diamètre apparent, Oc le demi-diamètre apparent
du cercle d'ombre, TN' la direction de la ligne des nœuds. Rappelons-nous
aussi (page 211) que le diamètre réel du cercle d'ombre est, à la distance
moyenne, 60r, de la lune à la terre, à peu près égal aux 8/11 du diamètre
de la terre, tandis que le diamètre réel de la lune n'est que 3/11 du même
diamètre; ces deux cercles, cercle Oc et cercle li, étant toujours vus à la
même distance, leurs diamètres apparents doivent être dans le même rapport
moyen de 8 à 3.


Les deux circonférences, cir. l et circ. Oc, étant tracées sur la même sphère,
tout se passe exactement, quant à leurs situations relatives, comme si elles
étaient tracées sur le même plan, les arcs ou distances sphériques Ol, li, Oc,
remplaçant exactement la distance des centres et les rayons des circonférences.
Nos deux circonférences seront sur la sphère: intérieures, sécantes, tangentes,
extérieures, dans des conditions remplies par les arcs lO, li, Oc, parfaitement
identiques avec les conditions relatives aux mêmes situations indiquées
dans notre Géométrie (2e livre). Dès que cercle l et cercle Oc auront une
partie commune, la lune entrera dans le cône, et il y aura éclipse; quand il y
aura seulement contact extérieur, ou que les deux cercles seront extérieurs l'un
a l'autre, il n'y aura pas d'éclipse. D'après cela, ayant égard à la signification
astronomique ci-dessus indiquée de lO, li, Oc, et au IIe livre de Géométrie,
nous pouvons établir les propositions suivantes:


1º Il y aura éclipse de lune à une opposition donnée, si pour cette époque
on a lO < Oc + li, c'est-à-dire si la latitude de la lune est moindre que la
somme des demi-diamètres apparents de la lune et de son cercle d'ombre
terrestre.


2º Il n'y aura pas d'éclipse de lune à une opposition donnée si, pour cette
époque, on a lO = Oc + li ou lO > Oc + li, c'est-à-dire si la latitude de la lune
est égale ou supérieure à la somme des demi-diamètres apparents de la lune et
de son cercle d'ombre terrestre.


On peut, dans l'expression des conditions précédentes, introduire, au lieu
de la latitude lO, l'arc ON, ou son égal N'S qui mesure la distance angulaire
STN' du soleil au second nœud N' de la lune. En effet, le triangle sphérique
ONl, rectangle en O, fournit une relation très-simple entre lO, ON, et l'angle
aigu ONl (qui n'est autre que l'inclinaison connue de l'orbite lunaire sur l'écliptique;
en moyenne 5° 9'; tang lO = sin ON tg. ONl = sin N'S tg. ONl). Supposons
que l'on ait remplacé lO par ON et l'inclinaison ONl dans chacune des relations
citées tout à l'heure. On connaît la limite inférieure et la limite supérieure du
demi-diamètre apparent de la lune; on peut déterminer les mêmes limites du
demi-diamètre apparent de son cercle d'ombre terrestre (V. le nº suivant);
cela fait, on peut remplacer convenablement ces demi-diamètres par leurs
limites dans les égalités ou les inégalités dont nous nous occupons; on arrive
ainsi à établir les propositions suivantes:


1º Si à l'époque d'une pleine lune, la distance angulaire du centre du soleil
à l'un des nœuds de la lune est plus petite que 9° 31', il y a certainement
éclipse. 2º Si à une pareille époque la distance du soleil au nœud le plus voisin
surpasse 12° 3', il ne peut y avoir éclipse. 3º Enfin, si la distance du soleil au
nœud le plus voisin est comprise entre 9° 31' et 12° 3', l'éclipse est douteuse;
l'examen détaillé des circonstances de cette éclipse montrera seulement si elle
aura lieu réellement.
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Détermination du demi-diamètre du cercle d'ombre. Nous avons supposé
connu, dans ce qui précède, le demi-diamètre apparent du cercle d'ombre terrestre
de la lune; voici comment on peut le calculer: La fig. 113 représente
une section de la sphère (circ. Tl, ou circ. Tc, dont nous venons de faire usage)
et une section du cône d'ombre de la lune, par un même plan central conduit par
ST; on voit sur cette figure l'arc cc' qui mesure précisément le diamètre apparent
du cercle d'ombre; cT est la distance de la lune à la terre 1/2cTc' ou cTD est
égal à l'angle BcT, qui est la parallaxe de la lune nº 197), diminué de l'angle
cDT (cTD = BcT-cDT); mais l'angle cDT est lui-même égal à l'angle B'TS,
demi-diamètre apparent du soleil, diminué de l'angle BB'T, parallaxe du même
astre.


            2

            - cTc' =  BcT - cDT = BcT - (B'TS - BB'T)

            1



                1

                - cTc' = BcT + BBT - B'TS.

                2                         [114]




Note 114: 1/2cTc' est l'arc Oc des égalités ou des inégalités précédentes (1º et 2º). On
peut remplacer Oc par BcT + BB'T = B'TS dans l'égalité et dans les deux
inégalités.



Le demi-diamètre apparent du cercle d'ombre terrestre de la lune s'obtient en ajoutant la parallaxe du soleil à celle de la lune, et
retranchant de la somme
le demi-diamètre apparent du soleil. Or ces trois derniers angles sont donnés
dans la Connaissance des temps. Le diamètre apparent du cercle d'ombre varie
entre 1° 15' 32" et 1° 31' 36". En raison de l'ombre et de la pénombre de l'atmosphère,
l'ombre terrestre sur la lune paraît avoir un diamètre un peu plus grand
que celui qu'on obtient ainsi; les astronomes augmentent pour cette raison d'un
soixantième la valeur calculée.



312. De la fréquence relative des éclipses de lune et de soleil. La
période chaldéenne de 18 ans 11 jours, au bout de laquelle la lune reprend la
même position relativement au soleil et à ses nœuds, joue le même rôle pour
les éclipses du soleil que pour les éclipses de lune quand on considère les
premières d'une manière générale, et indépendamment des lieux de la terre pour
lesquels elles se produisent. Les éclipses de soleil qui ont eu lieu dans une
pareille période se produisent en même nombre et à des époques correspondantes
dans la période suivante. Il y a cependant quelques changements à cause
des différences entre les valeurs de 223 lunaisons et de 19 révolutions synodiques
des nœuds (V. nº 309 bis). L'observation a appris que, dans 18 ans 11 jours,
il y a, en moyenne, 70 éclipses, dont 41 de soleil et 29 de lune. Il n'y a jamais
plus de 7 éclipses, et moins de 2 dans la même année; quand il n'y en a que
deux, ce sont deux éclipses de soleil.



313. Pour comprendre pourquoi il y a plus d'éclipses de soleil que de lune,
il suffit de jeter les yeux sûr cône tangent extérieur DB'C' qui enveloppe à
la fois la terre et le soleil (fig. 119). Pour qu'il y ait éclipse de lune, il faut
que la lune entre dans a partie DBC de ce cône, vers le point a, par exemple;
pour qu'il y ait éclipse de soleil, en quelque lieu de la terre, il faut et il suffit
que la lune entre vers b dans la partie BCC'B' de ce cône, située entre la terre
et le soleil. Or les dimensions transversales du cône étant plus grande vers b
que vers a, il doit arriver plus souvent que la lune pénètre dans le cône vers
le point b que vers le point a; c'est-à-dire qu'il doit y avoir plus d'éclipses de
soleil que de lune.
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314. Observons tout de suite qu'il n'est vrai de dire que le nombre des
éclipses de soleil, observées durant une certaine période, surpasse le nombre
des éclipses de lune, observées dans le même temps, que s'il s'agit de la terre
en entier et non d'un lieu déterminé. Quand la totalité ou une portion quelconque
de la lune est éclipsée, en cessant d'être éclairée par le soleil, elle devient
invisible pour tous les points de l'espace à la fois. Une éclipse de lune
est donc visible, et avec les mêmes apparences, de tous les lieux de la terre
qui ont cet astre à leur horizon, et même de quelques autres, par l'effet
de la réfraction (nº 291); ces lieux composent plus de la moitié de la
terre; une éclipse de soleil, au contraire, n'est visible que dans une partie
d'hémisphère et quelquefois dans une partie assez restreinte. Cette circonstance
fait que le nombre des éclipses de lune visibles en un lieu donné est
plus grand que le nombre des éclipses de soleil qu'on y peut observer, malgré
la plus grande fréquence de celles-ci quand on ne spécifie aucun lieu de la
terre
115.


Note 115:
(retour)  Ajoutons qu'à la distance de la lune l'ombre de la terre a un diamètre
apparent à peu près triple de celui du soleil (page 211, en note); un observateur
doit donc voir la lune passer plus souvent devant ce cercle d'ombre que devant
le disque du soleil.



315. Les éclipses totales de soleil sont excessivement rares en un lieu donné
de la terre; on le comprend aisément quand on voit sur la fig. 114 la petitesse
de l'ombre pure portée par la lune sur la terre. La partie de la terre atteinte
par cette ombre n'est évidemment qu'une très-petite partie de l'espace atteint
par la pénombre, d'où le phénomène d'éclipse peut être observé. A Paris il n'y
a eu qu'une éclipse totale dans le dix-huitième siècle, en 1724. Il n'y en a
pas eu encore dans le dix-neuvième siècle, et il n'y en aura pas d'ici à sa fin.
A Londres, on a été 575 ans sans en observer aucune, depuis 1140 jusqu'en
1715; depuis l'éclipse de 1715, on n'en a pas observé d'autre dans cette
ville.


316. Prédiction des éclipses de soleil. La période chaldéenne, qui servait
aux anciens à prédire les éclipses de lune, ne peut pas servir à prédire les
éclipses de soleil. En effet, la prédiction d'une éclipse est relative à un lieu
déterminé, ou à une région restreinte de la terre. Or, comme nous l'avons déjà
dit, la période chaldéenne, si l'on parvenait à observer toutes les éclipses qui
se produisent pendant sa durée, ce que les anciens ne pouvaient pas faire,
nous apprendrait tout au plus qu'à telle époque d'une période suivante il doit
y avoir une éclipse de soleil, mais sans nous faire connaître ni les lieux de la
terre desquels elle serait visible, ni les circonstances de l'éclipse relativement
à ces lieux. Or c'est là justement ce qui intéresse dans la prédiction des
éclipses.


Il n'y a donc que les travaux des astronomes, dont nous avons parlé nº 310,
qui puissent servir à prédire exactement les éclipses de soleil et de lune. Les
astronomes déterminent, pour des époques successives et rapprochées, les
positions relatives précises du soleil, de la terre et de la lune; ils connaissent
donc aussi précisément la position de chacun des cônes d'ombre de la lune et
de la terre, et de leur pénombre. Ils peuvent d'après cela, en combinant tous
ces éléments, savoir l'instant précis où les conditions nécessaires pour une
éclipse seront remplies pour tel ou tel lieu de la terre. Ils peuvent prédire les
éclipses, et même les circonstances pour un lieu donné; car les phases dépendent
des mêmes éléments. Nous ne pouvons entrer ici dans aucun détail
sur les calculs auxquels nous venons de faire allusion. Il nous suffit que le
lecteur, édifié sur la cause des éclipses, comprenne la possibilité de les prédire
exactement.











CHAPITRE V.


DES PLANÈTES ET LEURS SATELLITES,

ET DES COMÈTES.










317. Le soleil et la lune ne sont pas les seuls corps célestes qui
nous paraissent se déplacer au milieu des constellations; il y a
encore d'autres astres qui ont un mouvement presque analogue:
ce sont les planètes avec leurs satellites, et les comètes. Nous nous
occuperons d'abord des planètes.


Les planètes nous offrent à très-peu près le même aspect que
les étoiles fixes; ce qui les en distingue principalement, c'est leur
mobilité.


Pour reconnaître si un astre que l'on observe, et qui ressemble
à une étoile, est une planète, il suffit de se rendre compte d'une
manière précise de la position que cet astre occupe par rapport aux
étoiles voisines; puis quelques jours après on voit si cette position
est restée la même, ou bien si elle a varié d'une manière sensible;
dans ce dernier cas, l'astre est une planète.


Les étoiles sont en général marquées sur les cartes célestes; les
planètes, vu leur mobilité, n'y sont pas indiquées. Si donc on aperçoit
dans le ciel un astre qui ressemble à une étoile et qui n'est pas
marqué sur les cartes, il est très-probable que cet astre est une
planète; c'est alors le cas d'employer le précédent moyen de
vérification.


Nous dirons de plus qu'observées au télescope les principales
planètes nous offrent des diamètres apparents sensibles, qui augmentent
avec la puissance de l'instrument, tandis que les étoiles,
observées de même, nous font toujours l'effet de simples points
lumineux. Cette différence tient évidement à ce que les planètes
sont infiniment plus rapprochées de nous que les étoiles.


PLANÈTES PRINCIPALES; LEURS DISTANCES MOYENNES AU SOLEIL.


318. On distingue huit planètes principales, y compris la terre;
qui est une véritable planète (V. nº 322). Voici les noms de ces
planètes et leurs distances moyennes au soleil. Nous indiquons les
planètes dans l'ordre croissant de ces distances, que nous exprimons
en rayons moyens de l'orbite terrestre (c'est-à-dire la distance
moyenne de la terre au soleil étant prise pour unité).


Outres ces huit planètes, on en connaît un certain nombre d'autres
plus petites dont nous parlerons plus tard.


PLANÈTES  SIGNES   DISTANCES     PLANÈTES    SIGNES  DISTANCES

                   moyennes                          moyennes

                   au soleil                         au soleil



Mercure    ?      0,387          Jupiter       ?        5,203

Vénus      ?      0,723          Saturne       ?        9,539

La Terre   ?      1,000          Uranus        ?       19,182

Mars       ?      1,524          Neptune       ?       30,04





La terre à part, les anciens connaissaient cinq planètes, savoir:
Mercure, Vénus, Mars, Jupiter, Saturne; ces planètes, visibles à
l'œil nu, ont été connues de toute antiquité. Uranus a été découverte en 1781 par Williams Herschell; Neptune, annoncée par
M. Leverrier le 1er juin 1846, fut aperçue le 23 septembre suivant
par M. Galle, astronome prussien.


Les petites planètes ont toutes été découvertes depuis l'an 1800;
le plus grand nombre d'entre elles l'ont été depuis quelques
années.


319. Mouvements des planètes vus de la terre. On peut évidemment
étudier le mouvement propre de chaque planète, de la même
manière qu'on a étudié le mouvement apparent du soleil et celui
de la lune. Il suffit d'observer chaque jour l'ascension-droite et la
déclinaison de cette planète, d'en déduire sa longitude et sa latitude,
et de se servir de ces angles pour figurer sur un globe
céleste les positions apparentes successives de l'astre sur la sphère
céleste. Ce travail constate d'abord l'existence du mouvement
propre de la planète; il nous fait connaître de plus les particularités
suivantes:


La courbe qui décrit la position apparente d'une planète sur un
globe céleste dont le centre représente la terre, ne ressemble pas
à celles que l'on obtient pour le soleil et pour la lune; cette courbe
est sinueuse et revient sur elle-même, allant tantôt de l'ouest à l'est
(sens direct), revenant de l'est à l'ouest (sens rétrograde), puis
retournant vers l'est. Si on observe une planète durant une longue
suite de jours, et que sa marche sur la sphère céleste soit d'abord
directe, c'est-à-dire que sa longitude augmente, on voit, au bout
d'un certain temps, ce mouvement en longitude se ralentir, puis
s'arrêter pendant quelques jours; on dit alors qu'il y a station.
Après cela il y a rétrogradation; le mouvement, de direct qu'il
était, devient rétrograde; la longitude de la planète diminue; elle
précède chaque jour au méridien les étoiles qu'elle y accompagnait
la veille; cela dure un certain temps; puis le mouvement
rétrograde se ralentit à son tour, et s'arrête. Après cette nouvelle
station le mouvement redevient direct, la planète se dirige de nouveau
vers l'est, et ainsi de suite; ces alternatives de mouvement
direct, station, rétrogradation, se reproduisent indéfiniment dans
le même ordre. Néanmoins les accroissements de la longitude,
c'est-à-dire la somme des mouvements directs de l'ouest à l'est,
l'emportant sur la somme des chemins de sens contraire, la planète
finit par faire le tour de la sphère céleste. On comprend,
d'après cela, la forme irrégulière de la courbe dessinée sur le globe
céleste dont nous avons parlé d'abord. Cette courbe tantôt s'élève
vers le nord de l'écliptique, tantôt descend au sud, c'est-à-dire
que la latitude de la planète varie comme la longitude; mais la
latitude ne varie que dans des limites généralement peu étendues.


Les planètes principales s'écartent très-peu de l'écliptique; pour
aucune d'elles la latitude boréale ou australe, dans ses variations,
ne dépasse 8°, c'est-à-dire que ces planètes ne quittent pas la zone
céleste que nous connaissons sous le nom de zodiaque (n° 123).
Deux de ces planètes, Mercure et Vénus (V. plus loin les planètes
inférieures), en se mouvant ainsi le long de l'écliptique, semblent
accompagner le soleil dans son mouvement de translation. Chacune
d'elles allant et venant, tantôt à l'ouest, tantôt à l'est du soleil, ne
s'en écarte jamais au delà de certaines limites. Les trois autres
planètes, tout en s'écartant peu de l'écliptique au nord et au sud,
et allant tantôt vers l'ouest, tantôt vers l'est, ne se maintiennent
pas ainsi dans le voisinage du soleil; la différence entre la longitude
de chacune d'elles et la longitude du soleil passe par tous les
états de grandeur de 0° à 360°.


Ces irrégularités, ces apparences singulières des mouvements
des planètes ont longtemps embarrassé les astronomes; on en a
donné diverses explications. Ce n'est qu'en rapportant ces mouvements au soleil, au lieu de les rapporter à la terre, qu'on est parvenu
à les expliquer d'une manière tout à fait satisfaisante.


320. Mouvements des planètes vus du soleil. On sait maintenant
que cette complication du mouvement des planètes n'est qu'apparente, qu'elle est due uniquement à ce que la terre est éloignée du
centre de ces mouvements. Chaque planète, en effet, décrit autour
du soleil une courbe plane à peu près circulaire (une ellipse très-
peu allongée dont cet astre occupe un foyer). Si l'observateur était
placé au centre du soleil, il verrait chaque planète tourner autour de
lui, toujours dans le même sens, d'occident en orient, à peu près
comme il voit la lune se mouvoir autour de la terre. La distance de
la terre au soleil, centre des mouvements planétaires, explique
d'une manière tout à fait suffisante, comme nous le verrons bientôt,
les apparences que ces mouvements présentent à l'observateur
terrestre. Il nous faut d'abord faire connaître d'une manière précise
les lois générales des mouvements planétaires.


LOIS   DE   KÉPLER.


321. Toutes les planètes sont soumises dans leurs mouvements
à trois lois générales, qui portent le nom de Képler qui les a découvertes.
En voici l'énoncé:


Première loi. Chaque planète se meut autour du soleil dans une
orbite plane, et le rayon vecteur (ligne idéale qui va du centre du
soleil au centre de la planète) décrit des aires égales en temps égaux.


Deuxième loi. La courbe décrite par chaque planète autour du
soleil est une ellipse dont le soleil occupe un foyer.


Troisième loi. Les carrés des temps des révolutions de deux planètes
quelconques autour du soleil sont entre eux comme les cubes de
leurs moyennes distances au soleil.


Ces lois ont été découvertes par l'observation. C'est en étudiant
spécialement le mouvement de Mars qui décrit une ellipse plus allongée
que les autres, c'est en comparant un nombre considérable
d'observations faites sur cet astre par Tycho-Brahé et par lui-même,
que Képler est arrivé à trouver les deux premières lois, lesquelles
ont été ensuite vérifiées pour les autres planètes et pour la terre
elle-même. Toutes les circonstances du mouvement de ces corps par
rapport au soleil se trouvent être des conséquences de ces lois. La
comparaison des distances moyennes des planètes au soleil avec les
durées de leurs révolutions sidérales a fait découvrir la troisième
loi. Ces travaux de Képler ont duré dix-sept ans 
116.


Note 116:
(retour)  Nous ne pouvons exposer ici d'une manière précise les méthodes d'observation
employées par les astronomes pour étudier le mouvement d'une planète
quelconque, de Mars par exemple, par rapport au soleil. L'observateur est
sur la terre; on conçoit qu'il peut déterminer d'une manière précise, comme
il a été dit pour le soleil et la lune, une série de positions successives de la
planète par rapport au centre de la terre; il connaît aux mêmes époques la
position précise du soleil par rapport à ce même centre. Avec ces éléments il
détermine la série des positions correspondantes de la planète par rapport au
soleil. C'est le rapprochement de ces dernières positions qui peut conduire
l'astronome à la connaissance de la loi suivant laquelle elles se succèdent,
c'est-à-dire à la loi du mouvement de la planète par rapport au soleil.



322. La terre est une planète. Nous avons déjà eu l'occasion
d'énoncer les deux premières lois de Képler à propos du mouvement
apparent du soleil par rapport à la terre. Nous avons dit plus tard
que ce mouvement de translation du soleil n'est qu'une apparence
due à un mouvement réel tout à fait identique de la terre autour du
soleil. Ainsi donc le mouvement de translation de la terre autour du
soleil a lieu suivant les deux premières lois de Képler. La troisième
loi établit une liaison entre les mouvements des diverses planètes
comparés les uns aux autres; or, si on compare le mouvement de
la terre autour du soleil à celui d'une planète quelconque, on trouve
que cette troisième loi est vérifiée par ces deux mouvements. Cette
triple coïncidence ne permet pas de douter que la terre ne soit une
planète, tournant comme les autres autour du soleil.


PRINCIPE   DE  LA   GRAVITATION   UNIVERSELLE.


323. L'examen attentif des lois de Képler a conduit Newton à
la connaissance des causes qui agissent sur les planètes et les font
se mouvoir suivant ces lois générales. C'est à Newton qu'on doit
la découverte de ce principe fondamental qui régit tout le monde
solaire:


Principe de la gravitation universelle. Deux points matériels
placés comme on voudra dans l'espace gravitent l'un vers l'autre,
c'est-à-dire tendent à se rapprocher comme s'ils s'attiraient mutuellement. Les forces qui se développent ainsi entre les deux corps sont
égales entre elles, et agissent en sens contraires, suivant la ligne
droite qui joint les deux corps, avec une intensité proportionnelle à
leurs masses, et inversement proportionnelle au carré de la distance
qui les sépare.


Le soleil et les planètes, et en général tous les corps célestes, ne
sont pas de simples points, mais des grands corps à peu près sphériques. En admettant que leurs molécules s'attirent mutuellement
les unes les autres, Newton est encore parvenu à démontrer cette
proposition:


Si les corps qui attirent ont la forme sphérique, l'attraction est
exactement la même que si la masse de chacun était ramassée à son
centre, chaque sphère attirant ainsi comme un seul point matériel qui
aurait une masse égale à la sienne.


L'attraction que le soleil, d'après ce principe, exerce sur chaque
planète, combinée avec une vitesse initiale de projection imprimée
à cette planète, doit la faire tourner autour du soleil; les lois de ce
mouvement, déduites de l'analyse mathématique de ces causes,
sont précisément celles que Képler a découvertes par l'observation.


324.  Un grand nombre de mouvements qu'on observe dans
l'univers sont conformes au principe de la gravitation universelle.
Ainsi suivant ce principe, la lune, soumise à l'attraction prépondérante
de la terre, doit tourner autour de celle-ci comme les planètes
autour du soleil; c'est en effet ce qui a lieu; son mouvement est
conforme aux lois de Képler.


Différents globes analogues à la lune tournent suivant les mêmes
lois autour de quelques-unes des planètes principales; ce sont les
satellites de ces planètes, dont nous parlerons plus tard.


Enfin dans diverses régions de l'espace indéfini, à des distances
immenses, on remarque des étoiles tournant autour d'autres étoiles
(étoiles doubles); ceux de ces mouvements qu'on a pu suffisamment
étudier, ont lieu suivant les lois de Képler, c'est-à-dire conformément
au principe de la gravitation.


325.  Plus près de nous, nous voyons les corps abandonnés à eux-mêmes
dans le voisinage de la terre, tomber à sa surface en se dirigeant
vers le centre, paraissant attirés par notre globe exactement
comme il a été dit à propos de l'attraction des corps sphériques. La
chute des corps sur la terre est donc un effet de la gravitation universelle. Le nom de pesanteur donné à la force qui fait ainsi tomber
les corps n'est qu'un synonyme du mot de gravitation.


326.  Le lecteur a maintenant une idée générale assez précise de
la nature des mouvements planétaires; nous ne pouvons guère aller
plus loin sur ce sujet. Nous entrerons cependant dans quelques
détails au sujet des planètes principales, que nous considérerons
bientôt en particulier, l'une après l'autre.


327.  Les plans dans lesquels ces planètes circulent autour du
soleil sont très-peu inclinés sur l'écliptique. Voici d'ailleurs ces
inclinaisons (d'après M. Faye).


Inclinaison de l'orbite de Mercure, 7° 10' 13"; de Vénus, 3° 23' 31";
de Mars, 1° 51' 6"; de Jupiter, 1° 18' 42"; de Saturne, 2° 29' 30";
d'Uranus, 0° 46' 29"; de Neptune, 1° 47'.


D'après cela, pour plus de simplicité dans l'étude des principales
circonstances du mouvement de chaque planète, nous ferons abstraction
de la faible inclinaison de son orbite sur l'écliptique, et nous
supposerons que la planète tourne autour du soleil, sur ce dernier
plan, en même temps que la terre
117. De plus, comme les orbites
des principales planètes sont à peu près circulaires, nous les considérerons comme des cercles ayant le soleil pour centre. On se fait
aisément ainsi une idée à peu près exacte du mouvement des planètes
par rapport à la terre et au soleil.


Note 117:
(retour)  Cela revient à remplacer chaque orbite par sa projection sur le plan de
l'écliptique, et à considérer le mouvement de la planète projetée sur cette orbite.
La projection de la planète ayant même longitude que la planète elle-même, on
arrive ainsi à des résultats exacts quand ces résultats ne dépendent pas de la
latitude.



D'ailleurs, en rétablissant ensuite l'inclinaison de chaque orbite, et
tenant compte de sa forme réelle, ceux qui le voudront arriveront,
de l'approximation qu'ils auront obtenue avec nous, à connaître
exactement les faits étudiés, plus aisément que s'ils avaient voulu
arriver tout de suite à ce dernier résultat.


328.  Cela posé, terminons les généralités par la définition de
quelques termes astronomiques.


On distingue les planètes en planètes inférieures, et en planètes
supérieures (on dit quelquefois aussi planètes intérieures et planètes
extérieures). Les premières sont celles qui sont plus rapprochées
que nous du soleil; il n'y en a que deux: Mercure et Venus. Toutes
les autres planètes connues sont supérieures, c'est-à-dire plus éloignées que nous du soleil.


329.  Les orbites de Mercure et de Vénus ont donc chacune
par rapport à celle de la terre la position qu'indique la figure 122
(circ SP). L'orbite d'une planète supérieure entoure l'orbite de la
terre comme l'indique la figure 123.


Comme on le voit, une planète inférieure circule, pour ainsi
dire, à l'intérieur de l'orbite terrestre (d'où le nom de planète intérieure
qu'on lui donne quelquefois). Une planète supérieure circule
à l'extérieur de l'orbite terrestre (d'où le nom de planètes
extérieures au lieu de planètes supérieures).
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330. Une planète est dite en conjonction quand sa longitude
céleste et celle du soleil (par rapport à la terre) sont les mêmes.
La planète est alors sur le même cercle de latitude que le soleil.
(Voyez les positions T, P, S, et T, S, P', fig. 122, et les positions
T, S, P', fig. 123.)



331. Une planète est dite en opposition quand sa position
céleste et celle du soleil diffèrent de 180°. La planète est alors sur
le prolongement du cercle de latitude du soleil. (V. les positions
P, T, S, fig. 123.)
118.


Note 118:
(retour)  Il s'agit dans ces définitions de la longitude comptée par rapport à la
terre, à la manière ordinaire, nº 211.

Ainsi que nous l'avons déjà dit, quand les astronomes veulent se faire une
idée nette de l'ensemble des positions successives d'une planète, comparées les
unes aux autres, et non plus comparées à celle de la terre, ils rapportent directement
au soleil ces positions successives, en faisant usage d'un système de
coordonnées célestes différentes de celles que nous avons considérées jusqu'ici.
Regardant le soleil comme le centre de l'écliptique céleste, ils supposent l'observateur
examinant de ce point de vue le mouvement des planètes sur leurs orbites;
ils font de ce point le centre de nouvelles coordonnées angulaires, qu'ils
appellent, à cause de cela, longitudes et latitudes héliocentriques. Choisissant
pour origine des nouvelles longitudes un point de l'écliptique, ils joignent ce
point au centre du soleil.


Cela posé, on appelle longitude héliocentrique d'une planète, ou d'une
étoile, l'arc d'écliptique compris entre l'origine adoptée et la projection sur l'écliptique du rayon vecteur qui va du centre du soleil à la planète, cet
arc étant compté à partir de l'origine dans le sens du mouvement direct, de
l'ouest à l'est.


Il résulte de là que le mouvement d'une planète en longitude héliocentrique
est justement son mouvement angulaire autour du soleil, quand on la
fait circuler sur son orbite projetée.


On appelle latitude héliocentrique d'un astre l'angle que fait le rayon vecteur,
qui va du soleil à cet astre, avec la projection de ce même rayon sur
l'écliptique. La latitude héliocentrique d'une planète est toujours très-petite;
car elle varie depuis 0° jusqu'à l'inclinaison de l'orbite (nº 327) C'est justement
de cette petite latitude que nous faisons abstraction quand nous faisons
circuler la planète sur son orbite projetée.


Une planète est dite en conjonction par rapport à une étoile quand les
deux astres ont la même longitude héliocentrique; en opposition, quand
leurs longitudes diffèrent de 180°; en quadrature, quand elles diffèrent de
90° ou de 270°.


On nomme révolution sidérale d'un astre le temps qui s'écoule entre deux
de ses conjonctions consécutives avec une même étoile.


Pour distinguer la longitude et la latitude, considérées par rapport à la
terre (celles que nous avons considérées jusqu'ici), on les appelle longitude et
latitude géocentriques.





332. A l'époque de la conjonction, le soleil et la planète sont
du même côté de la terre (V. les positions indiquées tout à
l'heure). A l'opposition, la planète et le soleil sont de différents
côtés de la terre (V. la fig. 123). A l'opposition une planète est
donc plus éloignée du soleil que la terre.


333. Il résulte de là qu'une planète inférieure ne peut jamais
se trouver en opposition. Mais elle a deux conjonctions: une conjonction
inférieure, quand la planète se trouve entre le soleil et
la terre (positions T, P, S, fig. 122); une conjonction supérieure
quand la planète est de l'autre côté du soleil par rapport à la terre
(positions T, S, P', même figure).


334. La distance angulaire entre une planète et le soleil, vus
de la terre, s'appelle élongation.


335. On appelle nœuds d'une planète les points où son orbite
coupe le plan de l'écliptique.


Les nœuds d'une planète sont des points tout à fait analogues
aux nœuds de la lune; on distingue le nœud ascendant, par où
passé la planète quittant l'hémisphère austral pour l'hémisphère
boréal, et le nœud descendant. Les nœuds d'une planète ont,
comme ceux de la lune, un mouvement lent de révolution sur
l'écliptique; on reconnaît qu'une planète est à l'un de ces nœuds
quand la latitude céleste de cet astre est nulle. Le moment de ce
passage se détermine donc de la même manière que les équinoxes
(nº 135).


336. On appelle révolution périodique d'une planète le temps
qui s'écoule entre deux retours consécutifs de la planète au même
nœud. Pendant cette révolution, la planète fait le tour de son
orbite.


337. On nomme révolution sidérale d'une planète le temps qui
s'écoule entre deux retours consécutifs de cet astre au cercle de
latitude d'une étoile, ce cercle de latitude ayant pour centre le
soleil, et non la terre.


La révolution sidérale diffère de la révolution périodique à cause
du mouvement du nœud sur l'écliptique. (Ceci est analogue à la
précession des équinoxes).


338. On appelle révolution synodique d'une planète le temps
qui s'écoule entre deux conjonctions de même nom, ou deux oppositions
de cette planète, son mouvement étant vu de la terre.



PLANÈTES INFÉRIEURES.



339. On appelle planètes inférieures, ou intérieures, avons-nous
dit, les planètes qui sont plus rapprochées que nous du soleil,
ou, ce qui revient au même, les planètes dont les orbites sont
intérieures à l'orbite de la terre (fig. 122).


Nous avons remarqué (nº 333) qu'une planète inférieure ne peut
se trouver en opposition, parce qu'une planète en opposition est
plus éloignée du soleil que la terre.


Il n'y a que deux planètes inférieures: Mercure et Vénus. Nous
allons nous en occuper particulièrement.



MOUVEMENT APPARENT D'UNE PLANÈTE INFÉRIEURE (vue de la terre);

SES DIGRESSIONS ORIENTALES ET OCCIDENTALES.



340. Pour plus de précision dans la description de ces mouvements,
au lieu de dire la planète, en général, nous parlerons de
Vénus. Tout ce que nous dirons ici de Vénus est vrai pour Mercure;
il n'y a qu'à changer le nom dans l'exposition.


(V. la fig. 124 ci-après; la planète se meut sur son orbite PP'P"P,
à partir de la conjonction inférieure P; l'observateur terrestre occupe
la position relative T). Vénus, à l'époque de la conjonction inférieure,
n'est pas visible; située pour nous précisément dans la
direction du soleil, elle se perd dans les rayons de cet astre, qu'elle
accompagne tout le jour au-dessus de l'horizon, et la nuit au-dessous:
Quelque temps après on aperçoit cette planète, le matin,
à l'orient, un peu avant le lever du soleil. Les jours suivants, dans
les mêmes circonstances, c'est-à-dire un peu avant le lever du soleil,
on l'aperçoit de plus en plus élevée au-dessus de l'horizon;
elle nous paraît donc s'écarter de plus en plus du soleil vers
l'ouest
119. Au bout d'un certain temps, cet écart cesse de croître;
la planète nous paraît stationnaire par rapport au soleil. Quelques
jours après, elle paraît se rapprocher de cet astre; car le matin,
quand le soleil se lève, elle est de moins en moins élevée au-dessus
de l'horizon.


Note 119:
(retour)  De deux astres voisins, c'est le plus occidental qui précède l'autre dans
le mouvement diurne de la sphère céleste, c'est-à-dire se lève avant lui, etc.



Le lever de la planète se rapprochant ainsi de celui du soleil,
les deux astres finissent par se rejoindre; la planète se perd de
nouveau dans les rayons du soleil, et nous cessons de la voir pendant
quelques jours. C'est l'époque d'une conjonction, et c'est
évidemment la conjonction supérieure. Quelques jours après,
l'astre reparaît, mais cette fois le soir, à l'occident, un peu après
le coucher du soleil. Les jours suivants, dans les mêmes circonstances,
c'est-à-dire un peu après le coucher du soleil, nous le
voyons de plus en plus élevé au-dessus de l'horizon; son coucher
retarde de plus en plus sur celui du soleil; la planète nous paraît
donc s'écarter du soleil, mais cette fois vers l'est
120. Au bout
d'un certain temps, la planète semble de nouveau stationnaire
par rapport au soleil; puis, après quelques jours de station, nous
paraît revenir vers lui; car de jour en jour nous la voyons de
moins en moins élevée au-dessus de l'horizon quand le soleil se
couche. Enfin elle arrive à se coucher en même temps que cet
astre, et alors nous cessons de la voir: il y a alors une nouvelle
conjonction, et c'est évidemment la conjonction inférieure. A partir
de là, les apparences que nous venons de décrire se reproduisent
indéfiniment, et dans le même ordre.


Note 120:
(retour)  V. la note précédente.



341. Mouvement de la planète sur la sphère céleste. En étudiant
ce mouvement par rapport au soleil d'une manière plus précise
et avec des instruments, à partir de la conjonction inférieure, on
constate ce qui suit. La longitude de la planète, d'abord égale à
celle du soleil, devient bientôt plus petite; la différence des deux
longitudes augmente dans ce sens pendant un certain nombre de
jours; la planète s'éloigne donc du soleil vers l'ouest. Au bout
d'un certain temps, cet écart angulaire des deux astres cesse de
croître; il conserve la même valeur pendant quelques jours; la
planète paraît stationnaire par rapport au soleil. Les jours suivants
elle revient vers cet astre; car la différence des longitudes diminue
de plus en plus, et finit par s'annuler: la planète a rejoint le cercle
de latitude du soleil; il y a donc une nouvelle conjonction, et ce
doit être la conjonction supérieure. Aussitôt après, les longitudes
recommencent à différer; mais cette fois la longitude de la planète
est la plus grande; la différence augmente de plus en plus dans
ce sens: la planète nous paraît donc s'écarter du soleil vers l'est.
Après un certain temps, cet écarte cesse de croître; il reste le même
pendant quelques jours; la planète est stationnaire par rapport au
soleil. Puis l'écart diminue, et finit par s'annuler; les longitudes
redeviennent égales. La planète se rapprochant du soleil, vers
l'ouest, a fini par le rejoindre; il y a une nouvelle conjonction;
c'est évidemment la conjonction inférieure. Puis tout recommence
de même.


342. Définitions. Ces mouvements apparents de va-et-vient de
la planète, tantôt à l'ouest du soleil, tantôt à l'est, sont ce qu'on
appelle des digressions.


Une planète inférieure s'éloignant du soleil vers l'ouest fait une
digression occidentale; quand elle s'en éloigne vers l'est, la digression
est orientale.


Plus précisément, la digression occidentale d'une planète inférieur
est l'écart de cette planète à l'ouest du soleil, parvenu à son
maximum. La digression orientale est l'écart de la planète à l'est
du soleil, parvenu à son maximum.


Dans son état variable, entre 0° et son maximum, la distance
angulaire entre la planète et le soleil se nomme élongation.


Les digressions de Mercure ne dépassent jamais 28°; celles deVénus 48°.
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343. Explication du mouvement apparent d'une planète inférieure. Figurons-nous
les orbites de la planète et de la terre (cercle SP et cercle ST, fig. 124);
les mouvements du ces deux corps ont lieu dans le sens indiqué par la flèche
121.
La terre, plus éloignée du soleil que la planète, met plus de temps que celle-ci
à faire le tour de son orbite (3e loi de Képler). La vitesse circulaire moyenne
de la planète est donc plus grande que celle de la terre. Dès lors, pour étudier
les positions relatives de la terre et de la planète, nous pouvons considérer la
terre comme immobile en T (fig. 124), tandis que la planète circule sur son
orbite avec une vitesse précisément égale à l'excès de sa vitesse réelle sur la
vitesse de la terre. Eu égard à la symétrie des orbites, le mouvement angulaire
de la planète, par rapport au soleil, vu de la terre, sera précisément le
même dans cette hypothèse que celui qui a lieu réellement. Rappelons-nous
donc, d'après cela, que l'observateur est supposé immobile en T
122.


Note 121:
(retour)  Ces mouvements, vus du soleil, ont lieu d'occident en orient, c'est-à-dire
de la droite à la gauche du spectateur.



Note 122:
(retour)  Pour bien comprendre ce que nous disons ici, à propos du mouvement apparent de la planète par rapport à l'observateur terrestre et au soleil, il suffit
de considérer un instant le mouvement simultané de la terre T et de la planète
P autour du soleil S sur la fig. 124 bis. A la conjonction inférieure, la terre
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est en T et la planète en P. Quelque
temps après, la terre étant
arrivée en T1 la planète est en p1;
comme la planète a tourné plus
vite que la terre autour du soleil,
elle n'est plus en ligne droite avec
la terre et le soleil; l'observateur
placé en T1 voit la planète et le
soleil sous un angle ST1p1, que
nous appelons la distance angulaire
du soleil et de la planète, ou
plus simplement l'élongation.
Dans l'intervalle que nous considérons,
cette distance angulaire
a varié de 0° à sa valeur actuelle
ST1p1; les longitudes des astres S
et P, d'abord égales entre elles et
à ?p, sont devenues différentes (?s-?p1 = p1s). Cette distance angulaire varie
durant le mouvement simultané de la terre et de la planète; on pourrait l'étudier
en considérant sur cette figure 124 bis une série de positions simultanées
de ces deux corps, et faisant la même construction que nous avons faite pour T1
et p1; nous aurions une série d'angles, tels que ST1p1, à comparer les uns aux
autres. Pour les comparer plus aisément, nous les avons transportés de manière
qu'ils aient tous un côté commun ST (fig. 124) et nous avons considéré à partir
de là les divers écarts du second côté Sp1; nous n'avons pas fait autre chose
dans le texte.




Pendant que la planète, à partir de la conjonction inférieure, va de P en P',
l'écart angulaire de cet astre et du soleil vus de la terre T, se forme et croît de
0° à STP'.


La projection de la planète sur la sphère céleste (sa position apparente),
allant de p en p', s'écarte vers l'ouest de celle du soleil, qui, dans notre hypothèse,
est fixe en p. C'est pourquoi la planète nous paraît s'écarter d'abord du
soleil vers l'ouest. Cet écart de la projection de la planète, qui est la différence
des longitudes des deux astres, croît de 0° à pp'. La figure montre que
l'écart entre le soleil et la planète doit croître d'abord avec une certaine rapidité,
puis plus lentement à mesure que la planète se rapproche de la position P'.
Les points de l'orbite, voisins de P', étant à très-peu près sur la direction de
la tangente TP', se projettent à très-peu près en p'; pendant que la planète
occupe ces positions voisines de P', un peu avant et un peu après son arrivée
en ce point, la projection de cet astre sur la sphère doit nous paraître stationnaire
(en p') par rapport à celle du soleil, c'est-à-dire que la différence des
longitudes des deux astres doit rester la même. Le mouvement de la planète
vers l'ouest est arrêté; il y a station. Un peu plus tard, la planète ayant dépassé
sensiblement le point P', en allant de P' à P", la distance angulaire des
deux astres diminue de STP' à 0; la projection de l'astre se meut vers l'est,
de p' en p, la différence des longitudes diminue de pp' à 0; la planète doit
donc nous paraître se rapprocher du soleil vers l'est; elle le rejoint à la conjonction
supérieure en P". Après cette conjonction, la planète passe à l'est du
soleil et s'en écarte continuellement, en allant de P" en P1; les longitudes des
deux astres redeviennent différentes, mais la planète étant passée à l'est du
soleil, sa longitude est plus grande; la différence croît de 0° à pp1. L'écart
angulaire des deux astres croit d'abord avec rapidité, puis se ralentit pour
cesser de croître quand la planète est tout près de P1. Arrivée en cet endroit,
la planète semble de nouveau stationnaire par rapport au soleil, comme en P'.
Quand elle a dépassé ce point, tandis qu'elle va de P1 à P, l'écart angulaire des
deux astres diminue avec une rapidité de plus en plus grande, la différence des
longitudes décroît de pp1 à 0°. La planète est de nouveau en conjonction inférieure;
puis tout recommence delà même manière. Ainsi se trouvent expliquées
toutes les circonstances du mouvement apparent.




344. Vénus. Détails particuliers. Cette planète n'est autre que
l'astre brillant connu de tout le monde sous le nom d'étoile du
soir (Vesper), et d'étoile du matin ou étoile du berger (Lucifer). A
une certaine époque on la voit, près de l'horizon, à l'orient, un
peu avant le lever du soleil; c'est alors l'étoile du berger; plus
tard, l'astre cesse de nous apparaître pendant quelques jours, puis
nous le revoyons, mais le soir, au coucher du soleil, quelquefois
même auparavant: c'est alors l'étoile du soir (Vesper). Il a fallu
que l'astronomie fit des progrès pour qu'on pût reconnaître un
seul et même astre dans l'étoile du soir et l'étoile du berger.



Digressions de Vénus. Nous venons de les décrire au nº 340;
V. ce paragraphe.


Nous avons dit, nº 342, que Vénus ne s'écarte jamais de plus
de 48° soit à l'est, soit à l'ouest du soleil.


345. Phases de Vénus. Aux diverses époques de sa révolution
synodique (338), Vénus se présente à nous sous des aspects différents
tout à fait analogues aux phases de la lune; aussi les a-t-on
nommés phases de Vénus (V. fig. 125)
123. Ces phases sont
très-caractérisées; à la conjonction supérieure, nous voyons la planète
sous la forme d'un petit cercle lumineux parfaitement arrondi;
c'est qu'alors la partie éclairée par le soleil est entièrement tournée
du côté de la terre, fig. 124. A la conjonction inférieure, au contraire,
placée entre le soleil et la terre, la planète tourne de notre
côté sa partie obscure, et disparaît entièrement, à moins qu'on ne
la voie, ce qui arrive très-rarement, se projeter sur le disque solaire
sous la forme d'un petit-cercle noir (nº 349). Entre les deux
conjonctions, elle nous présente un croissant très-sensible dont la
convexité regarde toujours le soleil, et qui va continuellement en
augmentant jusq'au demi-cercle, à la quadrature (position P',
fig. 124), puis du demi-cercle au cercle entier, en P"; et vice versa,
de P' en P1 et en P
124.



Note 123:
(retour)  On reconnaît qu'il doit en être ainsi en considérant, sur la fig. 124, l'hémisphère
de la planète éclairée par le soleil et l'hémisphère visible de la terre T,
comme on l'a fait pour la lune, fig. 98. Seulement le corps éclairant est ici
dans l'intérieur de l'orbite et l'observateur T en dehors.



Note 124:
(retour)  On explique ces phases exactement de la même manière que celles de la
lune, en ayant égard aux positions du corps éclairant S, du corps éclairé mobile
P, et de l'observateur T relativement fixe (nº 343).




346. Vénus est quelquefois tellement brillante, qu'on la voit
en plein jour à l'œil nu; mais ce phénomène n'arrive pas au
moment où l'astre nous présente un disque parfaitement arrondi,
parce qu'il est alors trop loin de nous, et se trouve d'ailleurs à
peu près sur la même ligne que le soleil. A mesure que l'astre se
rapproche de la terre, le fuseau brillant diminue quant à l'écartement
angulaire des deux cercles qui le limitent, mais le diamètre
apparent augmente rapidement; on conçoit qu'il puisse exister une
distance intermédiaire entre les deux conjonctions, où la partie
du disque à la fois visible et éclairée soit la plus grande; alors,
c'est-à-dire vers la quadrature, l'astre brille de son plus vif éclat.



347. Remarque. La distance de Vénus à la terre T varie considérablement
depuis son minimum à la conjonction inférieure (position P, fig. 124), jusqu'à
son maximum, à la conjonction supérieure en P", où elle est cinq ou six fois
plus grande qu'en P. De là résultent des variations également considérables
dans le diamètre apparent de l'astre. La planète nous paraît d'autant plus
grande que son croissant est plus étroit. Les variations de la grandeur apparente
de l'astre, dans ses phases successives, sont représentées proportionnellement
sur la fig. 125 ci-après.


Diamètre apparent de Vénus. Minimum 9",6; à la distance moyenne 18",8;
maximum 61",2; à la distance du soleil à la terre 16",9. C'est cette dernière
valeur que l'on compare au diamètre apparent de la terre vue du soleil (double
de la parallaxe solaire) qui est 17",14. On conclut de là que le rayon de Vénus
vaut à peu près 0,98 de celui de la terre.
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348. L'observation de certaines taches que l'on aperçoit sur le
disque de Vénus, montre que cette planète tourne sur elle-même,
comme la terre, d'occident en orient. Elle fait un tour entier en
23h 21m 19s. La durée du jour est donc à peu près la même à la
surface de Vénus que sur la terre. L'année y est de 225 jours
environ (révolution périodique). Les saisons y sont beaucoup plus
tranchées que sur la terre, c'est-à-dire que les variations de la
température y sont beaucoup plus considérables; il en est de même
des variations des durées des jours et des nuits
125.


Note 125:
(retour)  Cela tient à ce que l'inclinaison de l'orbite de la planète sur son équateur,
laquelle correspond à l'inclinaison de l'écliptique sur l'équateur terrestre, est
très-grande, 75° au lieu de 23° 28'.



Vénus présente d'ailleurs de grandes analogies avec la terre.
Nous venons de voir que la durée du jour est à peu près le même
sur les deux planètes; elles ont d'ailleurs à peu près le même
rayon; le même volume, la même masse et la même densité
moyenne. (Le rayon de Vénus égale 0,985 r. terrestre; volume
de Vénus = 0,957 volume de la terre.) On n'a pas pu vérifier si
Vénus était aplatie vers les pôles comme la terre.


Vénus est environnée d'une atmosphère analogue à la nôtre
126.
On a reconnu qu'il existait à la surface de cette planète des montagnes
beaucoup plus hautes que celles de la terre. La hauteur de
quelques montagnes de Vénus atteint la 144e partie du rayon de
la planète, tandis que pour la terre cette plus grande hauteur ne
dépasse pas 1/740 du rayon.


Note 126:
(retour)  L'existence de cette atmosphère est indiquée par un phénomène crépusculaire
analogue à celui qui se produit sur la terre. V. la note de la
page 205.



349. Passages de Vénus sur le soleil. Si Vénus circulait sur
l'écliptique à l'intérieur de l'orbite terrestre, comme nous l'avons
supposé, nous pourrions observer à chaque conjonction inférieure
en P (fig. 124), un phénomène curieux. L'astre se projetterait sur
le disque solaire dans la direction TS; comme le diamètre de
Vénus, bien qu'alors à son maximum, n'est cependant que de 1'
environ, tandis que celui du soleil est environ 32', le disque solaire
ne serait pas éclipsé comme il le serait par la lune en pareille circonstance;
mais la planète se projetterait au centre de ce disque
sous la forme d'un petit cercle noir de 1' de diamètre. De plus,
pendant que l'astre, dans son mouvement de translation, passerait
devant le soleil, ce petit cercle noir nous semblerait se mouvoir
sur le disque, de gauche à droite
127, suivant un diamètre. Ce phénomène
durerait un certain temps; car pendant sa durée la longitude
de Vénus varierait de 32' environ.


Note 127:
(retour)  C'est le sens du mouvement de Vénus à la conjonction inférieure
(fig. 124).



Comme Vénus ne circule pas en réalité sur l'écliptique, mais
sur un plan incliné à celui-là d'environ 3° 25' 31", le phénomène
que nous venons de décrire n'a pas lieu à toutes les conjonctions
inférieures; il s'en faut de beaucoup; il arrive cependant quelquefois.


Quand la planète, à la conjonction inférieure, arrive sur le
cercle de latitude du soleil, la ligne TS et la ligne TV (qui va de
la terre à Vénus), au lieu de coïncider comme nous l'avons supposé,
font un angle qui varie de 0° à 3° 23' 31". Quand cet angle,
qui mesure alors la latitude de Vénus, est nul, c'est-à-dire quand
la lune, à la conjonction inférieure, arrive à l'un de ses nœuds sur
l'écliptique, les circonstances étant à très-peu près celles que nous
avons supposées tout à l'heure, le phénomène en question a lieu:
Vénus passe sur le soleil et décrit à très-peu près un diamètre du
disque solaire: c'est ce qu'on appelle un passage central; il dure
plus de 7 heures. Quand, à l'époque de la conjonction, l'angle
VTS (latitude de Vénus), sans être nul, est moindre que le demi-diamètre
apparent du soleil, il est évident que la planète doit
passer sur le soleil; mais alors le petit cercle noir, au lieu d'un
diamètre du disque, parcourt une corde plus ou moins éloignée
du centre. Enfin quand la latitude de Vénus à la conjonction inférieure
est plus grande que le demi-diamètre apparent du soleil, il
n'y a pas de passage. Tout cela se comprend aisément.


Ces passages de Vénus sur le soleil se reproduisent périodiquement;
on en calcule les époques comme celles des éclipses de
soleil et de lune. Ces passages sont rares; les derniers ont eu lieu
en 1761 et 1769. Après un passage il s'écoule 8 ans avant qu'il
s'en présente un second; puis le troisième ne revient qu'après
113-½ ± 8 ans, et ainsi qu'il suit: 8 ans, 121 ans-½,
8, 105ans-½ etc...
128. Les deux passages prochains auront lieu le
8 décembre 1874 et le 6 décembre 1882. Le phénomène a lieu en
décembre ou en juin, époques auxquelles les longitudes du soleil
sont 255° ou 75°, c'est-à-dire celles des nœuds de la planète.


Note 128:
(retour)  Si les nœuds de Vénus étaient fixes sur l'écliptique, cet astre ayant passé
une fois sur le soleil, y passerait ensuite tous les 8 ans; car 8 fois 365 jours
= 5 fois 584 jours ou 5 fois la durée de la révolution synodique de Vénus; de sorte
que si Vénus se trouve à l'un des noeuds au moment d'une conjonction inférieure,
elle s'y retrouverait 8 ans après, à la 5e conjonction suivante. Mais
les nœuds de Vénus ne sont pas fixes; de là l'irrégularité de la période des
passages.



Tout ce que nous venons de dire à propos des passages de Vénus
sur le soleil, à cela près des nombres indiqués, s'applique évidemment
à Mercure (nº 350), qui passe aussi sur le soleil.


(V. à la fin du chapitre la détermination de la parallaxe du soleil par l'observation
d'un passage de Vénus.)


350. Mercure. Cet astre a beaucoup d'analogie avec Vénus;
seulement, il est beaucoup plus petit, plus loin de nous, plus rapproché
du soleil, dont il s'écarte beaucoup moins dans ses disgressions
(nº 342). Engagé dans les rayons solaires, il est difficile à
distinguer à la vue simple dans nos climats; cependant quelque-fois,
avec de bons yeux, on le découvre le soir un peu après le
coucher du soleil, et d'autres fois le matin avant le lever de cet astre.


Le diamètre apparent de Mercure varie de 5" à 12"; sa distance
moyenne au soleil est 0,3871 ou environ les 2/5 de celle de la
terre au même astre. Ses plus grandes élongations (342) varient
de 16° 12' à 28° 48', et la durée de sa révolution synodique de
106 à 130 jours. Sa révolution sidérale dure 87 jours 23 heures
15m 44s. Son orbite est une ellipse assez allongée, l'excentricité
surpasse le 5e de la distance moyenne ci-dessus; nous avons dit
que cette orbite est inclinée de 7° sur l'écliptique.


Ce que nous avons dit des digressions, nº 340 et 341, s'applique
en entier à Mercure.


Cette planète a aussi ses phases, qui, bien que moins apparentes
que celles de Vénus, prouvent qu'elle est opaque et ne brille que
par la lumière solaire. Elle a des passages comme Vénus; ils sont
même plus fréquents que ceux-ci, mais ne présentent pas le même
intérêt; la trop grande proximité de Mercure et du soleil ne
permet pas de tirer parti de ces passages pour déterminer la parallaxe
du soleil.


Le rayon de Mercure = 2/5, et son volume un 16e environ, du
rayon et du volume de la terre. La chaleur et la lumière y sont
sept fois plus intenses qu'à la surface de notre globe. Le vif éclat
dont brille cette planète par suite de son peu de distance au soleil
n'a pas permis d'y apercevoir aucune tache; mais, par l'observation
suivie des variations des cornes de ses phases, on est parvenu
à reconnaître qu'elle tourne sur elle-même en 24 heures 5m 28s,
autour d'un axe constamment parallèle à lui-même. Le plan de
l'équateur de Mercure fait un angle très-grand avec celui de l'orbite,
et par suite la variation des températures, autrement dit des
saisons, doit y être très-considérable. Plusieurs astronomes attribuent
à Mercure des montagnes très-élevées et une atmosphère
très-dense. Cependant des observations très-délicates de passages
de la planète sur le soleil n'ont révélé a Herschell père aucune
trace de l'existence de montagnes à la surface de cet astre.





PLANÈTES SUPÉRIEURES.


MARS, JUPITER, SATURNE, URANUS, NEPTUNE:



351. Nous avons appelé planètes supérieures ou extérieures
celles qui sont plus éloignées du Soleil que la terre; on les nomme
quelquefois extérieures parce que leur mouvement autour du soleil
a lieu à l'extérieur de l'orbite de la terre. L'orbite de la planète (P),
et l'orbite de la terre (T) ont à peu près les positions relatives
indiquées par la fig. 126, ci-dessous.


Les principales planètes extérieures sont: Mars, Jupiter, Saturne,
Uranus, Neptune, dont nous allons nous occuper particulièrement.




352. Mouvement apparent (c'est-à-dire vu de la terre) d'une planète supérieure.
Progressions ou mouvement direct, stations, rétrogradations. Une
planète supérieure étant plus éloignée du soleil que la terre, se trouve alternativement
en opposition (en P, fig. 123 ou fig. 126 ci-après) et en conjonction
en P' (fig. 123). Suivons-la à partir de l'opposition, c'est-à-dire à partir de
l'époque où elle passe au méridien à minuit
129. Elle se trouve alors toute la
nuit au dessus de l'horizon. A partir de l'opposition, la planète se déplace dans
le ciel, vers l'occident; son mouvement est rétrograde
130; son passage au
méridien a lieu avant minuit et se rapproche de plus en plus de 6 heures du
soir
131. Au bout d'un certain temps, le mouvement rétrograde se ralentit,
puis s'arrête; durant quelques jours la planète nous paraît stationnaire au
milieu des étoiles
132; elle passe au méridien à 6 heures du soir
133. Après
cette station, la planète se remet en mouvement, mais cette fois vers l'est;
son mouvement est devenu direct
134; son passage au méridien continue à se
rapprocher de celui du soleil; quand on peut l'apercevoir le soir vers 6 heures,
par exemple, on la voit au couchant de moins en moins élevée au-dessus de
l'horizon
135. En se rapprochant ainsi du soleil (en longitude), elle finit par
se perdre dans ses rayons, et devient invisible pendant un certain nombre
de jours; elle se trouve alors en conjonction, passe au méridien avec le soleil,
se lève et se couche en même temps que lui
136. Au bout de quelques jours, la
planète reparaît, mais du côté de l'orient, le matin, un peu avant le lever du
soleil. Puis sou lever précède de plus en plus le lever du soleil; quand celui-ci
parait, la planète est de plus en plus élevée au-dessus de l'horizon; en même
temps, elle continue à se déplacer dans le ciel, toujours dans le sens direct,
c'est-à-dire vers l'est
137. Au bout d'un certain temps, ce mouvement direct se
ralentit et finit par s'arrêter; la planète fait une seconde station de quelques
jours parmi les étoiles; à cette époque, elle passe au méridien à 6 heures du
matin
138. Après cette seconde station, le mouvement reprend, mais vers
l'ouest; il est devenu rétrograde
139; en même temps, le passage de la planète
au méridien se rapproche de minuit
140; le séjour de l'astre au-dessus de l'horizon
durant la nuit devient de plus en plus long, et enfin l'astre arrive à
passer au méridien à minuit, c'est-à-dire se retrouve de nouveau en opposition.
A partir de là, les mêmes apparences que nous avons décrites se reproduisent
dans le même ordre.



Note 129:
(retour)  A l'opposition, le cercle horaire de la planète P' (vue de la terre) (fig. 126),
et celui du soleil, S (également vu de la terre), sont évidemment opposés (V. les
définitions, nº 30).




Note 130:
(retour) 
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Ce mouvement rétrograde est mis en évidence par la figure 126. Nous
avons supposé, en construisant cette figure, la planète P immobile sur son
orbite, et la terre en mouvement sur la sienne, mais seulement animée d'une
vitesse circulaire (ou angulaire) égale à l'excès de sa vitesse réelle sur celle de
la planète (V. la 2e note, p. 248). Eu égard à la symétrie des orbites, les positions apparentes de trois corps pour l'observateur terrestre,
sont absolument
les mêmes que dans la réalité durant la révolution synodique de l'astre (d'une
opposition à la suivante). Ceci admis, on voit qu'après l'opposition, la terre
allant de T en T', la projection de la planète sur la sphère céleste se déplace
vers l'ouest de p en p'; le mouvement apparent est donc rétrograde.



Note 131:
(retour)  Si, durant ce mouvement de la terre, de T à T', on joint chacune de ses
positions à S aussi bien qu'à P, et si on prolonge la ligne TS jusqu'à l'écliptique
?p'p... en s, on verra la projection p de la planète et la projection du soleil se
rapprocher continuellement; la différence en longitude de ces deux astres
diminuant de 180° à 90°, leurs passages au méridien se rapprochent. (Il faut se
rappeler que les longitudes se comptent à partir du point ?, dans le sens ?p'p.)



Note 132:
(retour)  En suivant le mouvement de la projection p de la planète, tandis que la
terre va de T en T', on voit bien que le mouvement rétrograde de cette projection,
d'abord assez rapide aux environs de l'opposition, doit se ralentir quand
la terre approche de la position T'; car aux environs de T', les lignes projetantes
tendent de plus en plus à se confondre; les points voisins de T', un peu
avant et un peu après, sont sensiblement sur la direction de la tangente T'P;
quand la terre passe par ces positions, la projection de la planète ne s'écarte pas
de p'; l'astre nous paraît arrêté en ce point du ciel.



Note 133:
(retour)  La terre étant en T', l'angle p'T'S = 90°; le point p' se trouve à 90° de la
projection s du soleil sur l'écliptique (prolongez T'S par la pensée).



Note 134:
(retour)  La terre ayant dépassé le point T' et allant de T' en T", la projection de
la planète sur l'écliptique revient évidemment de p' vers p.



Note 135:
(retour)  Si, durant ce mouvement de la terre de T' en T", on joint quelques positions
de la terre au soleil et à la planète, en prolongeant les lignes, si on veut,
jusqu'à l'écliptique, on voit l'angle des deux lignes, TS, TP, diminuer de 90°
à 0; cet angle est la différence des longitudes des deux astres; ceci explique
comment leurs passages au méridien se rapprochent l'un de l'autre.



Note 136:
(retour)  Cela est évident, puisque la planète se trouve en face de nous sur le prolongement
de la ligne TS qui va du soleil à la terre, et qui détermine le cercle
horaire du soleil.






Note 137:
(retour)  La figure montre bien que la terre, après la conjonction en T", allant de
T", en T1, la position apparente de la planète va de p à p1, vers l'est.



Note 138:
(retour)  Si, durant ce mouvement de la terre, de T" en T1, on joint chacune de
ses positions (T) au soleil comme à la planète, on voit la distance angulaire
PTS (différence de leurs longitudes) varier' de 0° à 90° (p étant à l'ouest de s).



Note 139:
(retour)  Ce mouvement rétrograde se voit sur la figure pendant que la terre va de
T1 en T, la projection revient de p1 à p.



Note 140:
(retour)  Enfin, dans cette dernière période, l'angle variable PTS (formez-le) varie
de 90° à 180°.



353. Mars. Cette planète est la première des planètes supérieures dans
l'ordre des distances croissantes au soleil; moins brillante que Vénus, elle se
reconnaît à sa couleur d'un rouge ocreux très-prononcé: diamètre apparent de
4 à 18"; distance de la terre de 0R,52 à 1R,52.


Nous désignerons dans ce qui va suivre par R le rayon mobile de l'orbite terrestre,
et par r le rayon de la terre. L'orbite de Mars est une ellipse très-allongée:
demi-axe moyen, 1R,523; excentricité, 0,14 de cet axe; révolution
sidérale, 687j.


Mars est très-brillant dans les oppositions; quand il se rapproche du soleil,
son éclat diminue, et aux environs de la conjonction il n'est visible qu'au télescope.
Les phases de cet astre sont moins sensibles que celles de Vénus et de
Mercure; il nous présente un ovale plus ou moins allongé. Plus un astre
s'éloigne du soleil, moins ses phases sont sensibles. Les phases encore appréciables
pour Mars ne le sont plus pour les autres planètes supérieures. Les
taches découvertes à la surface de Mars ont permis de constater que cet astre
tourne sur lui-même en 24h 39' 22" autour d'un axe incliné de 61° 18' sur le plan
de son orbite. Il en résulte que la succession des saisons doit y être sensiblement
la même que sur la terre dont l'axe de rotation est incliné sur l'orbite de
67°-½ environ. La forme de Mars est celle d'un sphéroïde aplati; l'axe polaire
est à l'axe équatorial dans le rapport de 187 à 194.


Le rayon moyen de Mars égale 0,52 de celui de la terre, et par conséquent
son volume est égal à 0,14 environ de celui de notre globe. La chaleur et la
lumière n'y sont que les 4/9 de ce qu'elles sont sur la terre.


On distingue aux pôles de rotation de Mars des taches brillantes que l'on
suppose formées par des amas de neige et de glace; ce qui s'accorde en effet
avec les changements observés dans les grandeurs absolues de ces taches. Enfin,
diverses observations de changements sensibles survenus dans différentes bandes
au milieu des taches permanentes de Mars accusent à la surface de cette planète
une atmosphère d'une densité considérable.




354. Jupiter. C'est la planète la plus importante de notre système,
tant par son éclat qui surpasse quelquefois celui de Vénus,
et par son volume à peu près égal à 1500 fois celui de la terre, que
par l'utilité que nous tirons de ses quatre lunes ou satellites.


Sa distance de la terre varie entre 3R,98 et 6R,42; la moyenne
est de 5R,20. A la distance moyenne, son diamètre apparent est
de 37"; il serait de 3' 17", si nous voyions Jupiter à la distance du
soleil.


Pour un habitant de Jupiter, la terre n'aurait que 4" de diamètre
et le soleil 6'; le disque solaire lui paraîtrait 27 fois plus petit qu'à
nous; la chaleur et la lumière y sont 27 fois moindres qu'à la surface
de la terre.


L'orbite de Jupiter est inclinée sur l'écliptique de 1° 18' 54". La
durée de sa révolution sidérale est de 11ans 315j 12h. Les phases de
Jupiter sont à peu près insensibles à cause de sa trop grande distance
du soleil.


Rotation. Les taches observées à la surface de Jupiter ont permis
de constater qu'il tourne sur lui-même en 9h 55m 40s, autour
d'un axe presque perpendiculaire au plan de son orbite (86° 54');
d'où il résulte que les variations des jours et des nuits, et celles de
la température, doivent y être très-peu considérables.


Atmosphère et bandes. Le disque de Jupiter présente des bandes
ou zones parallèles à son équateur; on les attribue à l'existence
de vents réguliers analogues à nos vents alisés, dont l'effet principal
est de disposer, de réunir les vapeurs équatoriales en bandes
parallèles; ce qui suppose Jupiter entouré d'une atmosphère considérable.


Aplatissement. On a aussi constaté que l'aplatissement de Jupiter
est beaucoup plus grand que celui de la terre; cet aplatissement est
d'environ 1/16, tandis que celui de la terre n'est que de 1/300 environ.



355. Satellites de Jupiter. On nomme satellites des planètes
secondaires qui circulent autour d'une planète principale et accompagnent
celle-ci dans sa révolution autour du soleil. La lune,
par exemple, est le satellite de la terre. Mercure, Vénus, Mars
n'ont point de satellites; Jupiter en a 4. Nous verrons que Saturne
en a 7 et Uranus 6; Neptune au moins 1.


Invisibles à l'œil nu, les satellites de Jupiter, inconnus aux anciens
astronomes, ont été découverts par Galilée en 1618, peu
après l'invention des lunettes. En observant Jupiter avec un télescope,
on aperçoit ces satellites sous la forme de petits points
brillants qui se déplacent assez rapidement, par rapport à la planète,
tantôt à l'orient, tantôt à l'occident de celle-ci, allant et venant,
sensiblement sur une ligne droite dirigée à peu près suivant
l'écliptique. (En réalité, ces satellites tournent autour de la planète
comme celle-ci autour du soleil; mais leurs orbites sont dans des
plans qui coïncident presque avec l'équateur du Jupiter, et, par
suite, nous font l'effet de lignes droites le long desquelles les satellites
semblent osciller). Voici, en considérant les satellites dans
l'ordre de leurs distances moyennes à Jupiter (fig. 129), quelques
nombres tournis par l'observation.
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              DURÉES         DISTANCES MOYENNES      INCLINAISONS

SATELLITES.   de leurs       au centre de Jupiter    des orbites

              révolutions    en rayons               sur l'équateur

              synodiques.    de cette planète.       de Jupiter.



1er satellite    1,77            6,05                0°  0'  0?



2°  Id.          3,55            9,62                0° 21' 49?,2



3e  Id.          7,15            15,35               0° 12' 20?



4e  Id.         16,69            27,00               2°




De même que la lune, les satellites de Jupiter font un tour entier
sur eux-mêmes dans le même temps qu'ils emploient à effectuer
une révolution autour de la planète.



356. Éclipses des satellites de Jupiter. En appliquant à Jupiter
le raisonnement géométrique du nº 284, on conclut que cette planète
doit projeter derrière elle, par rapport au soleil, un cône,
d'ombre pure, beaucoup plus large et plus long que celui de la
terre, puisque le rayon de Jupiter est à peu près 11 fois celui
de notre globe, et sa distance au soleil, 5 fois plus considérable.
(V. la fig. 130 ci-après). Il en résulte que les satellites de Jupiter,
quand ils passent derrière la planète, sont éclipsés par elle exactement
comme la lune est éclipsée par la terre. On les voit aussi,
par intervalles, se projeter sur le disque de la planète et en éclipser
de petites parties.


La longueur de l'axe du cône d'ombre de Jupiter est égale à 47
fois le rayon de l'orbite du satellite le plus éloigné, c'est-à-dire
du 4e. Aussi tous les satellites s'éclipsent-ils à chacune de leurs révolutions,
excepté le 4e qui, à cause de l'inclinaison de son orbite sur celle de Jupiter, n'est pas toutes les fois atteint par le cône d'ombre.



357. Détermination des longitudes, géographiques par l'observation
des éclipses des satellites de Jupiter.


Les éclipses des satellites de Jupiter étant visibles de tous les
lieux de la terre qui ont la planète au-dessus de leur horizon, et
se répétant souvent, peuvent servir à la détermination des longitudes
terrestres. L'heure d'une éclipse est indiquée en temps de
Paris dans la Connaissance des temps, que possède l'observateur;
il détermine l'heure qu'il est au moment de l'éclipse à l'endroit où
il est. La différence de l'heure locale et de l'heure de Paris fait connaître
la longitude du lieu par rapport au méridien de Paris nº 69).


Il faut des lunettes puissantes pour observer nettement, avec
précision, les éclipses des satellites de Jupiter. La méthode des
distances lunaires, expliquée nº 298, est plus commode, plus praticable
pour les marins, et donne des résultats plus exacts.



358. Vitesse de la lumière. L'observation des éclipses des satellites
de Jupiter a encore servi à Roëmer, astronome suédois, pour
déterminer la vitesse avec laquelle la lumière traverse l'espace.
Voici comment on peut arriver à trouver cette vitesse.




[image: ]Considérons le premier satellite, qui pénètre dans le cône d'ombre
à chacune de ses révolutions, au moment où il sort de ce cône
en s (fig. 430). A partir de cette émersion dont on a noté l'heure,
cet astre fait une révolution
autour de Jupiter
(dans le sens indiqué
par la flèche), à la fin
de laquelle il s'éclipse
de nouveau en s', puis
sort du cône en s. On
note l'heure de cette
nouvelle émersion; il
s'est écoulé entre les
deux émersions 42h 28m
48s; ce temps doit être
la durée de la révolution
qui vient d'avoir
lieu (nous le supposerons). La durée d'une révolution du satellite
est toujours la même (lois de Képler); il devrait donc toujours
s'écouler le même temps entre deux observations d'émersions consécutives.
Il n'en est pas ainsi; si on observe une série de ces
éclipses dans un certain ordre, par exemple, à partir d'une position
T' de la terre, voisine de l'opposition de Jupiter, on remarque
que l'intervalle de deux éclipses consécutives croît à mesure que la
terre s'éloigne de la planète, en s'avançant vers l'endroit où elle
sera à la conjonction suivante (en T?). Puis, de la conjonction à
l'opposition, la terre se rapprochant de Jupiter, l'intervalle des
éclipses diminue avec la distance de la terre à la planète. Cet
accroissement peu sensible, quand on compare deux intervalles
consécutifs, devient manifeste quand on considère deux éclipses
séparées par un assez grand nombre de ces intervalles.


Une éclipse observée actuellement est, par exemple, la centième
après celle qui a été observée de la position, T', de la terre; il devrait
s'être écoulé 100 fois 42h 28m 48s depuis l'émersion observée de
T'. Il n'en est pas ainsi: l'intervalle trouvé entre ces deux émersions
a une valeur sensiblement plus grande que celle-là. En résumé
si on considère, en opérant comme nous venons de le dire,
l'intervalle compris entre une émersion qui a été observée à une
époque aussi voisine que possible de l'opposition, en T, et une
autre aussi voisine que possible de la conjonction, en T?
141, on
trouve que cet intervalle surpasse d'environ 16m 36s la valeur qu'il
devrait avoir, qui est le produit de 42h 28m 36s par le nombre des
éclipses qui ont eu lieu entre les deux observations, extrêmes dont
nous parlons. Si au contraire oh procède de même de la conjonction,
en T?, à l'opposition, en T, l'intervalle remarqué est plus faible
qu'il ne devrait l'être de la même quantité, de 16m 36s environ.


Note 141:
(retour)  Nous disons, aussi voisin que possible de l'opposition, parce qu'il est
évident qu'à l'époque de l'opposition, la terre étant en T, l'observateur ne voit
pas le cône d'ombre de Jupiter, qui lui est caché par la planète; il ne peut alors
voir le satellite au moment d'une émersion. Nous disons de même, aussi voisine
que possible de la conjonction, parce qu'à l'époque de la conjonction, quand
la terre est en T?, Jupiter et son cône d'ombre sont cachés à l'observateur
derrière le soleil S. Maintenant, comme le retard des émersions varie proportionnellement
avec la distance, on a pu, connaissant ce retard pour une portion
notable du chemin fait par la terre, connaître celui qui a lieu de l'opposition,
(en T) à la conjonction en T?.



Évidemment il n'en serait pas ainsi si nous revoyions chaque fois
le satellite à l'instant précis où il sort du cône d'ombre; l'intervalle
entre deux émersions consécutives, se confondant absolument avec
la durée d'une révolution de l'astre autour de Jupiter, ne varierait
pas plus que cette durée. Mais si la lumière réfléchie par le satellite,
vers la terre, au moment de l'émersion, et qui nous le fait
voir, ne nous parvient pas instantanément, mais emploie un certain
temps à parcourir la distance qui nous sépare de l'astre, l'intervalle
entre deux éclipses doit croître ou décroître avec la distance de la
terre à Jupiter, et l'accroissement du temps doit être proportionnel
à l'augmentation de cette distance; c'est ce qui a lieu en effet
142.


Note 142:
(retour)  Admettons que la lumière ne se transmette pas à nous instantanément,
mais parcoure l'espace avec une certaine vitesse de grandeur finie. A une certaine
époque, une émersion du satellite de Jupiter a lieu à 1h du matin, par
exemple; il faut alors a minutes à la lumière pour nous arriver de la planète;
nous ne verrons l'astre sorti du cône d'ombre qu'à 1h + a(m). Nous observons
plus tard une autre émersion: c'est la centième éclipse, je suppose, après la
première observée. Le moment précis de la dernière émersion est séparé du
moment où a eu lieu la première par la durée de cent révolutions du satellite,
c'est-à-dire par un intervalle de 100 fois 42h 28m 48s; ce qui nous conduit, par
exemple, à 3h du matin du jour de la dernière observation. Si la terre était
restée à la même distance de Jupiter, la lumière réfléchie par le satellite mettant
toujours a minutes à nous parvenir, le phénomène d'émersion serait observé
par nous à 3h + a minutes du matin. L'intervalle entre les deux époques
d'observation serait précisément le même qu'entre les époques réelles des deux
émersions, c'est-à-dire 42h 28m 48s × 100. De sorte que nous n'apprendrions
rien sur la vitesse de la lumière. Mais si la terre s'est éloignée de Jupiter de
telle sorte qu'il faille à la lumière b minutes pour parcourir ce surcroît de chemin,
c'est-à-dire en tout (a + b) minutes pour nous arriver de Jupiter, la dernière
émersion ne doit être observée qu'à 3h + (a + b) minutes du matin; de
sorte que l'intervalle entre les deux observations est 100 fois (42h 28m 48s) + b
minutes. Il doit donc y avoir une différence de b minutes entre l'intervalle
des éclipses, donné par l'observation, et la durée totale des révolutions de
l'astre qui ont eu lieu entre les deux émersions observées.




L'intervalle de deux éclipses qui ont lieu l'une à l'époque d'une
opposition, quand la terre est en T, l'autre à l'époque de la conjonction,
quand la terre est en T?, étant plus grand de 16m 36s qu'il
ne devrait être si la lumière réfléchie par le satellite nous arrivait
instantanément, on conclut de là que 16m 36s composent le temps
employé, par la lumière qui nous vient du satellite, à parcourir en
plus, lors de la dernière émersion, la distance TT? qui sépare ces
deux positions de la terre, c'est-à-dire à parcourir le grand axe
de l'orbite terrestre, ou 76000000 lieues (de 4 kilomètres). La
lumière, parcourant 76000000 lieues en 16m 36s, parcourt environ
77000 lieues par seconde.


La distance TS de la terre au soleil est la moitié de TT?; la lumière
emploie donc la moitié du 16m 36s, c'est-à-dire 8m 18s à nous
venir du soleil.




Conclusion. La lumière parcourt environ 77000 lieues de 4 kilomètres
par seconde. Celle du soleil nous arrive en 8m 18s.


L'étoile la plus rapprochée étant à une distance de la terre qui
surpasse 206265 fois le rayon de l'orbite terrestre, on en conclut
que sa lumière met à nous parvenir plus de 8m 18s × 206265; ce
qui fait plus de 3 ans. Une étoile cessant d'exister nous la verrions
encore 3 ans après. Et nous ne parlons ici que des étoiles les plus
rapprochées de la terre (V. nº 51).


359. Saturne, qui vient immédiatement après Jupiter dans
l'ordre des distances au soleil, le suit aussi dans l'ordre des grandeurs
décroissantes; c'est un globe 730 fois plus gros que la terre.
(Le rayon de Saturne = 9r,022). Malgré cette grosseur, il ne nous
envoie qu'une lumière pâle et comme plombée; cela tient probablement
à sa grande distance du soleil, qui est d'environ 360 millions
de lieues. Saturne circule sur une orbite inclinée sur l'écliptique
de 2° 1/2 environ; sa révolution sidérale dure 10759 jours. Il
tourne sur lui-même autour d'un axe central incliné de 72° environ
sur le plan de l'écliptique; il fait un tour entier en 10h 1/2
environ. Son aplatissement est de 1/10 environ. La chaleur et la
lumière qui y arrivent du soleil y sont environ 80 fois moindres
que sur la terre.


Saturne offre cinq bandes sombres, parallèles à son équateur, à
peu près semblables à celles de Jupiter; plus larges, mais moins
bien marquées.


Cette planète se montre à l'œil nu comme une étoile brillante.
Son éclat est cependant bien inférieur à celui de Jupiter; il présente
une teinte terne et comme plombée.


360. Anneau de Saturne (fig. 127). Saturne est entouré d'une
espèce d'anneau, large et mince, à peu près plan, sans adhérence
avec la planète, qu'il entoure par le milieu. Cet anneau, que Galilée
découvrit peu après l'invention des lunettes, s'offre à nous
sous la forme d'une ellipse qui s'élargit peu à peu, puis se rétrécit
considérablement, et finit par disparaître, pour reparaître quelque
temps après. La partie antérieure de l'anneau se projette sur la
planète; la partie postérieure nous est cachée par celle-ci; tandis
que les deux parties latérales débordent des deux côtés de manière
à former ce qu'on nomme les anses de Saturne.
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Les divers aspects que nous offre successivement cet anneau sont
dus aux diverses positions relatives qu'occupent Saturne, le soleil et
la terre. Le plan de l'anneau se transporte parallèlement à lui-même
avec la planète en mouvement sur son orbite; l'obliquité de ce plan,
par rapport à la ligne qui va de la terre à la planète, varie donc
d'une époque à une autre. Quand le plan prolongé de l'anneau
laisse d'un même côté le soleil et la terre, nous voyons la face
éclairée de l'anneau sous forme d'une partie d'ellipse plus ou moins
rétrécie, suivant que nous la voyons plus ou moins obliquement.


Si le plan passe par le soleil, en le laissant toujours entre lui et
nous, nous avons devant nous la tranche de l'anneau; on n'en
voit alors, et avec de fortes lunettes, que les deux anses, faisant
l'effet de deux lignes droites lumineuses des deux côtés du disque
de Saturne. Enfin, si le plan prolongé de l'anneau passe entre la
terre et le soleil (ce qui arrive à peu près tous les 15 ans), la face
obscure de cet anneau étant tournée vers nous, nous ne le voyons
plus, et Saturne nous offre alors l'apparence d'un globe isolé
comme les autres planètes.


C'est en 1848 que l'anneau a disparu pour la dernière fois;
maintenant il nous montre sa face australe, qui a eu sa plus grande
largeur en 1855. Il disparaîtra de nouveau en 1863; puis on verra
sa face boréale sous des angles divers.


Dimensions de l'anneau. On a pu, dans des circonstances favorables,
mesurer l'angle sous lequel on voit la largeur de l'anneau, et
les distances de ses bords intérieur et extérieur au bord de la planète.
En combinant ces éléments avec la distance de Saturne et
l'inclinaison des diamètres réels, on est arrivé au résultat suivant,
relativement aux dimensions de l'anneau (d'après M. Faye):


Rayon équatorial de Saturne = 64000 kilom. ou 16000 lieues.

Rayon intérieur de l'anneau = 94000 kilom. ou 23500 lieues.

Rayon extérieur de l'anneau = 142000 kilom. ou 35500 lieues [143]




Note 143: En prenant approximativement 16000, 24000 et 36000, on a pour représenter
ces 3 rayons les nombres simples 1, 1 1/2 et 2 1/4.



Ainsi la largeur de l'anneau est de 12000 lieues, à peu près les
3/4 du rayon équatorial de la planète. L'anneau laisse un espace
vide de 30000 kilomètres ou 7500 lieues entre Saturne et lui; on
peut apercevoir des étoiles à travers ce vide. Quant à l'épaisseur
de l'anneau, on ne la connaît pas; mais on suppose qu'elle ne dépasse
pas 30 lieues.


Subdivision de l'anneau. En observant l'anneau de Saturne avec
des instruments puissants, on a reconnu que cet anneau n'est pas
simple; il se compose de plusieurs anneaux concentriques dont
les lignes de séparation sont visibles, principalement vers les
anses. On a même aperçu tout récemment un anneau obscur, situé
à l'intérieur des autres, comme on le voit sur la figure. Ces anneaux
tournent ensemble dans leur plan, qui coïncide à peu près
avec l'équateur de la planète, achevant une révolution dans 10h 1/2
environ, c'est-à-dire qu'ils tournent avec la même vitesse que la
planète elle-même.


Satellites de Saturne. Saturne a 7 satellites; mais ceux-ci ne
nous sont pas si utiles que ceux de Jupiter; ils sont si petits et si
éloignés de nous qu'il faut pour les voir des télescopes d'une grande
puissance. Le premier, c'est-à-dire le plus rapproché de la planète,
met 22h 37m 1/2 à exécuter sa révolution autour de celle-ci, tandis
que le dernier emploie 7j 7h 53m. Ce dernier est le seul sur lequel
on ait pu constater qu'il tourne sur lui-même dans le même temps
qu'il emploie à tourner autour de la planète.


361. Uranus, relégué à l'extrémité de notre système planétaire,
n'a que l'apparence d'une étoile de 6° ou 7° grandeur, rarement
visible à l'œil nu. Cette planète a été découverte par
Herschell en 1781. Sa distance au soleil est 19 fois plus grande
que celle de la terre; son diamètre apparent est d'environ 4?; à la
distance du soleil, il serait de 75?; le rayon d'Uranus = 4r,34. Le
plan de son orbite est incliné sur l'écliptique de 0° 46' 1/2. La durée
de sa révolution sidérale est d'environ 84 ans. La lumière du soleil,
qui nous arrive en 8m 18s, met près de 2h 3/4 à arriver à Uranus.
L'intensité de la lumière et celle de la chaleur doivent y être 400 fois
moindres que sur la terre; le soleil ne doit être vu de cette planète
que comme une étoile de 1re grandeur.


Uranus a six satellites découverts par Herschell; ils se meuvent
autour de la planète dans des orbites presque circulaires et perpendiculaires
au plan de l'écliptique; ce qui porte à croire que l'équateur
de la planète a la même inclinaison.


Les satellites d'Uranus sont encore plus difficiles à voir que ceux
de Saturne; deux seulement, le 2e et le 4e, ont été observés avec
précision. Par une exception unique le mouvement de ces satellites
paraît rétrograde, c'est-à-dire a lieu de l'orient vers l'occident.



362. Neptune. Cette planète, découverte par M. Leverrier, en
1846 (V. plus loin, nº 363), n'est pas visible à l'œil nu; vue dans
une lunette d'un faible grossissement, elle fait l'effet d'une étoile
de 8e grandeur. Avec un grossissement plus fort, elle offre des
dimensions sensibles, et se montre sous la forme d'un disque
circulaire. Son diamètre apparent n'est que de 2?,7. À la distance
du soleil, ce diamètre apparent serait de 8?; d'où on conclut que
le rayon de Neptune = 4r,72 (r étant le rayon de la terre). Cette
planète est 30 fois plus éloignée du soleil que la terre (à 1100 millions
de lieues à peu près). La chaleur et la lumière n'y doivent
être qu'environ la millième partie de ce qu'elles sont à la surface
de la terre.



363. Circonstances de la découverte de Neptune. Perturbations
des mouvements planétaires. Si les planètes n'étaient soumises qu'à
l'attraction du soleil, leurs mouvements seraient absolument conformes
aux lois de Kepler; elles décriraient exactement des ellipses
autour du centre du soleil, comme foyer. Mais, conformément au
principe de gravitation, les planètes s'attirent mutuellement. Le
mouvement de chacun de ces astres ainsi attirés non-seulement
par le soleil, mais par les autres planètes, est un peu plus compliqué
que nous ne l'avons dit
144. La masse du soleil étant très-grande
par rapport à celle des planètes, son action est prépondérante;
de sorte que le mouvement de la planète diffère très-peu du
mouvement elliptique que le soleil seul lui imprimerait. Les modifications
du mouvement elliptique, causées par les actions mutuelles
que les planètes exercent les unes sur les autres, sont ce
qu'on appelle les perturbations des mouvements planétaires.


Note 144:
(retour)  De même la lune n'est pas seulement attirée par la terre, elle l'est encore
par les autres corps célestes faisant partie de notre système planétaire, notamment
par le soleil; l'attraction de la terre est prépondérante; cependant l'attraction
du soleil est assez forte pour altérer le mouvement elliptique de la lune;
cette attraction est la cause de la perturbation que nous avons indiquée sous
le nom de nutation de l'axe de la lune.



Lors donc que les astronomes veulent connaître avec précision
les positions successives des planètes par rapport au soleil et à la
terre, c'est-à-dire déterminer exactement le mouvement relatif de
ces astres, ils sont obligés d'avoir égard à cette action mutuelle
des planètes les unes sur les autres. Ils sont ainsi parvenus à rendre
compte, avec une très-grande précision, des mouvements des planètes,
tels qu'on les observe réellement.


Ce résultat, obtenu d'abord pour les planètes anciennement
connues, ne l'a pas été pour Uranus aussitôt après sa découverte.
En appliquant au mouvement de cette planète les méthodes qui
avaient réussi pour les autres, afin de déterminer les perturbations
que devaient lui faire éprouver Saturne et Jupiter (les seules planètes
connues qui pouvaient avoir sur elle une action appréciable),
on a trouvé constamment, pendant quarante ans, le calcul
en désaccord croissant avec les observations. Comme on était
sur qu'aucune erreur ne s'était glissée dans ces calculs, il fallait
admettre que ce désaccord était dû à une action perturbatrice inconnue.
M. Bouvard songea le premier à attribuer cette action à
une planète encore inconnue; mais comment trouver cette planète?
M. Leverrier y parvint en renversant le problème ordinaire, qui
consiste à déterminer les perturbations du mouvement d'une planète
dues à l'attraction d'une autre planète de masse et de position
connues. Il se mit à calculer quelles devaient être la masse et la
position d'une planète inconnue pour que son action sur Uranus,
combinée avec les autres influences déjà connues, produisît exactement
les perturbations observées du mouvement de cette planète.
Il parvint à résoudre ce difficile problème. Le 31 août 1846, il
annonça à l'Académie des Sciences que la planète cherchée devait
se trouver par 326° 32' de longitude héliocentrique, au milieu des
étoiles de la XXIe heure. Moins d'un mois après, M. Galle, directeur
de l'Observatoire de Berlin, trouva la planète à la place que
lui avait assignée le géomètre français; il n'y avait pas un degré
de différence entre le résultat du calcul et celui de l'observation.
C'est là certainement un résultat admirable, glorieux pour celui
qui l'a trouvé, et qui atteste à la fois l'exactitude des méthodes
astronomiques et la vérité du principe de la gravitation universelle.


364. Loi de Bode. Il existe entre les distances des principales
planètes au soleil une loi assez remarquable qui permet de retenir
assez aisément ces distances dans leur ordre. Voici en quoi consiste
cette loi qui porte le nom de l'astronome Bode, qui l'a publiée
en 1778.


Écrivons la suite des nombres:


 0          3          6         12         24         48         96




dans laquelle chaque nombre, à partir du troisième, est double du
précédent. A chacun de ces nombres ajoutons 4; nous obtiendrons
une nouvelle série qui est la suite de Bode:


 4          7         10         16         28         52        100.




Ces derniers nombres sont sensiblement proportionnels aux distances
au soleil des planètes anciennement connues. En effet, si
au lieu de représenter par 1 la distance de la terre au soleil, nous
la représentons par 10, nous aurons, en multipliant conséquemment
par 10 les six premières distances du tableau de la page 236,
le résultat suivant:


Mercure.   Vénus.   La Terre.   Mars.  ...  Jupiter.   Saturne.

  3,9       7,2        10       15,2   ...     52        95,4




Ces nombres sont à peu près ceux, de la suite de Bode, à
l'exception du dernier, pour lequel il y a une différence plus sensible,
moins négligeable. On remarquera de plus que le terme 28
de la série de Bode n'a pas de correspondant parmi les distances
indiquées.


Quand Herschell, en 1781, découvrit Uranus, on continua la
suite de Bode. Le 8e terme de cette suite est 200. Or la distance
d'Uranus au soleil est 191,8, celle de la terre étant 10; ce nombre
se rapproche encore assez de son correspondant 200 pour qu'on
regarde la loi comme continuant à s'appliquer.


Plus tard, on essaya la même vérification pour Neptune; le
9e terme de la suite de Bode est 396; or la distance de Neptune au
soleil est 304 quand celle de la terre est 10. La différence est ici trop
grande, et on ne peut pas dire que la loi s'applique jusqu'à Neptune.


Cette loi de Bode ne se rapporte à aucun fait pratique; elle doit
être considérée comme un moyen simple d'aider la mémoire à
retenir les distances en question.


Quoi qu'il en soit, elle s'applique d'une manière assez satisfaisante
jusqu'à Uranus, sauf une lacune qu'on remarque jusque-là
dans la correspondance; au nombre 28 de la suite de Bode ne
correspond aucune distance de planète au soleil. Cette lacune a été
comblée par la découverte des petites planètes dont nous allons
parler. Pour en finir avec la série de Bode, nous dirons que la
moyenne des distances au soleil de ces petites planètes qui se
placent toutes sous ce rapport entre Mars et Jupiter, est 26, ce
qui n'est pas trop éloigné du terme 28 de cette série.



PETITES PLANÈTES.



365. On a découvert depuis le commencement de ce siècle un
assez grand nombre de planètes, toutes situées dans la même région
du ciel, entre Mars et Jupiter. On les désigne sous le nom de
petites planètes, parce qu'elles sont beaucoup plus petites que les
huit dont nous nous sommes occupé jusqu'à présent; Elles ont
l'apparence des étoiles de 8e ou de 9e grandeur, et par conséquent
sont invisibles à l'œil nu; aussi leur a-t-on encore donné le nom de
planètes télescopiques.


Découverte par:


Cérès,       M. Piazzi,        à Palerme,          1er janv.  1801.



Pallas,         Olbers,        à Brême,             28 mars   1802.



Junon,          Harding,       à Gœttingue,        1er sept.  1804.



Vesta,          Olbers,        à Brême,             29 mars   1807.



Astrée,         Hencke,        à Driessen,           8 déc.   1845.



Hébé,           Hencke,        à Driessen,         1er juill. 1847.



Iris,           Hind,          à Londres,           13 août   1847.



Flore,          Hind,          à Londres,           18 oct.   1847.



Métis,          Grahan,        à Maskré (Irlande),  26 avril  1848.



Hygie,          de Gasparis,   à Naples,            14 avril  1849.



Parthénope,     de Gasparis,   à Naples,            11 mai    1850.



Victoria,       Hind,          à Londres,           13 sept.  1850.



Égérie,         de Gasparis,   à Naples,            29 juill. 1851.



Irène,          Hind,          à Londres,           19 mai    1851.



Eunomia,        de Gasparis,   à Naples,            29 juill. 1851.



Psyché,         de Gasparis,   à Naples,            17 mars   1852.



Thétis,         Luther,        (près Dusseldorf),   17 avril  1852.



Melpomène,      Hind,          à Londres,           24 juin   1852.



Fortuna,        Hind,          à Londres,           22 août   1852.



Massalia,     { de Gasparis,   à Naples,            19 sept.  1852.

              { Chacornac,     à Marseille,         20 sept.  1852.



Lutétia,        Goldsmith,     à Paris,             15 nov.   1852.



Calliope,       Hind,          à Londres,           16 nov.   1852.



Thalie,         Hind,          à Londres,           15 déc.   1852.



Phocéa,         Chacornac,     à Marseille,          6 avril  1853.



Thémis,         de Gasparis,   à Naples,             6 avril  1853.



Proserpine,     Luther,        (près Dusseldorf),    5 mai    1853.



Euterpe,        Hind,          à Londres,            8 nov.   1853.



Amphitrite,     Albert Marth,  à Londres,            4 févr.  1854.



Bellone,        Luther,        à Blick, près Dusseldorf.



Urania,         Hind,          à Londres,           22 juill. 1854.



Euphrosine,     Ferguson,      à Washington,       1er sept.  1854.



Pomone,         Goldsmith,     à Paris,             28 oct.   1854.



Polymnie,       Chacornac,     à Paris,             28 oct.   1854.




A ces planètes il faut ajouter dans l'ordre des découvertes:
Circé, Leucothoé, Atalunte, Fides, découvertes en 1855 par
MM. Luther et Chacornac; Léda, Lætitia, Harmonia, Daphné,
Isis, découvertes en 1856; Ariane, Nysa, Eugénie, Hestia,.....,
Aglaïa, Boris, Palès, Virginie, Nemausa, découvertes en 1857;
Europa, Calypso, Alexandra,....., découvertes en 1858.


Comme on le voit, le plus grand nombre de ces petites planètes
ont été découvertes dans ces dernières années. M. Lescarbaut,
médecin à Orgères, en Normandie, en a encore découvert récemment
une nouvelle très-rapprochée du soleil.


Nous n'entrerons pas dans de plus grands détails au sujet de ces
planètes. Nous indiquons les éléments astronomiques d'un certain
nombre d'entre elles dans un tableau placé à la fin de ce chapitre.
V. pour les autres le dernier Annuaire du bureau des longitudes.



366. Système planétaire. Concordance des mouvements des planètes.
Les planètes qui tournent autour du soleil forment avec cet
astre un système complet qui doit être particulièrement distingué
dans l'espace, surtout par nous dont le globe fait partie de ce système.
Les planètes se meuvent toutes autour du soleil, en restant
à peu près dans un même plan passant par le centre de cet astre;
excepté quelques petites planètes dont les orbites font des angles
assez grands avec le plan de l'écliptique (V. le tableau ci-après).
Tous ces mouvements des planètes autour du soleil s'effectuent
dans le même sens, d'Occident en Orient. Les planètes principales
sont accompagnées de satellites, qui, à l'exception de ceux d'Uranus,
se meuvent aussi dans des plans assez peu inclinés à l'écliptique,
et dans le même sens que les planètes autour du soleil,
c'est-à-dire d'Occident en Orient. Le soleil tourne sur lui-même
dans le même sens, autour d'un axe qui est presque perpendiculaire
au plan de l'écliptique. Enfin les planètes dont on a pu constater
le mouvement de rotation, tournent aussi d'Occident en Orient.
La lune tourne dans le même sens autour de la terre.


Voilà un concours de circonstances très-remarquable que nous
nous contenterons de signaler au lecteur sans indiquer les inductions
qu'on en tire; cela nous mènerait trop loin.


Nous faisons suivre tous ces détails sur les planètes et leurs
satellites de tableaux renfermant les éléments du système solaire;
on y trouvera réunis tous les nombres disséminés dans ce chapitre.
Ces tableaux sont empruntés à l'ouvrage de M. Faye.


Planètes.


NOMS.    S   RÉVOLUTION SIDÉRALE  DISTANCE   EXCENTRICITÉ,  INCLINAISON

         I   -------------------  moyenne    la distance    de l'orbite

         G    Nombre    En jours  du soleil. moyenne        sur le plan

         N    rond      moyens.              étant 1.       de

         E    d'années.                                     l'écliptique.





Mercure  ?       »       87,969   0,38710     0,20562      7°  0' 13"

Vénus    ?       »      224,701   0,72333     0,00682      3  23  31

La Terre ?       1      365,256   1,00000     0,01678      »   »   »

Mars     ?       2      686,980   1,52369     0,09325      1  51   6

Petites planètes.

Jupiter  ?      12     4332,485   5,20277     0,04822      1  18  42

Saturne  ?      29    10759,220   9,53885     0,05603      2  29  30

Uranus   ?      84    30686,821  19,18239     0,04660      0  46  29

Neptune  ?     165    60127      30,04        0,009        1  47



         Petites planètes situées entre Mars et Jupiter.

Flore             3     1193       2,202       0,157        5° 53'

Melpomène         3     1270       2,296       0,216       10  11

Victoria          4     1303       2,335       0,218        8  23

Euterpe           4     1317       2,348       0,171        1  36

Vesta             4     1326       2,362       0,089        7   8

Massilia          4     1338       2,376       0,134        0  41

Iris              4     1346       2,385       0,232        5  28

Métis             4     1347       2,387       0,183        5  36

Phocéa            4     1350       2,391       0,246       21  43

Hébé              4     1380       2,425       0,202       14  47

Fortuna           4     1397       2,446       0,156        1  33

Parthénope        4     1399       2,448       0,098        4  37

Thétis            4     1442       2,498       0,137        5  36

Amphitrite        4     1500       2,564       0,080        6   6

Astrée            4     1511       2,577       0,189        5  19

Irène             4     1515       2,582       0,170        9   6

Égérie            4     1516       2,582       0,086       16  33

Lutetia           4     1542       2,612       0,115        3   5

Thalie            4     1571       2,645       0,240       10  13

Eunomie           4     1576       2,651       0,189       11  44

Proserpine        4     1578       2,653       0,086        3  36

Junon             4     1593       2,669       0,256       13   3

Cérès             5     1681       2,767       0,076       10  37

Pallas            5     1686       2,723       0,239       34  37

Bellone           5     1724       2,814       0,175       10   5

Calliope          5     1815       2,912       0,104       13  45

Psyché            5     1828       2,926       0,136        3   4

Hygie             6     2043       3,151       0,101        3  47

Thémis            6     2047       3,160       0,123        0  50





                            Satellites.





   NOMS.                    DURÉE           DISTANCE,         MASSE,

                             de             le rayon          celle

                         la révolution.   de la planète    de la planète

                           (jours)           étant 1.         étant 1.



Satellite       {

                { la Lune.    27,32166         60,2729         0,01234

de la Terre.    {



                { 1er          1,7691           6,0485         0,000017

Satellites      { 2e           3,5512           9,6235         0,000023

de Jupiter.     { 3e           7,1546          15,3502         0,000088

                { 4e           6,6888          26,9983         0,000043



                { 1er          0,943            3,35

                { 2e           1,370            4,30

                { 3e           1,888            5,28

Satellites      { 4e           2,739            6,82

de Saturne.     { 5e           4,517            9,52

                { 6e          15,945           22,08

                { 7e          22,945           27,78

                { 8e          79,330           64,36



                { 1er          5,893           13,12

                { 2e           8,707           17,02

Satellites[145] { 3e          10,961           19,85

d'Uranus.       { 4e          13,456           22,75

                { 5e          38,075           45,51

                { 6e         107,694           91,01



Satellite       {

                { 1er          5,880            8,9

de Neptune.     {




Note 145: Les satellites d'Uranus ont été découverts par Herschel; le 2e et le 4e ont
seuls été réobservés par d'autres astronomes. Ils ne peuvent être vus qu'avec
l'aide des plus puissants télescopes.



Éléments physiques du système solaire.



NOMS         DURÉE       APLATISSEMENT    DIAMÈTRE    VOLUME    MASSE

             de la                        ---------------------------

             rotation                     Ceux de la terre étant pris

             en temps                             pour unités.

             moyen.

             j. h. m. s.

-------------------------------------------------------------------------

Soleil       25 12 «  «    insensible     112        1415000    359600

Mercure         24  5 «    insensible       0,39       1/17       1/81

Vénus           23 21 21   insensible       0,98         1         1

Terre           23 56  4     1/299          1            1         1

Mars            23 37 22       «            0,52       1/7        1/8

Vesta           «  «  «    insensible       0,004    1/17700       «

Pallas          «  «  «        «            0,0084   1/1660        «

Jupiter          9 55 26     1/16          11,64      1491        342

Saturne         10 29 17     1/10           9,02       772        103

Uranus          «  «  «      1/9            4,34        87         87

Neptune         «  «  «        «            4,8         77         77



Lune         La durée de   insensible       0,2724    1/50        1/81

             rotation est

             égale à celle

Satellites   de la révolution

de Jupiter   autour de la

1er          planète           «            0,31      1/32       1/170

2º           centrale          «            0,21      1/47       1/128

3º                             «            0,45      1/11       1/33

4º                             «            0,39      1/17       1/70



2º partie



NOMS       DENSITÉ MOYENNE          PESANTEUR        INTENSITÉ

          rapportée à celle           à la        de la lumiere et

         ---------------------       surface       de la chaleur

         de la terre  de l'eau                        solaire

--------------------------------------------------------------------



Soleil       0,26       1,4            29                «

Mercure      1,23       6,8            1/2              6,7

Vénus        0,91       5,1             1               1,9

Terre        1          5,5             1               1

Mars         0,97       5,4            1/2              0,4

Vesta         «          «              «               0,2

Pallas        «          «              «               0,2

Jupiter      0,23       1,3           2 1/2             0,04

Saturne      0,13       0,7             1               0,01

Uranus       0,17       0,9            1/3              0,003

Neptune      0,32       1,8           1 1/3             0,001



Lune         0,62       3,4            1/6              1



Satellites

de Jupiter

1er          0,20       1,1            1/15             0,04

2º           0,37       2,0            1/10             0,04

3º           0,23       1,3            1/7              0,04

4º           0,25       1,4            1/19             0,04




DES COMÈTES.



367. Les comètes sont des astres qui, de même que les planètes,
ont un mouvement propre au milieu des constellations. Ce
mouvement propre des comètes s'étudie comme les autres, et si on
le rapporte au soleil, on trouve qu'il est soumis aux lois de Képler
comme celui des planètes.


[image: ]


368. Cependant les comètes se distinguent des planètes sous
plusieurs rapports: d'abord par l'aspect qui n'est pas le même
(V. nº 370), puis par les circonstances de leurs mouvements. Tandis
que les orbites des planètes sont des ellipses presque circulaires,
celles des comètes sont des ellipses excessivement allongées,
dégénérant presque en paraboles (fig. 132), dont le soleil
occupe un foyer. Tandis que les plans des orbites planétaires sont
en général peu inclinés sur le plan de l'écliptique, celles des comètes
admettent toutes les inclinaisons possibles. Enfin, tandis que
les mouvements de toutes les planètes sont directs, les mouvements
de la moitié à peu près des comètes observées sont rétrogrades.


369. Vu l'extrême allongement des orbites des comètes, ces
astres s'en vont à de très-grandes distances du soleil, et par conséquent
de notre globe. C'est pourquoi nous les perdons de vue
dans la plus grande partie de leur révolution, nous ne les voyons
que lorsqu'elles sont le plus rapprochées du soleil. Comme à cette
distance minimum leur vitesse angulaire est la plus grande (en
vertu de la loi des aires), elles passent assez rapidement à portée
de notre vue, et en général nous ne les voyons pas longtemps
comparativement aux planètes.


[image: ]370. Aspect des comètes; noyau, chevelure, queue. Une comète,
consiste habituellement en un
point plus ou moins brillant,
environné d'une nébulosité qui
s'étend sous forme de traînée
lumineuse dans une direction
particulière (fig. 131). Le point
brillant est le noyau de la comète;
la traînée lumineuse qui
accompagne ce noyau, de l'autre
côté de la comète par rapport
au soleil, se nomme la
queue; la nébulosité qui environne
la comète, abstraction
faite de la queue, se nomme la chevelure. On donne aussi le
nom de tête de la comète à l'ensemble du noyau et de la chevelure.


Les comètes ne se présentent pas toutes sous la forme que nous
venons d'indiquer; il y en a qui n'ont pas de queue, et qui alors
ressemblent à des planètes; il y en a qui ont l'apparence de nébulosités,
sans noyaux. Il y en a qui ont un noyau et une chevelure
sans queue; enfin on en a vu qui avaient au contraire plusieurs
queues disposées en éventail.


371. Les queues des comètes prennent les formes les plus variées;
les unes sont droites, d'autres sont recourbées; les unes
ont partout la même largeur, d'autres s'épanouissent en éventail.
On a vu des comètes ayant plusieurs queues divergentes partant
toutes du noyau. Ces queues atteignent parfois des longueurs immenses;
la queue de la comète de 1680 couvrit une étendue du
ciel d'environ 70°, et Newton a calculé qu'elle avait à peu près
17500000 myriamètres de longueur. La queue de la comète de
1779 en avait 6237000, et celle de la fameuse comète de 1811 plus
de 14000000. La queue suit ordinairement le prolongement du
rayon qui va du soleil à la comète; quelquefois elle dévie de cette
direction.


372. Petitesse de la masse des comètes. La densité dès comètes
(leur masse sous l'unité de volume) est excessivement faible; leur
matière est disséminée à un point dont aucune substance terrestre
ne peut donner l'idée. La plus légère fumée, un brouillard sont
incomparablement plus denses; car ils affaiblissent et éteignent
toujours en partie les rayons de la lumière qui les traversent; quelques
centaines ou quelques milliers de mètres d'épaisseur transforment
la brume la plus légère en un voile opaque. Mais une
comète dont le volume énorme est plutôt comparable à celui du
soleil qu'à ceux des planètes, laisse passer la lumière; on voit
briller les étoiles, comme à l'ordinaire, à travers des épaisseurs
de matière cométaire de plusieurs milliers de lieues. La masse des
comètes sous l'unité de volume est donc excessivement faible,
comme nous l'avons dit tout d'abord. On voit par là combien peu
les effets mécaniques du choc d'une comète contre la terre ou
toute autre planète sont à craindre. La comète de 1770, qui passa
auprès de Jupiter et au milieu de ses satellites, n'exerça aucun
effet appréciable; mais il paraît que l'effet de ce voisinage sur la
comète a été fort sensible; elle a été grandement détournée de son
orbite. On aurait dû, d'après Lexell, la revoir 5 ans après, et depuis
on ne l'a plus revue. Ce fait prouve bien la petitesse relative
de la masse des comètes.


Néanmoins, la matière des comètes existe; elle obéit aux lois
de la gravitation; elle est plus dense dans la partie qu'on appelle
noyau; aussi c'est le centre du noyau qu'on considère comme le
point principal; c'est le point dont on étudie le mouvement.


373. Nature des orbites. Nous avons dit que les orbites des comètes
peuvent être sensiblement considérées comme des paraboles
dont le centre du soleil serait le foyer commun (fig. 132). Si une
comète revient, son orbite ne doit plus être considérée comme dégénérant
en parabole (nº 374).


374. Comètes périodiques. Il y a, en effet; des comètes qui reviennent
en vue de la terre; ces comètes, qui ont été ainsi vues
plusieurs fois, se nomment périodiques; car leurs retours ont lieu
à des intervalles égaux qu'on peut déterminer par le calcul et vérifier
par une observation subséquente, quand une fois on a soupçonné
la périodicité.


Nous disons soupçonné; car on ne reconnaît pas qu'une comète
est de celles qui ont déjà été vues à sa forme et à son apparence;
celles-ci sont trop vagues pour qu'on puisse se décider
d'après elles
146. À chaque comète nouvelle les astronomes s'empressent
de calculer les éléments de l'orbite, et de les comparer à
ceux des comètes antérieures. S'il se trouve qu'une de celles-ci
a suivi le même chemin, les deux comètes ne font très-probablement
qu'un seul et même astre. En effet, eu égard à l'immensité
des espaces dans lesquels se meuvent les comètes autour du soleil,
il est peu probable que deux comètes suivent exactement le
même chemin. D'ailleurs avec tous les éléments que l'on possède,
y compris l'intervalle des deux apparitions que l'on compare, on
peut prédire une nouvelle apparition pour une époque précise,
et si cette prédiction se vérifie, on classe la comète au nombre des
comètes périodiques. Les orbites des comètes périodiques doivent
être des ellipses.



Note 146:
(retour)  L'aspect d'une comète est tout à fait variable; à quelques jours d'intervalle
seulement, une comète est toute différente de ce qu'elle était d'abord;
il est donc absolument impossible de tirer la moindre induction plausible de
ce que deux comètes observées à des époques différentes ont on n'ont pas le
même aspect.



375. Comète de Halley. Halley, astronome anglais du XVIIe siècle,
calcula d'après les méthodes de Newton les orbites d'un grand
nombre de comètes dont on avait conservé les observations. Il fut
frappé des analogies qui existaient entre des comètes observées
en 1531, 1607 et 1682. L'intervalle de ces observations successives
étant 75 ou 76 ans, il se hasarda à prédire une nouvelle apparition
pour la fin de 1758 ou le commencement de l'année 1759;
l'événement vérifia sa prédiction. Cette comète, dite de Halley, devait
reparaître vers 1834 ou 1835; on l'a revue en effet en 1835;
c'est donc décidément une comète périodique.



376. Comète d'Enke. C'est une comète périodique qui revient
tous les 3 ans 1/2 environ, tous les 1200 jours: aussi l'appelle-t-on
la comète des 1200 jours. Elle fut découverte par M. Pons, à Marseille,
en 1818. M. Enke fut celui qui en calcula tous les éléments
et en constata la périodicité.



377. Comète de Biéla. La troisième planète périodique fut découverte
le 27 février 1826, à Johannisberg, par M. Biéla, capitaine
autrichien. La durée de sa révolution est de 6 ans 3/4; elle a
été observée en 1846 et en 1852.


Son dédoublement. La comète de Biéla, qui n'a pas de noyau, a
présenté un singulier phénomène à son apparition en 1846: elle
s'est dédoublée. C'est-à-dire qu'on a vu deux comètes semblables,
très-voisines l'une de l'autre, sans communication apparente, et
décrivant sensiblement l'orbite assignée à la planète primitive. Le
dédoublement a persisté à l'apparition de 1852; on en ignore la
cause.


L'orbite de la comète de Biéla coupe le plan de l'écliptique à
peu près à la distance qui nous sépare du soleil. Si la terre s'était
trouvée en 1832 au point de rencontre des deux orbites, en même
temps que la comète, il y aurait eu collision; mais la terre était
alors assez éloignée de ce point. Depuis cette époque les perturbations
du mouvement de la comète ont fait disparaître toutes chances
de rencontre.


À ce sujet nous remarquerons que la masse des comètes est tellement
faible, qu'une pareille collision n'est pas à craindre. Si la
terre rencontrait une comète, elle la traverserait probablement
sans s'en apercevoir, du moins quant aux effets mécaniques
(nº 372).



378. Comète de Faye. La quatrième comète périodique a été
observée par M. Faye, à Paris, le 22 novembre 1843. La durée de
sa révolution est à peu près 7 ans 1/2.


Dans ces derniers temps on a trouvé plusieurs autres comètes
pour lesquelles les mêmes circonstances (la forme des orbites) font
soupçonner la périodicité. Mais ces comètes ne devront être classées
définitivement parmi les comètes périodiques que lorsqu'on
les aura vues revenir au moins une fois à leur périhélie après
avoir fait une révolution complète autour du soleil.


PHÉNOMÈNE DES MARÉES.



379. Description du phénomène. Flux et reflux; haute et basse mer.
Abstraction faite des ondulations accidentelles plus ou moins fortes
que l'action des vents produit à sa surface, la mer n'est jamais
complètement immobile; animée d'un mouvement continu et périodique,
elle s'élève et s'abaisse alternativement; la durée d'une
de ces oscillations est de 12 heures 1/2 environ. Pendant la première
moitié de cette oscillation, la mer monte continuellement à
partir d'une certaine hauteur minimum; en montant elle s'avance
vers ses rivages qu'elle tend à envahir, refoulant l'eau des fleuves
à leurs embouchures; c'est le flux ou le flot. Parvenue à une
certaine hauteur maximum, la mer cesse de monter; on dit alors
qu'elle est haute ou pleine. À partir de là, elle se met à descendre
durant 6 heures 1/4; en descendant, elle se retire des rivages jusqu'à
une assez grande distance; c'est le reflux. Arrivée ainsi à un
certain niveau minimum, la mer cesse de descendre; on dit alors
qu'elle est basse. Puis elle recommence à monter.


Période des marées. Nous avons indiqué approximativement la
période des marées; pour être plus exact, nous dirons: la période
des marées, c'est-à-dire l'intervalle de deux hautes mers
consécutives est de 12h 25m 44s. Le moment de la basse mer divise
cette durée en deux parties inégales; à Brest, par exemple, la
mer met 16 minutes de plus à monter qu'à descendre; au Havre,
la différence est de 2h 8m. La double période des marées, comprenant
deux hautes mers et deux basses mers, est précisément égale
au temps qui sépare deux retours consécutifs de la lune au méridien
supérieur.


380. Variations de la hauteur des marées. L'amplitude de ces
oscillations de la mer varie avec les époques pour le même lieu, et
sa valeur moyenne change quand on passe d'un lieu à un autre. La
hauteur de la pleine mer varie chaque jour en un lieu donné;
elle est la plus grande à l'époque des syzygies, et la plus petite
à l'époque des quadratures. Mais la plus grande hauteur n'a pas
lieu précisément au moment d'une syzygie; elle n'a lieu qu'environ
36 heures après; c'est aussi 36 heures après une quadrature
que se produit la marée la plus basse.


Plus la mer s'élève lorsqu'elle est pleine, plus elle descend dans
la basse mer qui suit. On nomme marée totale la demi-somme de
deux pleines mers consécutives au-dessus de la basse mer intermédiaire;
La marée totale atteint en moyenne, à Brest, 6mèt.,2490
dans les syzygies, et 3m,0990 seulement dans les quadratures.


La grandeur de la marée totale varie avec la distance de la lune
à la terre; elle augmente quand la lune se rapproche, diminue
quand la lune s'éloigne. La variation de la distance de la lune à la
terre au-dessus et au-dessous de sa valeur moyenne est, comme
on l'a vu, d'environ 1/15 de cette valeur moyenne; la variation correspondante
de la marée totale, dans les syzygies, est d'environ
3/26 de sa valeur moyenne. En valeur absolue, cette variation est
à Brest d'environ 0m,883; de sorte que l'effet du changement de
distance de la lune sur les marées totales est dans ce port de 1m,766.


La variation de la distance du soleil à la terre exerce aussi une
certaine influence sur la hauteur des marées; mais elle est bien
moins sensible. Toutes choses égalés d'ailleurs, il résulte de cette
variation que les marées des syzygies sont plus grandes, et celles
des quadratures plus petites en hiver qu'en été. (On sait qu'en hiver
le soleil est plus près de nous qu'en été).


Les déclinaisons du soleil et de la lune ont aussi de l'influence sur
les marées. Les marées des syzygies sont d'autant plus fortes, et
celles des quadratures d'autant plus faibles, que la lune et le soleil
sont plus voisins de l'équateur. A Brest, la hauteur de la marée
totale, aux équinoxes, est plus forte qu'aux solstices, de 0m,75 environ;
la marée totale des quadratures est plus petite de la même
quantité dans les mêmes circonstances.



381. Établissement du port. Aux équinoxes, quand la lune, nouvelle
ou pleine, se trouve à sa moyenne distance de la terre, la pleine
mer n'arrive pas précisément au moment du passage de l'astre au
méridien; elle suit le moment du midi vrai ou de minuit d'un intervalle
de temps qui varie d'un port à un autre, mais qui est
constant pour le même port. Le retard de la pleine mer des syzygies
sur le midi vrai ou le minuit, à l'époque des équinoxes, en un
lieu donné, est ce qu'on nomme l'établissement du port. L'établissement
du port sert à déterminer les heures des marées relativement
aux phases de la lune.


Nous indiquons dans le tableau suivant la valeur de l'établissement
pour un certain nombre de ports de l'Océan et de la Manche.
Nous y joignons l'indication de la hauteur moyenne des marées
des syzygies pour chaque port, afin qu'on voie comment cette hauteur
varie avec la disposition des lieux et la configuration des côtes.


NOMS DES PORTS.                         ÉTABLISSEMENT      HAUTEUR

                                           du port.        moyenne

                                                         de la marée

                                                        aux syzygies.



Bayonne (embouchure de l'Adour)           3h 30m            2m,80



Royan (embouchure de la Gironde)          4  1              4,70



Saint-Nazaire (embouchure de la Loire)    3 45              5,36



Lorient                                   3 30              4,48



Brest                                     3 45              6,25



Saint-Malo                                6  0             11,36



Granville                                 6 30             12,10



Cherbourg                                 7 45              1,64



Le Havre (embouchure de la Seine)         9 15              1,14



Dieppe                                   10 30              1,80



Boulogne                                 10 40              7,92



Calais                                   11 45              6,24



Dunkerque                                11 45              5,36





382. Retard journalier des marées. Nous avons dit que la double
période du phénomène des marées, correspondant à une révolution
diurne de la lune, est de 24h 50m 28s (temps solaire moyen). Il résulte
de là que l'heure de la pleine mer doit retarder chaque jour
de 50m 28s. Ce n'est là qu'une moyenne; ce retard journalier de la
pleine mer varie avec les phases de la lune; il est de 39m seulement
aux syzygies, et de 75m vers les quadratures.


Influence de l'étendue de la mer. Les marées ne sont sensibles
et considérables que dans les vastes mers, comme les deux océans
et les golfes qu'ils forment. Mais dans les petites mers, intérieures
ou à peu près intérieures, comme la mer Noire et la mer
Caspienne, il n'y a pas de marées. Dans la Méditerranée elle-même,
les marées sont fort peu sensibles.



383. Causes des marées. Ce sont les actions combinées de la
lune et du soleil sur les eaux de la mer qui produisent le phénomène
des marées. L'action de la lune est prépondérante; c'est ce
qui fait qu'il y a une liaison intime entre les circonstances du phénomène
des marées et celles du mouvement de la lune autour de
la terre. Nous allons entrer dans quelques développements sur
ces causes des marées.



[image: ]384. Causes du phénomène des marées. Pour nous rendre compte
de ces causes, nous pouvons sans inconvénient considérer la terre
comme un noyau solide sphérique entièrement recouvert par les
eaux de la mer. Celles-ci obéissant à la seule attraction du noyau
solide, c'est-à-dire à la pesanteur terrestre, doivent se disposer
autour de ce noyau de manière que leur surface soit exactement
sphérique.


Tenons compte maintenant de l'attraction de la lune. Soient T
et L les centres de la terre et de la
lune. La figure représente une section
du noyau solide et de son enveloppe
liquide par un plan mené par
la droite TL. En vertu du principe
de la gravitation universelle (nº 323),
la lune attire toutes les molécules
du noyau solide comme si la masse
était ramassée au centre, c'est-à-dire
avec une intensité fm/d² (f est l'attraction
de l'unité de massé à l'unité de
distance, m la masse de la molécule,
et la distance TL). La molécule
solide a se meut comme si elle
était attirée par cette force fm/d². La
molécule liquide A, qui est libre, est
attirée par cette force fm/(d-r)², qui
correspond à sa distance LA = d — r du centre de la lune. Cette
force fm / (d-r)² plus grande que fm / d² peut être considérée comme la
somme de deux forces fm / d², fm / (d-r)²-fm / d² agissant toutes deux
dans le sens AL. La force fm / d² agissant à la fois sur la molécule
solide a et sur la molécule liquide A les fait se mouvoir avec la
même vitesse, et s'il n'y avait que cette force, les molécules a et A
se mouvant avec la même vitesse conserveraient leurs positions
relatives. L'eau A ne s'écarterait pas du fond a. Mais il faut tenir
compte de l'autre force fm / (d-r)²-fm / d² qui, n'agissant que sur A,
tend à l'écarter du noyau solide dans le sens AL. Mais cette molécule
A est en même temps sollicitée dans le sens contraire AT par
la pesanteur qui est plus grande que la force fm / (d-r)²-fm / d². Celle-ci
a donc pour effet de diminuer la pesanteur de sa propre valeur.


Si nous considérons de même toutes les molécules liquides de
l'arc AC et de l'arc AC', nous arriverons pour chacun à la même
conclusion. L'effet de l'attraction lunaire se réduit à une diminution
de l'effet de la pesanteur terrestre sur là molécule. Mais
cette diminution de la pesanteur est de plus en plus petite à
mesure qu'on s'avance de A vers C ou de A vers C'; car ces molécules
sont de plus en plus éloignées de la lune, dont l'action est
moindre, et l'attraction de la lune au lieu d'être directement
opposée à la pesanteur, fait avec la direction de celle-ci des angles
de plus en plus grands. En résumé, l'effet de l'attraction lunaire
sur les molécules du demi-cercle liquide, est de diminuer inégalement
les effets de la pesanteur. Celle-ci agit sur ces molécules
avec une intensité qui va en diminuant de A vers C et de A
vers C'.


La même chose se passe sur la demi-circonférence CBC'. La
molécule b du noyau solide tend à se mouvoir vers la lune comme
si elle était sollicitée par une force égale à fm / d². La molécule
liquide B est sollicitée dans le même sens par une attraction égale
à


  fm------

(d + r)²




plus petite que


fm--

d².




Mais cette attraction peut être considérée
comme la différence de deux forces, l'une égale à


fm--

d²




agissant dans le sens BL, l'autre égale à


fm      fm--  - --------

d²    (d + r)²




qui agit en
sens contraire. La force


fm--

d²




qui agit à la fois sur les molécules b
et B dans ce même sens leur imprime des vitesses égales et ne
peut changer la distance qui les sépare. Cette distance ne peut
donc être altérée que par la seconde force


fm      fm--  - --------

d²    (d + r)²




qui
agit dans le sens de TB prolongée, c'est-à-dire en sens contraire
de la pesanteur. Cette force tend donc à diminuer l'action de la
pesanteur sur la molécule liquide B. Si on considère de même
successivement les molécules du quadrant BC et celles du quadrant
BC', on arrive à la même conclusion. L'attraction de la lune
sur ces molécules a pour effet de diminuer l'effet de la pesanteur;
mais elle diminue la pesanteur de quantités de plus en plus
petites à mesure que l'on s'avance de B vers C ou de B vers C',
par les raisons indiquées à propos des quadrants liquides AC
et AC'.


En définitive l'anneau liquide ACBC' est composé de molécules
sollicitées par la pesanteur (force centrale) diminuée par des forces
contraires (forces centrifuges), qui vont en diminuant de A vers C
et vers C', de B vers C et vers C'. Cet anneau liquide peut être
comparé à un anneau d'acier qu'on fait tourner autour d'un axe
pour démontrer par expérience les effets de la force centrifuge.
Les molécules de cet anneau sont aussi sollicitées par des forces
centrifuges inégales qui diminuent de l'équateur vers chaque pôle
(extrémité de l'axe). Les deux anneaux sont exactement dans les
mêmes conditions. Or l'anneau d'acier s'allonge vers les points où la
force centrifuge est la plus grande, et s'aplatit vers les points où
cette force est nulle. L'anneau liquide doit donc s'allonger vers A
et vers B et s'aplatir vers C et vers C'. Mais en A et en B l'anneau
s'allonge, l'eau s'éloigne du noyau solide, c'est-à-dire du fond;
elle monte, il y a marée haute. En C et en C' où l'anneau s'aplatit,
la surface de l'eau se rapproche du noyau solide, c'est-à-dire du
fond, la mer baisse; elle descend, il y a basse mer.


Si la lune restait en place, l'effet serait permanent; la mer
serait toujours haute en A et en B, basse en C et C', moyenne au
point intermédiaire. Mais la lune fait le tour de la terre en C et
en C' dans 24h-1/2. De là les variations de niveau. La marée se
déplace progressivement; le flot suit la marche de la lune.


385. Valeur de la force qui soulève la mer. Nous avons vu que
la force qui fait monter la mer en A est


fm         fm-------- - --

(d - r)²   d².





Or



fm         fm     fm[d² - (d - r)²]     fm(2dr - r²)

-------- - -- =   -----------------  = ------------

(d - r)²   d².     d²(d - r)²           d²(d - r)²








on sait qu'en moyenne d = 60r ou r = 1/60 d; on peut donc, sans
trop grande erreur, négliger r² vis-à-vis de 2dr au numérateur,
et r vis-à-vis de d au dénominateur (d'autant plus que les effets
de cette modification se compensent en partie); en agissant ainsi
on trouve, par approximation, que la force en question a pour
expression


2fmdr   2fmr----- = ----

d4      d³.




De même en B, nous avons la force


fm    fm         fm[(d + r)² - d²]    fm(2dr + r²)

--- - -------- = -----------------  = -------------

d²    (d + r)²    d²(d + r)²          d²(d + r)²




qui, d'après les mêmes considérations, peut être exprimée très-approximativement
par le même nombre


2fmr----.

d³




La force qui soulève la mer en A et en B est proportionnelle à la
masse m de la lune; et varie en raison inverse du cube de la distance
de cet astre à la terre.


386. Effets de la rotation de la terre sur elle-même et du
mouvement de translation de la lune autour de la terre.


Nous avons supposé la terre et la lune immobiles dans une de
leurs positions relatives. Si cette hypothèse était vraie, la surface
des eaux prendrait d'une manière permanente la forme elliptique
que nous venons d'indiquer, et se maintiendrait en équilibre
dans cette position. Mais, comme on le sait, la terre tourne sur
elle-même en 24 heures dans le sens de la flèche (latérale), et la
lune tourne dans le même sens autour de la terre en 27 jours 1/2.
De là un certain mouvement résultant de la lune par rapport à la
terre; tout se passe exactement comme si la lune partant de la
position L (fig. 133) tournait d'occident en orient (dans le sens de
la flèche) autour du centre T de la terre, faisant une révolution en
24h 50m 28s. Nous pouvons, pour plus de simplicité, supposer que
la déclinaison de la lune étant nulle, celle-ci tourne autour de la
terre, sur le plan de l'équateur, qui serait par exemple le
plan de la figure 133. En considérant cet astre dans chacune
de ces positions successives, on voit que le grand axe de l'ellipse
liquide doit toujours être dirigé suivant LT; ce grand axe et par
suite l'ellipse elle-même tourneront donc avec la lune. Par suite,
quand cet astre, au bout de 6h 12m 37s, ayant tourné de 90°, se
trouvera au méridien de C sur la direction TG prolongée, ce sera
en C et en D que l'ellipse sera allongée, tandis qu'elle sera aplatie
en A et en B. Il y aura marée haute en C et en D, et marée basse
en A et en B. Comme tout cela est arrivé progressivement, la mer
a monté pendant ces 6h 12m 37s en C et en D, tandis qu'elle descendait
en A et en B.


De plus, dans cet intervalle, la pleine mer a eu lieu successivement
pour tous les lieux situés entre A et C, ou entre B et D, quand
la lune a passé au méridien supérieur des uns et au méridien inférieur
des autres. Après un nouvel intervalle de 6h 12m 37s la lune
arrive au méridien supérieur de B qui est le méridien inférieur de A;
il y a de nouveau haute mer en B et en A, et basse mer en C et en D:
la mer a monté aux premiers lieux et baissé dans les derniers; la
pleine mer a eu lieu dans l'intervalle successivement pour les lieux
situés entre C et B et entre D et A. Dans les 6h 12m 37s suivantes,
la lune se rend du méridien de B au méridien de D; on voit ce
qui arrive; puis de même quand la lune va du méridien de D
au méridien de A. Ceci explique comment l'intervalle de deux
hautes mers consécutives, en chaque lieu de la terre, est précisément
de 12h 25m 14s; en même temps se trouve expliquée l'ascension
progressive des eaux de la mer, de la basse mer à la haute
mer.



387. Action du soleil sur les eaux de la mer. Nous avons supposé
que la lune agissait seule de l'extérieur sur les eaux de la mer; mais
évidemment le soleil, qui se trouve vis-à-vis de la terre dans des
conditions analogues à celles que nous venons de considérer quant
à la lune, doit attirer les eaux de la mer et produire sur leur masse
un effet tout à fait analogue à celui que produit la lune. Nos explications
des nº 384 et 385 s'appliquent de point en point au soleil;
il suffit de remplacer la masse m de la lune et la distance d = TL
par la masse M du soleil et la distance D = ST de ce dernier astre
à la terre. Le soleil, se trouvant au méridien d'un lieu A, tendra
à y soulever la mer avec une force que l'on peut évaluer très-approximativement
à 2fmr/D³. En considérant spécialement le soleil
vis-à-vis de la terre, nous trouvons donc qu'il doit y avoir une marée
solaire de même qu'il y a une marée lunaire. Il faut de même avoir
égard au changement des positions du soleil par rapport à la terre.


388. Si on compare la force avec laquelle la lune, se trouvant
au méridien d'un lieu, y soulève les eaux, à la force analogue
pour le soleil, on trouve le rapport:


2fmr   2fMr   m    M      m    D³

---- : ---- = -  : --  =  -- : --

d³     D³     d³   D³     M    d³



D³/d³.




Or la masse de la terre étant prise pour unité, on a vu que la masse
M = 355000 (nº 201) et m = 1/81 (nº 265); d'ailleurs D = 400 d,

d'où
 D/d = 400. Donc le rapport ci-dessus des forces que nous
comparons est approximativement égal à


     1

-----------  x 400³; environ 2,05.

355000 x 81




Ainsi la marée lunaire est environ le double de la marée solaire.



389. Actions combinées des deux astres; effets résultants.--On
explique en mécanique comment le mouvement total d'un système
soumis à deux forces est la résultante des mouvements partiels
que ces forces considérées l'une après l'autre lui impriment respectivement;
donc les deux flux partiels, produits par la lune et
le soleil, se combinent sans se troubler, et c'est de cette combinaison
que résulte le flux réel qu'on observe dans les ports.


Mais comme les périodes des deux phénomènes ne sont pas les
mêmes, l'instant de la marée solaire n'est pas toujours le même
que celui de la marée lunaire. Si, à une certaine époque, les deux
astres passant ensemble au méridien, les deux marées coïncident,
la marée lunaire suivante retardera sur la marée solaire de l'excès
du demi-jour lunaire sur le demi-jour solaire, c'est-à-dire de 25m 14s.
Les retards iront en s'accumulant, au bout de 7j 1/4 environ, ils
seront de 6h 1/4 à peu près, et la pleine mer lunaire coïncidera
avec la basse mer solaire, et vice versa; ce sont ces différences qui
produisent les variations des hauteurs de marées, suivant les
phases de la lune. Ainsi, quand à la conjonction le soleil et la
lune passent ensemble au méridien du lieu A (fig. 133), leurs actions
s'ajoutent puisqu'elles ont lieu dans le même sens; c'est ce
qui produit les grandes marées des syzygies
147.


Note 147:
(retour)  On peut encore; si on veut, supposer que les déclinaisons du soleil et de
la lune étant nulles en même temps, ces astres tournent tous deux autour de
la terre sur le plan de l'équateur céleste.



Lorsque, au contraire, à une quadrature, les deux astres passent
au méridien du lieu A, à 6 heures de distance, l'un d'eux y passant
tend à y déterminer une élévation de la mer, tandis que
l'autre qui est, en ce moment, à 90° de distance en avant ou en
arrière, tend à produire une dépression au même lieu; les deux
actions se contrarient le plus possible l'une l'autre; la résultante
est la marée des quadratures, qui est par conséquent la plus faible
de toutes.


Entre une quadrature et une syzygie, la hauteur de la marée
doit varier progressivement du minimum qui correspond à la première
au minimum qui correspond à l'autre; le contraire a lieu
d'une syzygie à une quadrature.


Comme d'ailleurs c'est l'attraction lunaire qui est la plus grande
(nº 388), c'est elle qui règle principalement la marée résultante, la
marée effective. C'est ce qui fait que dans un temps donné on observe
autant de marées qu'il y a de passages de la lune, tant au
méridien supérieur du lieu qu'à son méridien inférieur.


390. Retard des marées Si, comme nous l'avons supposé, la
mer recouvrait partout la terre à une égale profondeur, si elle
n'éprouvait aucun obstacle dans ses mouvements, chaque marée
partielle aurait lieu au moment où l'astre qui la produit a sa plus
grande action, c'est-à-dire quand il passe au méridien du lieu considéré;
la marée résultante (la marée effective) aurait lieu précisément
au moment indiqué par la théorie de la combinaison des
deux actions. Par exemple, aux syzygies, la haute mer aurait lieu
au moment même où le soleil et la lune parviennent ensemble
au méridien. Mais comme la mer n'enveloppe pas la terre de
toutes parts, que sa profondeur est loin d'être partout la même,
qu'elle est gênée dans ses mouvements, les choses ne se passent
pas ainsi. L'action de la lune ou du soleil s'exerce principalement
avec une action prépondérante au milieu de l'Océan, là où les
eaux sont à peu près dans les conditions que nous avons supposées
dans notre explication. Le mouvement que cette action détermine,
les ondes qui se produisent en conséquence à la surface des
eaux, se propagent de proche en proche, et le mouvement finit
par se faire sentir sur les côtes; mais il faut pour cela un temps
assez long; l'expérience et la théorie montrent qu'il ne faut pas
moins de 36 heures. Ainsi, par exemple, la haute mer d'une syzygie
n'a lieu sur les côtes qu'environ un jour et demi après le
moment où les actions associées des deux astres ont commencé à
imprimer aux eaux de l'Océan le mouvement ondulatoire qui se
manifeste à nous par cette marée, c'est-à-dire un jour et demi
après le moment même de la conjonction. La même chose a lieu
pour toutes les marées.


391. Établissement du port. Ce que nous venons de dire s'applique
à toute l'étendue des côtes de l'Océan. S'il n'y avait pas d'autre cause
de retard, l'heure de la marée serait la même pour tous les ports
de France situés sur cette mer. Mais il y a encore le retard connu
sous le nom d'établissement du port, dont nous avons parlé nº 381.
Ce retard, constant pour chaque port, mais différent en général
d'un port à l'autre, dépend de la configuration des côtes et de la
situation du port relativement aux côtes de l'Océan sur lesquelles
le flot arrive d'abord.


Lorsque la mer devient haute à l'ouest de la France, dans les
environs de Brest, le flot de la pleine mer s'avance peu à peu dans
la Manche; cette petite mer se trouvant brusquement resserrée par
la presqu'île de Cotentin, le flot monte contre la barrière qui s'oppose
à sa marche, et il en résulte des marées extrêmement grandes
sur les côtes de la baie de Cancale, et notamment à Granville. De
là le flot continue à s'avancer, et la pleine mer a lieu successivement
à Cherbourg, au Havre, à Dieppe, à Calais, etc.


L'établissement du port est d'autant plus grand pour l'un de
ces ports que celui-ci est plus éloigné du point de départ du flot
dont nous décrivons la marche progressive. Cette progression est
sensible sur le tableau de la page 284.


Ce que nous venons de dire de la Manche, considéré comme un
golfe où les eaux de l'Océan pénètrent assez largement, s'applique
aux ports qui sont au fond d'une baie ou d'une rade, ou
bien à une certaine distance de l'embouchure d'une rivière, dont
le lit est plus ou moins resserré. Le flot, arrivé à l'entrée de la
baie ou à l'embouchure de la rivière, met un certain temps à arriver
successivement à une distance plus ou moins grande. De là,
par exemple, la différence des heures de la haute mer à Saint-Nazaire,
Paimbœuf et Nantes, sur la Loire; à Royan et Bordeaux,
sur la Gironde.


392. Pour terminer, nous observerons que les différences entre
les hauteurs moyennes de la marée dans les différents ports sont
dues à la configuration des côtes, aux obstacles qu'éprouvent les
ondes pour se développer librement. (V., par exemple, ce qui arrive
pour les marées de la baie de Cancale.)


393. Nous avons encore dit qu'il n'y a pas de marée dans la
mer Noire ni dans la mer Caspienne; que celles qui ont lieu dans la
Méditerranée sont à peine sensibles. Cela tient à ce que ces mers
sont pour ainsi dire isolées et trop petites. Nous avons vu que le
phénomène des marées est un effet de la différence des attractions
exercées par la lune et le soleil sur les diverses parties de la surface
des eaux; cette différence des attractions résulte elle-même de
la différence des distances à la lune des points de la surface liquide.
Pour que l'effet en question, c'est-à-dire la marée, soit sensible sur
une mer isolée, il faut évidemment que la différence des distances
relatives aux divers points de cette mer soit assez considérable,
c'est-à-dire que cette mer soit grande.


Note.


Détermination de la parallaxe du soleil par l'observation d'un passage

de Vénus sur cet astre.


394. Les passages de Vénus sur le soleil offrent le moyen le plus exact que
nous connaissions de mesurer la parallaxe du soleil, par suite la distance de
cet astre à la terre (nº 200), et enfin les dimensions de notre système planétaire.
Les passages de 1761 et de 1769, surtout le dernier, ont été observés avec soin
par des astronomes de diverses nations. Ce sont ces observations qui ont fourni
la valeur moyenne, 8",57, que nous avons indiquée, nº 199, pour la parallaxe
horizontale du soleil. Nous allons donner un aperçu de la marche qui a été
suivie, et dont la première idée est due à Halley.


Au moment d'un passage, Vénus se trouve deux fois et demie plus rapprochée
de la terre que du soleil,


         VS = 2-1/2VT,      ou    VS/VT = 2-1/2.         (fig. 128)
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Il en résulte, comme le montre la figure, que deux observateurs, placés en
deux endroits de la terre, A et B, suffisamment éloignés l'un de l'autre, voient
Vénus, V, décrire deux cordes, sensiblement différentes du disque solaire
(MN, PQ); à un même instant, par exemple, ces observateurs voient respectivement
la planète se projeter en deux points différents, V, V". Supposons, pour
fixer les idées, que les lieux d'observation, A et B, soient situés aux extrémités
d'un diamètre de la terre, et faisons abstraction du mouvement de rotation
de celle-ci. Chaque observateur peut mesurer la corde qu'il voit décrire à
l'ombre de la planète sur le disque solaire (le mouvement angulaire de la planète
étant parfaitement connu, le temps du passage fait connaître l'espace parcouru
sur le disque). Les deux cordes étant connues, on trouve aisément leur
distance V'V". Connaissant cette distance V'V", on détermine l'angle sous lequel
elle serait vue de la terre
148. On a trouvé 43" à peu près pour la valeur
de cet angle. (La distance V'V", est très-exagérée dans notre figure; en réalité
elle est vue de la terre sous un angle de 43" environ, tandis que le diamètre
du disque est vu sous un angle de 32'.)


Note 148:
(retour)  On sait le temps qu'il faut à Vénus, à l'époque de la conjonction inférieure,
pour faire vis-à-vis de la terre un chemin angulaire égal au demi-diamètre
apparent du soleil: En comparant à ce temps la durée du passage de Vénus
pour chaque observateur, on a le rapport qui existe entre la corde qu'il voit
décrire à l'ombre et le diamètre du disque solaire. Imaginons qu'on construise
un cercle représentant ce disque; on pourra y représenter proportionnellement
les deux cordes MN, PQ, à l'aide de leurs rapports au diamètre. La distance
de ces deux cordes sur la figure étant comparée au diamètre du cercle, on aurait
le rapport de la distance angulaire des points V, V", vus de la terre, au
diamètre apparent du soleil; d'où on déduit cette distance angulaire (43").
Comme cette distance vaut précisément 5 fois la parallaxe du soleil (V. le texte),
on connaîtrait cette parallaxe. En faisant des calculs correspondant à ces constructions,
les astronomes sont arrivés à un résultat plus précis.



Cela posé, observons que les triangles semblables VV'V", AVB donnent:


V'V"/AB  ou   V'V"/2r = VV'/AV = VS/VT.


Or, nous savons que   VS/VT = 2 1/2 = 5/2,


donc        V'V"/2r = 5/2 ou V'V"/r = 5.


On conclut de là que l'angle de 43" sous lequel la droite V'V" est vue d'une
distance égale à celle qui sépare la terre du soleil est égal à 5 fois l'angle sous
lequel le rayon r de la terre serait vu de la même distance. Mais ce dernier
angle n'est autre chose que la parallaxe du soleil; donc la parallaxe du soleil
est égale au 5e de la valeur connue 43"; P = 43"/5, à peu près.




APPENDICE.


EXPLICATION DES ALTERNATIVES DE JOUR ET DE NUIT, DES INÉGALITÉS DES JOURS

ET DES NUITS, ETC., DANS L'HYPOTHÈSE DU MOUVEMENT RÉEL DE LA TERRE.


395. La réalité du double mouvement de la terre devient encore plus évidente
quand on explique dans cette hypothèse tous les faits, tous les phénomènes
dont nous nous sommes occupé dans ce chapitre; les autres raisons que
nous avons de croire à ce mouvement ont alors toute leur valeur (nº 223).
Nous ne pouvons entreprendre ici cette explication détaillée; cela nous mènerait
trop loin; nous expliquerons seulement les phénomènes qui nous ont
principalement occupé.


Nous avons établi que le mouvement diurne du soleil et son mouvement apparent
de translation sur une orbite elliptique, peuvent fort bien n'être que des
apparences dues à la rotation de la terre et à son mouvement annuel de translation.
Nous allons montrer que les alternatives du jour et de la nuit, leurs
durées variables et inégales, aussi bien que les variations de la température,
s'expliquent parfaitement dans l'hypothèse d'un mouvement réel de la terre
tel que nous venons de l'indiquer.


396. 1º Alternatives de jour et de nuit. La rotation diurne de la terre
autour d'un axe central PP', en face du soleil supposé fixe, explique parfaitement
les alternatives de jour et de nuit, telles qu'elles se produisent en chaque
lieu de la terre.


Cette proposition est mise en évidence par l'expérience suivante. Prenons
un globe opaque et une bougie allumée; maintenons la bougie en place, et
faisons tourner le globe autour d'un de ses diamètres comme axe; un point
quelconque marqué sur le globe est, en général, éclairé durant une partie de
la révolution, et reste dans l'obscurité durant l'autre partie. On peut répéter
cette expérience en donnant successivement à l'axe de rotation du globe, par
rapport au point éclairant S, l'une des trois positions qu'indiquent les figures
83, 84, 85 ci-après.


On retrouve ainsi toutes les circonstances qui peuvent se présenter relativement
à l'alternative du jour et de la nuit en un lieu de la terre.


Ceux qui tiennent à une plus grande précision peuvent lire ce qui suit.


397. Pour justifier la proposition précédente, il suffit de jeter les yeux sur
l'une quelconque des figures 83, 84, 85 ci-après, représentant chacune une des
positions que la terre, dans son mouvement annuel, occupe successivement
vis-à-vis du soleil S.


Dans la première position (fig. 83), le soleil est dans le plan E'E de l'équateur
terrestre, et la ligne TS qui joint le centre de la terre à celui du soleil est
perpendiculaire à l'axe PP' de rotation de la terre. P est le pôle boréal de la
terre; P' le pôle austral.


Dans la deuxième position de la terre (fig. 84), le soleil S est manifestement
au-dessus de l'équateur E'E, du côté du pôle boréal P; sa déclinaison Es est
boréale; l'angle PTS de l'axe PP' et de la ligne TS, du côté du pôle boréal P,
est aigu.


Dans la troisième position (fig. 85), le soleil est sous l'équateur EE', du côté
du pôle austral P'; la déclinaison Es est australe; l'angle PTS est obtus.


Ce sont évidemment les seuls cas qui peuvent se présenter en général. Quelle
que soit la position de la terre en un jour donné, on peut concevoir un grand
cercle, B'I'BI, perpendiculaire à la ligne TS, au point T, et que l'on regarde
comme fixe ainsi que TS et PP' durant une révolution diurne de la terre, c'est-à-dire
pendant le jour considéré. Il est clair qu'il fera jour pour un lieu M de
la terre quand ce lieu, par l'effet de la rotation diurne, viendra en avant de ce
cercle fixe, B'I'BI, par rapport au soleil S, et qu'il fera nuit pour ce lieu quand
il passera derrière ce cercle B'I'BI. On appelle ce cercle B'I'BI cercle d'illumination.
Or chaque lieu M de la terre décrit dans l'espace de vingt-quatre heures
un cercle entier tel que ABA'B' perpendiculaire à l'axe PP': pendant que le lieu
M décrit l'arc antérieur B'AB, dans le sens indiqué par ces lettres, il est éclairé
par le soleil, il y fait jour; pendant qu'il parcourt l'arc postérieur BA'B', il est
dans l'obscurité, il y fait nuit. Le mouvement de rotation de la terre explique
donc parfaitement les alternatives de jour et de nuit
149.


Note 149:
(retour)  On peut remarquer, dans la seconde position de la terre, une zone boréale,
IPN, dont chaque point est éclairé durant toute la révolution actuelle de la
terre; chacun de ces lieux jouit pour cette position de la terre d'un jour de
plus de vingt-quatre heures. Sur la zone terrestre I'P'N', au contraire, il y a
pour cette position de la terre une nuit de plus de vingt-quatre heures. Remarque
analogue pour la troisième position. Mais cette remarque doit être reportée au paragraphe suivant.




2º Les variations périodiques qu'éprouvent les durées des jours et des nuits
en un même lieu de la terre s'expliquent très-bien par le mouvement annuel
de translation de la terre autour du soleil S, relativement fixe.


Pour fixer les idées, considérons un point M de l'hémisphère boréal.
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En jetant les yeux sur les figures 83, 84, 85, on verra facilement que les variations
dans la durée des jours et des nuit pour ce lieu quelconque M de la
terre, sont dues aux variations de la hauteur du soleil, au-dessus ou
au-dessous de l'équateur terrestre; autrement dit, aux variations de la déclinaison du
soleil résultant du mouvement de translation de la terre sur son orbite elliptique.


Dans chacun, le cercle PAEP'E'A', que l'on voit de face, est l'intersection de
la terre, supposée sphérique, par le plan qui passe par le centre, S, du soleil et
l'axe de rotation PP', considéré dans l'une de ses positions successives; s étant
l'intersection de la ligne TS avec cette circonférence, l'arc sE est la D du soleil,
boréale dans la fig. 84, australe dans la fig. 85, et nulle dans la fig. 83.


1er cas général. Considérons d'abord cette dernière, le soleil étant dans le
plan de l'équateur, le cercle d'illumination BII'B' coupe le plan SPP' suivant
l'axe PP' lui-même; il résulte de là que chaque parallèle diurne, B'ABA', ayant
son centre C sur le cercle d'illumination, est divisé par celui-ci en deux parties
égales B'AB, BA'B'. A l'époque où le soleil est dans le plan de l'équateur
quand la déclinaison est nulle, c'est-à-dire à chaque équinoxe, la durée du
jour égale celle de la nuit pour tous les lieux de la terre.
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2e cas général (fig. 84). Le soleil est au-dessus de l'équateur du côté du pôle
boréal P; la déclinaison sE est boréale. La figure montre immédiatement que,
dans ce cas, pour tout lieu M de l'hémisphère boréal, la durée du jour surpasse
celle de la nuit, et que cet excès du jour sur la nuit augmente ou diminue
avec la ligne CK, par suite avec l'angle ITP = sTE = Déclinaison. Ainsi,
quand la déclinaison du soleil est boréale, le jour dure plus que la nuit pour
tout lieu de l'hémisphère boréal, et d'autant plus que cette déclinaison boréale
est plus grande.


Le contraire a évidemment lieu à la même époque pour chaque lieu m de
l'hémisphère terrestre austral.




3e cas général (fig. 85). Le soleil est au-dessous de l'équateur DE'; sa déclinaison
Es est australe.
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La figure montre qu'alors le jour dure moins que la nuit pour chaque lieu M
de l'hémisphère boréal, et dure d'autant moins que CK est plus grand, ou bien
que l'angle ITP, qui mesure la déclinaison australe Es du soleil, est plus grand.


Ainsi, quand la déclinaison du soleil est australe, le jour dure moins que la
nuit sur l'hémisphère boréal, et d'autant moins que cette déclinaison australe
est plus grande.


Or ces conclusions sont identiquement celles que nous avons déduites de la
considération du mouvement annuel apparent du soleil.


Il reste maintenant à montrer comment le mouvement de translation de la
terre, dans son orbite elliptique dont le soleil occupe constamment un des
foyers, fait varier la déclinaison du soleil.


Pour cela, il est bon de remarquer: 1º (fig. 84) que l'angle PTS de la ligne
ST avec le segment TP de la ligne des pôles, qui va au pôle boréal, est aigu
quand la déclinaison, sE, du soleil est boréale; et réciproquement; que, de
plus, la déclinaison, sE, est alors le complément de l'angle PTS; 2º (fig. 83)
que si la déclinaison est nulle, PTS = 90°. et enfin (fig. 85) que la déclinaison
Es, étant australe, l'angle PTS est obtus, et réciproquement; la déclinaison,
Es, étant alors égale à PTS--90°.


Étudier les variations de la D revient donc à étudier celles de l'angle PTS.


Soit T1T2T3T4 (fig. 87) l'orbite de la terre dont le soleil S occupe un foyer;
elle est tracée dans le plan de l'écliptique céleste, Soit SN l'axe de l'écliptique,
et SO la direction fixe à laquelle l'axe PP' de la terre, mobile avec celle-ci,
doit rester sensiblement parallèle durant tout le mouvement annuel de la terre
(l'angle NSO = 23° 28')
150; soient T2T4 l'intersection du plan NSO avec celui de
l'écliptique auquel il est perpendiculaire, et T1T3 une perpendiculaire à T2T4,
menée sur l'écliptique; T1T3 est perpendiculaire au plan NSO, et par suite aux
deux lignes fixes SN et SO. Supposons que la terre, T, se meuve sur l'ellipse
dans le sens T1T2T3T4 à partir de T1. Dans la 1re position T1 l'angle OST1 étant
droit, son supplément PT1S l'est aussi; le soleil est dans un plan perpendiculaire
à l'axe PP', c'est-à-dire dans le plan de l'équateur; alors D = 0, et le
jour égale la nuit pour toute la terre; c'est l'époque d'un équinoxe, celui du
printemps, comme nous allons le voir. En effet, la terre continuant à se
mouvoir sur l'arc d'ellipse T1T2, le rayon vecteur ST se meut sur le quadrant
T1TT2; or la géométrie montre qu'alors, partant de la valeur OST1 = 90° pour
aller à la valeur OST2 = 90° + NSO = 90° + 23°28', l'angle OST, toujours obtus,
augmente continuellement
151; il en résulte que son supplément PTS, toujours
aigu, diminue continuellement de PT1S = 90 à PTS2 = 90° — (23° 28') = 66° 32'.
Il en résulte que la déclinaison sE = 90° — PTS (fig. 84), constamment boréale,
va en augmentant de 0 à 23° 28', maximum qu'elle atteint quand la
terre arrive en T2.


Note 150:
(retour)  La direction de l'axe de rotation de la terre n'est pas constante; mais le
changement de direction que nous avons indiqué nº 231 est si lent, que nous
pouvons, sans inconvénient sensible quand nous suivons la terre dans une de
ses révolutions autour du soleil, considérer la direction de cet axe comme ne
variant pas durant cette révolution.





Note 151:
(retour) 
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Soit SO (fig. 86) une ligne oblique au plan MN, ayant pour projection
sur ce plan, ST4; menons, dans le plan, T1T3 perpendiculaire à T2T4. Comme
le plan projetant OST4 est perpendiculaire au plan MN, T1T3 est perpendiculaire
au plan OST4 et par suite à SO; OST1 est droit ainsi que OST3. Nous voulons
comparer entre eux les angles que fait SO avec les lignes qui passent par
son pied dans le plan MN. Le plus petit de ces angles est par hypothèse OST4;
supposons-le égal à 90° — 23° 28' = 66° 32'. Considérons les diverses lignes ST
qui s'éloignent de ST4 dans l'angle droit T4ST1; du point O abaissons OD perpendiculaire
à MN, et du point D une perpendiculaire DI à chacune de ces
lignes ST. Si on mène OI, chaque ligne OI sera perpendiculaire à ST. Cela
posé, à mesure que la ligne ST s'éloignera de ST4 vers ST, dans l'angle T4TT1,
l'angle DSI du triangle rectangle DSI, à hypothénuse fixe SD, augmentant,
son complément SDI diminue; d'où il résulte que le côté SI diminue continuellement
de SD à O. En même temps dans chaque triangle OIS, à hypoténuse
constante OS, rectangle en I, le côté SI diminuant, le côté OI augmente
et avec lui l'angle aigu opposé OSI ou OST; donc de la position ST4 à ST1 (ou
à ST3, ce qui revient au même) ces angles OST augmentent de 66° 32' à 90°; et
vice versa, de ST1 à ST4 ou de ST3 à ST4, ces angles OST diminuent de 90°
à 66° 32'. Par suite, les angles OST pour les lignes situées dans l'angle T2ST3 ou
T1ST2 étant les suppléments de ceux que nous venons de considérer, on peut
dire que de la position ST1 à la position ST2 les angles OST, toujours obtus,
augmentent de 90° à 90° + 23° 28'; de la position ST2 à la position ST3, ces
angles toujours obtus diminuent de 90° + 23° 28' à 90°.




[image: ]



Durant le mouvement de la terre sur l'arc T1TT2 le soleil doit donc nous
paraître s'élever de plus en plus au-dessus de l'équateur du côté du pôle
boréal
152, jusqu'à ce que sa D, toujours boréale, atteigne un maximum de
23° 28'. La saison qui s'écoule alors est donc le printemps; durant cette saison,
le jour, constamment plus long que la nuit pour les habitants de l'hémisphère
boréal, doit augmenter continuellement avec la D du soleil jusqu'à un maximum
qu'il atteint alors que la terre arrive en T2. Cette dernière position de la
terre est donc celle qui correspond au solstice d'été. La terre continuant à se
mouvoir sur l'arc T23, le rayon vecteur se mouvant dans le quadrant T2ST3,
l'angle OST, toujours obtus, diminue depuis la valeur OST2 = 90° + 23° 28' jusqu'à
OST3 = 90°; son supplément PTS, toujours aigu, augmente depuis son
minimum 90° — 23° 28' = 66° 32' jusqu'à 90°. La déclinaison sE (fig. 84) du
soleil, toujours boréale, diminue depuis 23° 28' jusqu'à 0°, valeur qu'elle atteint
quand la terre arrive on T3, où l'angle PT3S = 90°.


Note 152:
(retour)  C'est l'équateur terrestre ou contraire qui s'abaisse au-dessous du rayon
vecteur TS.




Durant ce mouvement de la terre sur l'arc d'ellipse, T2TT3, le soleil, toujours
situé au-dessus du plan de l'équateur terrestre, du côté du pôle boréal P,
doit nous paraître s'abaisser continuellement jusqu'à ce qu'il se retrouve de
nouveau sur l'équateur alors que la terre arrive en T3. Durant cette période
du mouvement de la terre, les jours, pour les habitants de l'hémisphère boréal,
constamment plus longs que les nuits, diminuent avec la déclinaison du soleil,
et l'excès du jour sur la nuit s'annule alors que la terre arrive en T3 (fig. 87).
La saison qui vient de s'écouler est donc celle que nous avons nommée l'été, et
la terre arrivant en T3, on est à l'équinoxe d'automne. La terre continuant
son mouvement sur l'arc T3TT4, l'angle OST passant de OST3 = 90° à OST4 =
90° — NSO = 90° — 23° 28' reste toujours aigu; son supplément PTS, toujours
obtus, varie dans cet intervalle de PT3S = 90° à PT4S = 90° + 23° 28'. Le
soleil passe au-dessous de l'équateur; car sa déclinaison sE = PTL — 90°
(V. la fig. 85) devient négative ou australe et varie de 0° à — 23° 28', valeur
qu'elle atteint quand la terre arrive en T4.


Durant ce mouvement de la terre de T3 en T4, le soleil doit donc nous sembler
s'abaisser au-dessous de l'équateur, e'e, du côté du pôle austral, P'. Pour
les habitants de l'hémisphère boréal, le jour dure moins que la nuit, et sa
durée diminue à mesure que la déclinaison australe augmente pour atteindre
son maximum, alors que la terre arrive en T4 (fig. 87).


Cette dernière époque du mouvement de la terre est donc le solstice d'hiver,
et la saison qui vient de s'écouler est l'automne.


Enfin la terre allant de T4 en T1, l'angle OST augmentant de 90° — 23° 28' à
90°, son supplément PTS diminue de 90° + 23° 28' à 90°, et la déclinaison toujours
australe varie de — 23° 28' à 0°.


Le soleil doit nous sembler se rapprocher de l'équateur terrestre, e'e, pour
y arriver alors que la terre est revenue en T1. Le jour constamment moindre
que la nuit, augmente néanmoins de son minimum à douze heures, valeur
qu'il atteint quand la terre est revenue en T1 à l'époque d'un nouvel équinoxe
du printemps. On vient de passer l'hiver.


Les variations périodiques des durées du jour et de la nuit s'expliquent donc
très-bien par le mouvement de la terre autour du soleil.


Nous n'avons pas besoin d'insister sur toutes les autres parties de la discussion
que nous avons faite à propos de la durée du jour à la même époque pour
des lieux différents de la terre.


Il suffit de jeter les yeux sur les fig. 84 et 85 pour voir que les mêmes conséquences
déduites du mouvement du soleil résultent de celui de la terre.
Plus la latitude boréale d'un lieu est élevée, plus la ligne TC et la ligne CK
sont grandes pour la même position de l'axe PP', c'est-à-dire à la même époque
de l'année
153. Donc plus la latitude boréale d'un lieu, est élevée, plus la durée
du jour à une époque donnée de l'année diffère de celle de la nuit.


Note 153:
(retour)  CK = TC. tang. ITP; ITP est fixe dans cette comparaison; TC varie avec
la latitude.



On remarque le jour de plus de vingt-quatre heures pour les lieux de la zone
terrestre IPN (fig. 84), et la nuit de plus de vingt-quatre heures pour les lieux
de la zone I'P'N'. Les limites de cette zone, à partir du pôle, varient avec
l'angle ITP jusqu'à 23° 28'.









6º Les variations périodiques de la température générale qui ont lieu pour chaque lieu de la terre d'une saison à l'autre s'expliquent très-bien par le mouvement
de la terre autour du soleil.


En effet, ces variations de la température nous ont paru résulter des variations
de la déclinaison du soleil telles que nous les avons déduites du mouvement
apparent du soleil; mais, ainsi que nous venons de le constater, ces
variations de la déclinaison s'expliquent aussi bien par le mouvement de la
terre autour du soleil; il résulte de là que les variations de la température
s'expliquent aussi par le mouvement réel de la terre.
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